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LetH be a finite-dimensional Hopf algebra over a field k,H∗ the dual Hopf algebra
of H, and B a right H∗-Galois and Hirata separable extension of BH . Then B is
characterized in terms of the commutator subring VB(BH) of BH in B and the
smash product VB(BH)#H. A sufficient condition is also given for B to be an H∗-
Galois Azumaya extension of BH .
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1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k,

H∗ the dual Hopf algebra of H, and B a right H∗-Galois extension of BH . In [3],

the class of H∗-Galois Azumaya extensions was investigated and in [8], it was

shown that B is a Hirata separable extension of BH if and only if the commu-

tator subring VB(BH) of BH in B is a left H-Galois extension of C , where C is

the center of B (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present

paper is to characterize a right H∗-Galois and Hirata separable extension B
of BH in terms of the commutator subring VB(BH) and the smash product

VB(BH)#H. Let B be a right H∗-Galois extension of BH such that BH = BH∗ .

Then the following statements are equivalent:

(1) B is a Hirata separable extension of BH ,

(2) VB(BH) is an Azumaya C-algebra and VB(VB(BH))= BH ,

(3) VB(BH) is a right H∗-Galois extension of C and a direct summand of

VB(BH)#H as a VB(BH)-bimodule,

(4) VB(BH) is a right H∗-Galois extension of C and VB(BH)#H is a direct

summand of a finite direct sum of VB(BH) as a bimodule over VB(BH).
Moreover, an equivalent condition is given for a right H∗-Galois and Hirata

separable extension B of BH to be an H∗-Galois Azumaya extension which was

studied in [3, 7]. Also, let B be a rightH∗-Galois and Hirata separable extension

of BH and A a subalgebra of BH over C such that BH is a projective Hirata

separable extension of A containing A as a direct summand as an A-bimodule.

Then VBH (A) is a separable subalgebra of BH over C , and there exists an H-

submodule algebra D in B which is separable over C such that DH = VBH (A)
and D � VBH (A)⊗Z F as Azumaya Z-algebras, where Z is the center of D and

F is an Azumaya Z-algebra in D.
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2. Basic definitions and notations. Throughout, H denotes a finite-dimen-

sional Hopf algebra over a field k with comultiplication ∆ and counit ε, H∗ the

dual Hopf algebra ofH, B a leftH-module algebra, C the center of B, BH = {b ∈
B | hb = ε(h)b for all h ∈ H} which is called the H-invariants of B, and B#H
the smash product of B with H, where B#H = B⊗kH such that for all b#h and

b′#h′ in B#H, (b#h)(b′#h′) =∑b(h1b′)#h2h′, where ∆(h) =∑h1⊗h2. The

ring B is called a right H∗-Galois extension of BH if B is a right H∗-comodule

algebra with structure map ρ : B→ B⊗kH∗ such that β : B⊗BH B→ B⊗kH∗ is a

bijection, where β(a⊗b)= (a⊗1)ρ(b).
For a subring A of B with the same identity 1, we denote the commutator

subring of A in B by VB(A). We call B a separable extension of A if there

exist {ai,bi in B, i= 1,2, . . . ,m, for some integer m} such that
∑
aibi = 1 and

∑
bai⊗bi =

∑
ai⊗bib for all b in B, where⊗ is overA. An Azumaya algebra is a

separable extension of its center. A ring B is called a Hirata separable extension

of A if B⊗AB is isomorphic to a direct summand of a finite direct sum of B as

a B-bimodule. A right H∗-Galois extension B is called an H∗-Galois Azumaya

extension if B is separable over BH which is an Azumaya algebra over CH . A

right H∗-Galois extension B of BH is called an H∗-Galois Hirata extension if B
is also a Hirata separable extension of BH . Throughout, anH∗-Galois extension

means a right H∗-Galois extension unless it is stated otherwise.

