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An ecological model for prey-predator planktonic species has been considered, in
which the growth of prey has been assumed to follow a Holling type II function.
The model consists of two reaction-diffusion equations and we extend it to time-
varying diffusivity for plankton population. A comparative study of local stability
in case of constant diffusivity and time varying diffusivity has been performed. It
has been found that the system would be more stable with time varying diffusivity
depending upon the values of system parameter.
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1. Introduction. In 1952, Turing [10] proposed a diffusion-reaction theory
of morphogenesis on the basis of well-known laws of physical chemistry. This
concept has been extended to develop the theory of biological pattern for-
mation. In an ecological context, Segel and Jackson [8] were the first to ap-
ply Turing’s model to predator-prey system. Since then, diffusive instability
has been playing an important role in the study of ecosystem [4, 5, 6]. In
the above-mentioned studies, the considered system parameters are all time-
independent and the ratio of diffusivities of predator and prey beyond a criti-
cal value determines the diffusive instability of the system. In case of oceanic
diffusion, the diffusivities can vary with time. Horizontal currents in the sea
depend upon the depth of the sea. Due to the mixing process of these hori-
zontal currents with the vertical currents, horizontal dispersion occurs [2]. As
a result, the horizontal diffusivities of phytoplankton (prey) and zooplankton
(predator) are not only to be different but also to vary with time [1].

In the present paper, we consider an ecological model for prey-predator,
where the population size of prey is not very large. The growth of prey pop-
ulation is assumed to follow a Holling Type-II function. In this case, the dif-
fusive instability of the system may occur and mortality resulting from in-
traspecies competition among prey is assumed to be negligible. In many real
situations, due to severe intraspecies competition, the natural mortality of the
predator may be ignored. We consider a basic prey-predator model, taking
into account all the above situations with time-varying diffusivities and ana-
lyze its stability near equilibrium. We will also describe a general approach to
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the amplitude equations for perturbations and relate this to Hill's equation.
Section 5 presents the stability analysis of the amplitude equation for small
values of a parameter representing a level of variation in diffusivity.

2. Model system : diffusive instability with constant diffusion coefficients.
We consider a prey-predator system described by the system of equations (see

(9D

8N1 [ ENl ] 82N1

vl _ D, =—

ot ~Nil1en, Ne|tDiga o
N> 9N, '
T = N2[N1—yN2]+ D FIR

where N; (x,t) and N> (x,t) are the concentrations of prey and predator at a
position x and at time ¢t and D, and D are their diffusion coefficients, respec-
tively.

In the absence of diffusion, the prey-predator system has spatially uniform
steady states given by

_ _ _ ey—1
E, =(0,0), Ez—(sy 1, y ) (2.2)

For the existence of the second stationary point, namely, E>, we must have
ey>lory>1/e.

We now consider the effect of small inhomogeneous perturbations of the
steady state E». Let x1(x,t) and x2(x,t) be the perturbations such that

Ni(x,t) = N1 ™ +x1(x,t), No(x,t) = No™ +x2(x,t). (2.3)

Assuming x; and x; to be sufficiently small and linearizing (2.1) about Eo,
we get

0x 9°x

Bitl =anxi+arx:+D ale,
(2.4)

9%z =a X1 +azpx2+D azi

5p = AuXi+axnxy+Do——,

where
ey—-1 ey—-1

- -1- =2 —1-¢y. 2.5
an £y? a &y an y az gy (2.5)

In the absence of diffusion, the conditions for the stability of the system are
(see [8])

ap +ap <0, apdsz > drpdp). (2.6)
Now, the first inequality in (2.6) implies that

ey—1

2
v (1-ey®) <0 (2.7)
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or
> L (2.8)
y 7 .
But for the existence of E», we should have €y > 1 or
1
—. 2.
Yy > B (2.9)
Again for € < 1,
1 1
> —. 2.1
PRGN (2.10)
Inequalities (2.9) and (2.10) together imply that for € < 1,
> L (2.11)
y 7 .
Thus,
(ey-1)3
aidze —Ai2dz1 = — 5 — (2.12)
&y

is obviously positive as €y > 1.

Therefore, it follows that for € < 1, the system will become stable. The sys-
tem may be unstable for & > 1.

