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Let H be a finite-dimensional Hopf algebra over a field k, H* the dual Hopf algebra
of H, and B a right H*-Galois and Hirata separable extension of B. Then B is
characterized in terms of the commutator subring Vz(B) of B/ in B and the
smash product Vg (BH)#H. A sufficient condition is also given for B to be an H*-
Galois Azumaya extension of B,
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1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k,
H* the dual Hopf algebra of H, and B a right H*-Galois extension of BY. In [3],
the class of H*-Galois Azumaya extensions was investigated and in [8], it was
shown that B is a Hirata separable extension of BY if and only if the commu-
tator subring Vz(B”) of BH in B is a left H-Galois extension of C, where C is
the center of B (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present
paper is to characterize a right H*-Galois and Hirata separable extension B
of B in terms of the commutator subring Vz(B¥) and the smash product
Vg (BM)#H. Let B be a right H*-Galois extension of B such that B = BH*.
Then the following statements are equivalent:

(1) Bis a Hirata separable extension of BY,

(2) Vz(BH) is an Azumaya C-algebra and Vi (Vz(BH)) = BH,

(3) Vg(BH) is a right H*-Galois extension of C and a direct summand of

Ve (B")#H as a Vz(BH)-bimodule,

(4) Vg(BM) is a right H*-Galois extension of C and Vi (B)#H is a direct

summand of a finite direct sum of V3 (B¥) as a bimodule over Vi (BH).
Moreover, an equivalent condition is given for a right H*-Galois and Hirata
separable extension B of B to be an H*-Galois Azumaya extension which was
studied in [3, 7]. Also, let B be aright H*-Galois and Hirata separable extension
of B" and A a subalgebra of B over C such that B is a projective Hirata
separable extension of A containing A as a direct summand as an A-bimodule.
Then Vyu (A) is a separable subalgebra of BY over C, and there exists an H-
submodule algebra D in B which is separable over C such that D = Vyu (A)
and D = Vpu (A) ®z F as Azumaya Z-algebras, where Z is the center of D and
F is an Azumaya Z-algebra in D.
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2. Basic definitions and notations. Throughout, H denotes a finite-dimen-
sional Hopf algebra over a field k with comultiplication A and counit &, H* the
dual Hopf algebra of H, B a left H-module algebra, C the center of B, B" = {b €
B | hb = £(h)b for all h € H} which is called the H-invariants of B, and B#H
the smash product of B with H, where B#H = B®y H such that for all b#h and
b'#h’ in B#H, (b#h)(b'#h') = > b(h1b")#h,h’', where A(h) = > h; ® h,. The
ring B is called a right H*-Galois extension of B¥ if B is a right H*-comodule
algebra with structure map p: B — B®yH* such that f: B®zu B — B®H* is a
bijection, where f(a®b) = (a®1)p(b).

For a subring A of B with the same identity 1, we denote the commutator
subring of A in B by Vz(A). We call B a separable extension of A if there
exist {a;,b; in B, i =1,2,...,m, for some integer m} such that > a;b; = 1 and
>ba;®b; => a;®b;b forall b in B, where ® is over A. An Azumaya algebrais a
separable extension of its center. A ring B is called a Hirata separable extension
of A if B® 4 B is isomorphic to a direct summand of a finite direct sum of B as
a B-bimodule. A right H*-Galois extension B is called an H*-Galois Azumaya
extension if B is separable over BY which is an Azumaya algebra over CH. A
right H*-Galois extension B of B! is called an H*-Galois Hirata extension if B
is also a Hirata separable extension of BY. Throughout, an H*-Galois extension
means a right H*-Galois extension unless it is stated otherwise.

3. The H*-Galois Hirata extensions. In this section, we will characterize
an H*-Galois Hirata extension B of B in terms of the commutator subring
Vg (BT) of B in B and the smash product Vz(B")#H. A relationship between
an H*-Galois Hirata extension and an H*-Galois Azumaya extension is also
given. We begin with some properties of an H*-Galois Hirata extension B of
BH . Throughout, we assume B = BH™,

LEMMA 3.1. If A, and A, are H*-Galois extensions such that AY = A and
A C Ay, then A; = As.