3. The H∗-Galois Hirata extensions. In this section, we will characterize

an H∗-Galois Hirata extension B of BH in terms of the commutator subring

VB(BH) of BH in B and the smash product VB(BH)#H. A relationship between

an H∗-Galois Hirata extension and an H∗-Galois Azumaya extension is also

given. We begin with some properties of an H∗-Galois Hirata extension B of

BH . Throughout, we assume BH = BH∗ .

Lemma 3.1. If A1 and A2 are H∗-Galois extensions such that AH1 = AH2 and

A1 ⊂A2, then A1 =A2.

Proof. By [3, Theorem 5.1], there exist {xi,yi ∈ A1 | i = 1,2, . . . ,n} for

some integer n such that, for all h ∈H,
∑
xi(hyi) = T(h)1A1 , where T ∈ ∫ rH∗ ,

the set of right integrals in H∗. Let t ∈ ∫ lH , the set of left integrals in H, such

that T(t)= 1, then {xi,fi = t(yi−) | i= 1,2, . . . ,n} is a dual basis of the finitely

generated and projective right module A1 over AH1 . Since A1 ⊂ A2 such that

AH1 = AH2 , {xi,fi | i = 1,2, . . . ,n} is also a dual basis of the finitely generated

and projective right module A2 over AH1 . This implies that A1 =A2.

Lemma 3.2. If B is an H∗-Galois Hirata extension of BH , then BH is a direct

summand of B as a BH -bimodule.

Proof. We use the argument as given in [2]. Since B is an H∗-Galois and

a Hirata separable extension of BH , VB(BH) is a left H-Galois extension of C
(see [8, Lemma 2.1, Theorem 2.6]). Hence, VB(BH) is a finitely generated and
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projective module overC (see [3, Theorem 2.2]). LetΩ=HomC(VB(BH),VB(BH)).
Since C is commutative, VB(BH) is a progenerator of C . Thus, B is a right

Ω-module such that B � VB(BH)⊗C HomΩ(VB(BH),B) � VB(BH)⊗C BH∗ as C-

algebras, where f(1)∈ BH∗ for each f ∈ HomΩ(VB(BH),B) by the proof of [2,

Lemma 2.8]. But VB(VB(BH)) = BH (see [2, Lemma 2.5]), so B � VB(BH)⊗C BH .

This implies that VB(BH) is an H∗-Galois extension of C (see [2, Lemma 2.8]);

and so C is a direct summand of VB(BH) as a C-bimodule (see [2, Corollaries

1.9 and 1.10]). Therefore, BH is a direct summand of B as a BH -bimodule.

By the proof of Lemma 3.2, VB(BH) is an H∗-Galois extension of C .

Corollary 3.3. If B is an H∗-Galois Hirata extension of BH , then VB(BH) is

an H∗-Galois extension of C .

Corollary 3.4. If B is an H∗-Galois Hirata extension of BH , then B = BH ·
VB(BH) and the centers of B, BH , and VB(BH) are the same C .

Proof. By Corollary 3.3, VB(BH) is an H∗-Galois extension of C , so BH ·
VB(BH) is also an H∗-Galois extension of BH (= (BH ·VB(BH))H) with the same

Galois system as VB(BH) (see [3, Theorem 5.1]). Noting that BH ·VB(BH) ⊂ B,

we conclude that B = BH ·VB(BH) by Lemma 3.1. Moreover, VB(VB(BH)) = BH
(see [8, Lemma 2.5]), so the centers of BH , VB(BH), and B are the same C .

Theorem 3.5. Let B be an H∗-Galois extension of BH . The following state-

ments are equivalent:

(1) B is a Hirata separable extension of BH ,

(2) VB(BH) is an H∗-Galois extension of C and a direct summand of

VB(BH)#H as a VB(BH)-bimodule,

(3) VB(BH) is an Azumaya C-algebra and VB(VB(BH))= BH ,

(4) VB(BH) is an H∗-Galois extension of C and VB(BH)#H is a direct sum-

mand of a finite direct sum of VB(BH) as a bimodule over VB(BH).