We now consider the system with diffusion. We take the solution of the
system in this case as

xi(x,t) = ¢pi(t)exp(ikx) i=1,2, (2.13)
where k is the wave number. Let
¢i(t) = x;expAt, (2.14)

where A is the growth rate of perturbation in time t and «; is the amplitude at
time ¢.
The characteristic equation of the system is

AZ +{(D1 +D2)k2 - ((111 +6L22)})\+ (au 7k2D1)(0L22 7k2D2) —ajpax =0.
(2.15)

The system will not be stable if at least one of the roots of the above equation
is positive, that is, the condition for diffusive instability is (see [3])

H = (au —k2D1) (azz —kzDz) —ajpar <0. (2.16)
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Now, H is a quadratic in k? and we suppose that D; and D> are constants. Then
H (k?) has a minimum for the value k,,> = k2, where

(_l[acl(L_ ot
kn' =357 (50~ Dr) | (2.17)

Then the inequality H (kn,2) < O gives
(D> +D1ey?)* > 4D D22y, (2.18)

Thus H (kmz) will be negative when (2.18) is satisfied, and for the wave num-
bers close to ky,°, the growth rate of perturbations A can be positive. This
criterion is equivalent to the dimensionless form

B2 +pB12 > 2(p+8E)Y2 >0, (2.19)
where
_D> _ax _ 2 2.3
B—Dl, p=gn = E=¢y’. (2.20)

The second inequality in (2.19) is automatically satisfied as ey?(ey —1) > 0
is true from the condition of existence of the second stationary point E.

The first inequality in (2.19) gives the criterion of diffusive instability and
from the first equation in (2.20), we get D> = SD;. Therefore, (2.18) gives (B +
£y?)2 > 4B%y3 or

B%+2Bey’(1-2¢ey) +€2y* > 0. (2.21)

Therefore, the critical values of f are given by

Ber = 6y2(2sy—1iw/4£2y2—4sy). (2.22)

So the diffusive system given by (2.1) will be stable if

. D
ey? <25y —1—+/4e2y? —45;/) < D_i <ey? (2sy —1+4/4e2y2 —4£y). (2.23)

The condition for diffusive instability can also be written as
€ (4By® —y*) —2Bey* - B* <0, (2.24)
that is,

B(1-2y3%) o B(1+2y3/%)

) 2.2
y2(4B8-y) ¢ y2(4B8-y) (2.25)
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3. Variable diffusivities and amplitude equations. To examine the stabil-
ity of the uniform steady state to spatial and temporal perturbations in the
presence of diffusion, we consider the system of (2.4) and define dimension-
less time wt = T, where w > 0 is the frequency of variation in D,. Here we
consider D; as a constant and D; as a function of time. We now express the
solutions of (2.4) in the form

x1(t) = 1 (t)exp (ikx), x2(t) = ¢Ppo(t) exp (ikx). (3.1

Then we obtain the system of equations for ¢; as

a
% = (a1 —k*D1)w 'y +aw o,
dd (3.2)
TTZ =anw '+ {an —k*Da(T)}w  ps.
For simplicity, we consider the time-varying diffusivity D, in T as
D> (1) =Dy (B +«sinT) > 0, (3.3)
where 1 > 1 and B; > |«].
The system of (3.2) can be rewritten as
da R N a N N
% =an¢r +and:, % = dx ¢1 +axn e, (3.4)
where
. _an—k*D; L an . az
ann = —— a2 = ——, az1 = ——,
w w w (3.5)
2D i _ 2D )
iz = a, — L D1ASINT ST withag, = SRS Z b1

As a reference state we take « = 0, that is, the case with constant diffusivi-
ties.

We have already seen that the criterion for diffusive instability with constant
diffusion coefficient is (81 +£y?)2 > 4B, €2y2.

In this case, the critical values of f; are

Ber = €y? (26y—1i\/452y2—4sy), (3.6)

and the corresponding critical wave number k., for the first perturbation to
grow is found by evaluating k,, from (2.17), considering D, = 1D, at B; =
Bcr. This critical value of B, identifies the stable and unstable regions of the
diffusive system (2.1).

We are now interested in finding the diffusive instability regions in the sys-
tem of variable diffusivities and comparing the result with the reference system
of constant diffusivities.
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Substituting the first equation in (3.4) into the second equation and consid-
ering the transformation

wi=exp| -3 [{an+az(m)dr |, (3.7)
we get
T Qe =0, (3.8)
where
Q(T) = Ld (az2) - L (@i +az (1)} + {A11822(T) —d12dn . (3.9)
2dt 4

Equation (3.8) is the standard form of Hill’s equation [7].
Substituting the values of di1, di2, do1, and d»» into (3.8), we get

d*yn -1 .
17 +[6+n{-2cos2y+Q2w) ' (ax —an —k*D(B1—1))sin2y} (3.10)

+2n2cosdy]y; =0,

where
-2 2 1.5 2 2
0= (2w) [2k Dl{(a22_a11)(51_1)_§k Di(2(B1-1)"+«x )}

—(an +a22)2+4(6111a22—6112(121)], (3.11)

0(k2D1
n= 0 T=2).

The solution of (3.4) can then be written as

b1 = exp[(Zw)’l{(an —kZDl +a»» —kleﬁl)T-i‘kleO(COST}](lll. (3.12)

4. Linear stability for small variation in diffusion coefficient. We now
study the linear stability of the system when the amplitude « of the variability
in D is small. For this, we first set 81 = B¢ and k,, = k., for marginal stabil-
ity in the reference state and analyze the linear stability of the system when a
small variation in D is introduced. Equation (3.10) is then reduced to

a’y,
ay?