PROOF. By [3, Theorem 5.1], there exist {x;,v; € A; | i = 1,2,...,n} for
some integer n such that, for all h € H, 3 x;(hy;) = T(h)14,, where T € [},
the set of right integrals in H*. Let t € f},, the set of left integrals in H, such
that T(t) = 1, then {x;, fi = t(y;—) | i=1,2,...,n} is a dual basis of the finitely
generated and projective right module A, over AY. Since A; ¢ A, such that
Al = A {x;, fi|i=1,2,...,n} is also a dual basis of the finitely generated
and projective right module A, over AY. This implies that A; = A,. O

LEMMA 3.2. If B is an H*-Galois Hirata extension of B, then BY is a direct
summand of B as a B -bimodule.

PROOF. We use the argument as given in [2]. Since B is an H*-Galois and
a Hirata separable extension of Bf, V3 (B") is a left H-Galois extension of C
(see [8, Lemma 2.1, Theorem 2.6]). Hence, Vz(B") is a finitely generated and
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projective module over C (see [3, Theorem 2.2]). Let Q=Hom¢ (Vz (BH), Vi (BH)).
Since C is commutative, Vz(B¥) is a progenerator of C. Thus, B is a right
Q-module such that B = V3 (BH) ® Homg (Vg (BH),B) = Vg(BH) ® BH™ as C-
algebras, where f(1) € BE* for each f € Homq (Vs (BH),B) by the proof of [2,
Lemma 2.8]. But V3(Vz(BH)) = BH (see [2, Lemma 2.5]), so B = Vi (B") @ B,
This implies that Vz(B") is an H*-Galois extension of C (see [2, Lemma 2.8]);
and so C is a direct summand of V3 (BY) as a C-bimodule (see [2, Corollaries
1.9 and 1.10]). Therefore, BY is a direct summand of B as a B¥-bimodule. O

By the proof of Lemma 3.2, Vg (B") is an H*-Galois extension of C.

COROLLARY 3.3. IfB is an H*-Galois Hirata extension of B, then Vg (BH) is
an H*-Galois extension of C.

COROLLARY 3.4. If B is an H*-Galois Hirata extension of B, then B = BH .
V(B and the centers of B, B, and Vz(B™) are the same C.

PROOF. By Corollary 3.3, Vz(BH) is an H*-Galois extension of C, so BT .
Vz(BH) is also an H*-Galois extension of BH (= (BH - Vg (BH))H) with the same
Galois system as Vz(B") (see [3, Theorem 5.1]). Noting that BY - Vg (BH) C B,
we conclude that B = B - V3 (BH) by Lemma 3.1. Moreover, Vi (Vz(BH)) = BH
(see [8, Lemma 2.5]), so the centers of B, Vz(B"), and B are the same C. 0O

THEOREM 3.5. Let B be an H*-Galois extension of BH. The following state-
ments are equivalent:

(1) B is a Hirata separable extension of BY,

(2) Vg(BH) is an H*-Galois extension of C and a direct summand of
Ve (BM#H as a Vg(B?)-bimodule,

(3) Vp(BH) is an Azumaya C-algebra and Vz(Vg(BH)) = BH,

(4) Vg(BH) is an H*-Galois extension of C and Vg(B")#H is a direct sum-
mand of a finite direct sum of Vg(B™) as a bimodule over Vg (BH).

PROOF. (1)=(3). Since B is an H*-Galois and a Hirata separable extension
of BH, by Lemma 3.2, BY is a direct summand of B as a B”-bimodule. Thus,
Ve(Ve(BH)) = BH and Vp(BM) is a separable C-algebra (see [4, Propositions
1.3 and 1.4]). But the center of Vz(B™) is C by Corollary 3.4, so Vz(Bf) is an
Azumaya C-algebra.

(3)=(1). Since V3(BH) is an Azumaya C-algebra and B is a bimodule over
Ve(BH), B = Vg(BH)®cVp(V(B?)) = V5 (B") ® B as a bimodule over Vg (BH)
(see[1, Corollary 3.6, page 54]). Noting that B = V3 (B") ® - B is also an isomor-
phism as C-algebras and that Vz(BY) is an Azumaya C-algebra, we conclude
that Vz(BY) ® BH is a Hirata separable extension of B"; and so B is a Hirata
separable extension of BY.