Proof. (1)⇒(3). Since B is an H∗-Galois and a Hirata separable extension

of BH , by Lemma 3.2, BH is a direct summand of B as a BH -bimodule. Thus,

VB(VB(BH)) = BH and VB(BH) is a separable C-algebra (see [4, Propositions

1.3 and 1.4]). But the center of VB(BH) is C by Corollary 3.4, so VB(BH) is an

Azumaya C-algebra.

(3)⇒(1). Since VB(BH) is an Azumaya C-algebra and B is a bimodule over

VB(BH), B � VB(BH)⊗C VB(VB(BH))= VB(BH)⊗C BH as a bimodule over VB(BH)
(see [1, Corollary 3.6, page 54]). Noting that B � VB(BH)⊗C BH is also an isomor-

phism as C-algebras and that VB(BH) is an Azumaya C-algebra, we conclude

that VB(BH)⊗C BH is a Hirata separable extension of BH ; and so B is a Hirata

separable extension of BH .

(3)⇒(2). By the proof of (3)⇒(1), B � VB(BH)⊗C BH such that VB(BH) is a

finitely generated and projective module over C , so VB(BH) is an H∗-Galois

extension of C (see [2, Lemma 2.8]). Moreover, since VB(BH) is an Azumaya
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C-algebra, VB(BH) is a direct summand of VB(BH)⊗C (VB(BH))◦ as a VB(BH)-
bimodule, where (VB(BH))◦ is the opposite algebra of VB(BH). But VB(BH)⊗C
(VB(BH))◦ � HomC(VB(BH),VB(BH)) � VB(BH)#H (see [3, Theorem 2.2]), so

VB(BH) is a direct summand of VB(BH)#H as a VB(BH)-bimodule.

(2)⇒(3). Since VB(BH) is an H∗-Galois extension of C , BH ·VB(BH) is an H∗-

Galois extension of (BH ·VB(BH))H . But (BH ·VB(BH))H = BH , so BH ·VB(BH)
and B are H∗-Galois extensions of BH such that BH ·VB(BH) ⊂ B. Hence, BH ·
VB(BH)= B by Lemma 3.1. Thus, the centers of B and VB(BH) are the same C .

Moreover, VB(BH) is a direct summand of VB(BH)#H as a VB(BH)-bimodule by

hypothesis, so it is a separable C-algebra (see [3, Theorem 2.3]). Thus, VB(BH) is

an Azumaya C-algebra. But then B � VB(BH)⊗C VB(VB(BH)). On the other hand,

by hypothesis, VB(BH) is anH∗-Galois extension of C , so B � VB(BH)⊗C BH (see

[2, Lemma 2.8]). Therefore, VB(VB(BH))= BH .

(3)�(4). Since VB(BH) is an H∗-Galois extension of C , it is a finitely gener-

ated and projective module over C and HomC(VB(BH),VB(BH)) � VB(BH)#H
(see [3, Theorem 2.2]). But then VB(BH) is a Hirata separable extension of C
if and only if VB(BH)#H is a direct summand of a finite direct sum of VB(BH)
as a bimodule over VB(BH) (see [5, Corollary 3]). Thus, VB(BH) is an Azumaya

C-algebra if and only if VB(BH) is an H∗-Galois extension of C and VB(BH)#H
is a direct summand of a finite direct sum ofVB(BH) as a bimodule over VB(BH).

By Theorem 3.5, we can obtain a relationship between the class ofH∗-Galois

Hirata extensions and the class of H∗-Galois Azumaya extensions which were

studied in [3, 7].

Corollary 3.6. Let B be an H∗-Galois Azumaya extension of BH . Then B is

an H∗-Galois Hirata extension of BH if and only if C = CH .