+{6+n(-2cos2y+2msin2y)}y; =0, 4.1)

where
~ A 2 N ~ ~ ~
6=—(an+as,) +4(anas, —ai2dn),

_ kCZDl(X
w

(4.2)
< 1, m=d3‘2—d11.

The inequality in (4.2) holds since « is very small.
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We seek a straightforward expansion for the solution of (4.1) in power series
of n in the form of (see [7])

W1 (sn) = wio(Y) +nwn () + 0y (y) +- - - (4.3)
Since n <« 1, we have

Wi(y;n) = Yo (y) +nyn (). (4.4)

Substituting from (4.4) in (4.1) and equating coefficients of like powers of n,
we have

Y10+ 0Y10 =0, (4.5)
W11 +0W11 —2W1pCoS2y +2myipsin2y = 0. (4.6)

When 6§ > 0, say & = 72, the solution of (4.5) can be written as
Y10 =Acos(ry+B), 4.7)

where A and B are constant.
Substituting from (4.7) in (4.6) and disregarding the homogeneous solution,
we may write

A[ cos(ry+2y+B) cos(ry—-2y+B)
(I/n:Z -

(r+1) (r-1) 4.8)
_msin(ry+2y+B)+msin(1’y—2y+B)] ’
(r+1) (r-1) '

Therefore, the solution of the first equation in (3.4) is

. . 1 k’D; «x
¢ = [eXp{(au+a§2)y+§ !

COSZJ’H(WloJran)- 4.9)

Now, (d11+4a3,) <0 for € < 1 and consequently ¢, tends to zero when y, as
well as T, tends to infinity. Therefore, for 6 > 0 and ¢ < 1, the diffusive system
will be asymptotically stable.

When § < 0, say 6 = —602, the solution of (4.5) can be written as

Yio=A1exp(0y)+Brexp(-0y), (4.10)

where A; and B; are constants.
Consequently,

Y1 :Ale"y[1+ {981n2y—cosZy—mOcosZy—msinZy}]

_n__
2(02+1)
n

-0y .
+Ble [1+2(92+1)

{m@cosZy—msinZy—@sinZy—cosZy}].
(4.11)
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Therefore,
R . 1 k2D x
¢ = [exp{(a11+a§2)y+§ - COSZJ’}](WIO"‘”WH)- (4.12)
If
N s - NN ~
|:a11 +a22+\/(a11—a22) +4a12a21] <0, (413)

then the solution ¢; will be asymptotically stable. This condition can be re-
duced to di1d3, > di2dz1, that is,

_1)3 -
&1 k2, (k201 +<ey—1>(WTyfl)] S0, (@414)
Inequality (4.14) will be satisfied if ey? > B, or
(5 —1)3 - cy—1
);T+k4Df,81>k2D1( i’/yz )(Bl—fyz)- (4.15)

Therefore, for § <0 and € > B1/y?, ¢, will be asymptotically stable.
From the analysis of Section 2, we have the condition of stability for constant
diffusivity as

€y2<2€y—1—\/m) <B<$y2<2$y—1+\/m)_

(4.16)

Thus, the length of the interval of S for the stability of the system is
[2ey2,/(2ey —1)2-1].

In this section, we see that the stability criterion for variable diffusivity is
0 < B1 < €y?, where ¢ < 1. Therefore, in this case, the length of the interval
of B; for which stability occurs is y?. So, if 24/(2ey—1)2—-1 <1 or €y < 1.06
(approximately), then the system will become more stable under variable dif-
fusivity than under constant diffusivity.

5. Conclusion. In the present paper, we have considered a model of prey-
predator ecosystem where the growth of prey is not directly proportional to
the existing prey population and it is described by a Holling type II function.
The stability analysis of the system reveals that the system without diffusion is
stable when ¢ < 1, thatis, the growth rate of prey is small. We have then studied
the diffusive instability of the system with constant diffusion coefficient. From
these studies, it follows that diffusive instability will certainly develop when

(Ds +D1ey?)* > 4D D22y, (5.1)
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This condition will be satisfied when D, /D > 1. Hence, for diffusive instability
of the system, the mobility of predator should be much higher than that of the
prey.

When the diffusivity of the predator is driven by time-varying diffusion co-
efficients, the stability criterion of the system is changed. In this case, we see
that, for € < 1, the system will become asymptotically stable if 0 < 8; < ey?2.
We also observe that, depending upon the values of € and y, that is, the growth
rate of the prey and the competition rate of the predator, the system will be-
come more stable with time-varying diffusivity than with constant diffusivity.
If ey < 1.06 (approximately), then the system with varying diffusivity will be
more stable.
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