(3)=(2). By the proof of (3)=(1), B = Vg(B") ®c BH such that Vz(BY) is a
finitely generated and projective module over C, so Vz(BH) is an H*-Galois
extension of C (see [2, Lemma 2.8]). Moreover, since Vz(B) is an Azumaya
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C-algebra, Vz(B") is a direct summand of Vz(B) ®¢ (Vz(B"))° as a Vg (BH)-
bimodule, where (Vz(Bf))° is the opposite algebra of Vg (B). But Vz(B) ®c
(Vg(B"))° = Homc (Vg (B"),Vy(BH)) = Vz(BH)#H (see [3, Theorem 2.2]), so
Vs (BM) is a direct summand of Vi (B")#H as a Vz(BH)-bimodule.

(2)=(3). Since V3 (BH) is an H*-Galois extension of C, B - Vz(BH) is an H*-
Galois extension of (BH - Vg (B"))H. But (BH - V3 (BH))H = BH so BH . Vz(BH)
and B are H*-Galois extensions of Bf such that B - Vz(Bf) c B. Hence, BT -
Vg (BH) = B by Lemma 3.1. Thus, the centers of B and V(Bf) are the same C.
Moreover, Vg(BH) is a direct summand of Vg (B )#H as a Vg (BH)-bimodule by
hypothesis, so it is a separable C-algebra (see [3, Theorem 2.3]). Thus, V3 (B¥) is
an Azumaya C-algebra. But then B = V3 (B") ® - V3 (Vz(BH)). On the other hand,
by hypothesis, Vg (B¥) is an H*-Galois extension of C, so B = V3 (B") ® c B (see
[2, Lemma 2.8]). Therefore, V5 (Vy(BH)) = BH.

(3)=(4). Since Vy(BH) is an H*-Galois extension of C, it is a finitely gener-
ated and projective module over C and Hom¢ (Vi (BH),Vy(BH)) = Vg(BH)#H
(see [3, Theorem 2.2]). But then Vg (BY) is a Hirata separable extension of C
if and only if Vz(BH)#H is a direct summand of a finite direct sum of Vz(B™)
as a bimodule over Vg (BH) (see [5, Corollary 3]). Thus, Vz(B") is an Azumaya
C-algebra if and only if Vz(B¥) is an H*-Galois extension of C and V(B")#H
is a direct summand of a finite direct sum of V3 (BH) as a bimodule over Vi (B").

|

By Theorem 3.5, we can obtain a relationship between the class of H*-Galois
Hirata extensions and the class of H*-Galois Azumaya extensions which were
studied in [3, 7].

COROLLARY 3.6. Let B be an H*-Galois Azumaya extension of BY. Then B is
an H*-Galois Hirata extension of B if and only if C = CH.

PROOF. (=) Since B is an H*-Galois Hirata extension of B, Vz(BH) is an
Azumaya algebra over C and a left H-Galois extension of C (see [8, Theorem
2.6]). Hence, Vg (Vg (BH)) = B (see [8, Lemma 2.5]). Thus, C ¢ B¥; and so C =
CH,

(<) Since B is an H*-Galois Azumaya extension of BH, V3 (B¥) is separable
over CH (see [3, Lemma 4.1]). Since B is an H*-Galois Azumaya extension of B
again, Vz(BM) is an H*-Galois extension of (Vz(B"))H (see [3, Lemma 4.1]), so
both B - V3 (BM) and B are H*-Galois extensions of B such that BY - V3 (BH) ¢
B.Hence, BY - Vg (BH) = Bby Lemma 3.1. This implies that the center of Vz(BH)
is C. But by hypothesis, C = CH, so Vz(B™) is an Azumaya C-algebra. Hence,
Vg(BH) is a Hirata separable extension of C. But B = B - Vz(B") = BH @,
Vp(BT) as Azumaya C-algebras, so B is a Hirata separable extension of B,
Thus, B is an H*-Galois Hirata extension of BH. 0

COROLLARY 3.7. Let B be an H*-Galois Hirata extension of BY. Then B is an
H*-Galois Azumaya extension of B if and only if B is an Azumaya CH -algebra.
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PROOF. (=) Since B is an H*-Galois Azumaya extension of Bf, BH is an
Azumaya CH-algebra and B is separable over B¥ (see [3, Theorem 3.4]). Hence,
B is separable over CH by the transitivity of separable extensions. But B is an
H*-Galois Azumaya extension of Bf and an H*-Galois Hirata extension of BY
by hypothesis, so C = CH by Corollary 3.6. This implies that B is an Azumaya
CH-algebra.

(<) By hypothesis, B is an Azumaya CH-algebra. Hence, C = CH. But B is
an H*-Galois Hirata extension of BH, so Vp(BH) is an Azumaya subalgebra
of B over C by Theorem 3.5(3). Since B is an H*-Galois Hirata extension of
BY again, B is a Hirata separable extension of B and a finitely generated and
projective module over BH. Thus, Vi (Vg (B")) = BH (see [8, Lemma 2.5]); and so
BH (= Vy(Vp(BH))) is an Azumaya subalgebra of B over CH by the commutator
theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that
B is an H*-Galois Azumaya extension of BH, ]

4. Invariant subalgebras. For an H*-Galois Hirata extension B as given in
Theorem 3.5, let A be a subalgebra of B” over C such that B is a projective
Hirata separable extension of A and contains A as a direct summand as an A-
bimodule. In this section, we show that Vpu (A) is the H-invariant subalgebra
of a separable subalgebra D in B over C, that is, D = Vyu (A). We denote by
& the set {A | A is a subalgebra of Bf over C such that B is a projective
Hirata separable extension of A and contains A as a direct summand as an
A-bimodule}.

LEMMA 4.1. Let B be an H*-Galois Hirata extension of BH. For any A € ¢,
Vg(A) is an H-submodule algebra of B and separable over C, and (Vz(A))H =
Vg (A) which is a separable C-algebra.

PROOF. Since A € &, B is a projective Hirata separable extension of A and
contains A as a direct summand as an A-bimodule. But B is an H *-Galois Hi-
rata extension of B, so B is a projective Hirata separable extension of BH.
Hence, by the transitivity property of projective Hirata separable extensions,
B is a projective Hirata separable extension of A. Also B is a direct sum-
mand of B as a B7-bimodule by Lemma 3.2, so A is a direct summand of B
as an A-bimodule. Thus, V3(A) is a separable algebra over C (see [6, Theo-
rem 1]). Moreover, it is clear that (Vz(A))" = Vzu (A), so Vgu (A) is a separable
C-algebra (see Corollary 3.4 and [6, Theorem 1]). O

Next we want to show which separable subalgebra of B over C is an H-
invariant subring of an H-submodule algebra in B. Let § = {E C B| E is a
separable C-subalgebra of B and satisfies the double centralizer property in
B such that Vzu (E) € 9}. Next we show that for any E € 7, E is the H-invariant
subring of an H-submodule algebra D in B which is separable over C.

THEOREM 4.2. Let E be in J. Then there exists an H-submodule algebra D
in B which is separable over C such that D" = E.
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PROOF. Since E isin 7, Vyzu (E) is in & such that Vpu (Vyu (E)) = E. Now by
Lemma 4.1, Vg(Vyu (E)) is an H-submodule algebra of B and separable over C
such that (Vg (Vgu (E))H = Vgu (Vgu (E)). But Vi (Vgu (E)) = E, so

(Ve (Vg (E)))" = E. 4.1)

Let D = Vg(Vpu (E)). Then D satisfies the theorem. O

By Theorem 4.2, we obtain an expression for the separable H-submodule
algebra D for a given E in 7.

COROLLARY 4.3. By keeping the notations as given in Theorem 4.2, let Z be
the center of E. Then D = E®;Vp(E) as Azumaya Z-algebras.

PROOF. Since E satisfies the double centralizer property in BY, Vgu (Vgu (E))
= E.Hence, the centers of E and Vyu (E) are the same Z. Similarly as given in the
proof of Lemma 4.1, since Vgu (E) is in ¥, B (= BY - V3 (BH)) is a projective Hi-
rata separable extension of Vzu (E) and contains Vgzu (E) as a direct summand
as a Vpu (E)-bimodule by the transitivity property of projective Hirata sepa-
rable extensions and the direct summand conditions. Thus, Vpu (E) satisfies
the double centralizer property in B, that is, Vg (V(Vpu (E))) = Vpu (E). This
implies that the centers of Vyu (E) and Vg(Vyu (E)) are the same. Therefore, D
and E have the same center Z. Noting that D and E are separable C-algebras by
Theorem 4.2, we conclude that E (= D) is an Azumaya subalgebra of D over Z;
and so D = E®;Vp(E) as Azumaya Z-algebras (see [1, Theorem 4.3, page 57]).

O

REMARK 4.4. When B is an H*-Galois Azumaya extension of B, the cor-
respondence A — Vp(A) as given in Lemma 4.1 recovers the one-to-one cor-
respondence between the set of separable subalgebras of BY and the set of
H*-Galois extensions in B containing V3 (B") as given in [3].
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