Proof. (⇒) Since B is an H∗-Galois Hirata extension of BH , VB(BH) is an

Azumaya algebra over C and a left H-Galois extension of C (see [8, Theorem

2.6]). Hence, VB(VB(BH)) = BH (see [8, Lemma 2.5]). Thus, C ⊂ BH ; and so C =
CH .

(⇐) Since B is an H∗-Galois Azumaya extension of BH , VB(BH) is separable

over CH (see [3, Lemma 4.1]). Since B is anH∗-Galois Azumaya extension of BH

again, VB(BH) is an H∗-Galois extension of (VB(BH))H (see [3, Lemma 4.1]), so

both BH ·VB(BH) and B areH∗-Galois extensions of BH such that BH ·VB(BH)⊂
B. Hence, BH ·VB(BH)= B by Lemma 3.1. This implies that the center of VB(BH)
is C . But by hypothesis, C = CH , so VB(BH) is an Azumaya C-algebra. Hence,

VB(BH) is a Hirata separable extension of C . But B = BH · VB(BH) � BH ⊗C
VB(BH) as Azumaya C-algebras, so B is a Hirata separable extension of BH .

Thus, B is an H∗-Galois Hirata extension of BH .

Corollary 3.7. Let B be an H∗-Galois Hirata extension of BH . Then B is an

H∗-Galois Azumaya extension of BH if and only if B is an Azumaya CH -algebra.
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Proof. (⇒) Since B is an H∗-Galois Azumaya extension of BH , BH is an

Azumaya CH -algebra and B is separable over BH (see [3, Theorem 3.4]). Hence,

B is separable over CH by the transitivity of separable extensions. But B is an

H∗-Galois Azumaya extension of BH and an H∗-Galois Hirata extension of BH

by hypothesis, so C = CH by Corollary 3.6. This implies that B is an Azumaya

CH -algebra.

(⇐) By hypothesis, B is an Azumaya CH -algebra. Hence, C = CH . But B is

an H∗-Galois Hirata extension of BH , so VB(BH) is an Azumaya subalgebra

of B over C by Theorem 3.5(3). Since B is an H∗-Galois Hirata extension of

BH again, B is a Hirata separable extension of BH and a finitely generated and

projective module over BH . Thus, VB(VB(BH))= BH (see [8, Lemma 2.5]); and so

BH (= VB(VB(BH))) is an Azumaya subalgebra of B over CH by the commutator

theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that

B is an H∗-Galois Azumaya extension of BH .

4. Invariant subalgebras. For an H∗-Galois Hirata extension B as given in

Theorem 3.5, let A be a subalgebra of BH over C such that BH is a projective

Hirata separable extension of A and contains A as a direct summand as an A-

bimodule. In this section, we show that VBH (A) is the H-invariant subalgebra

of a separable subalgebra D in B over C , that is, DH = VBH (A). We denote by

� the set {A | A is a subalgebra of BH over C such that BH is a projective

Hirata separable extension of A and contains A as a direct summand as an

A-bimodule}.
Lemma 4.1. Let B be an H∗-Galois Hirata extension of BH . For any A ∈ �,

VB(A) is an H-submodule algebra of B and separable over C , and (VB(A))H =
VBH (A) which is a separable C-algebra.

Proof. Since A∈�, BH is a projective Hirata separable extension of A and

contains A as a direct summand as an A-bimodule. But B is an H∗-Galois Hi-

rata extension of BH , so B is a projective Hirata separable extension of BH .

Hence, by the transitivity property of projective Hirata separable extensions,

B is a projective Hirata separable extension of A. Also BH is a direct sum-

mand of B as a BH -bimodule by Lemma 3.2, so A is a direct summand of B
as an A-bimodule. Thus, VB(A) is a separable algebra over C (see [6, Theo-

rem 1]). Moreover, it is clear that (VB(A))H = VBH (A), so VBH (A) is a separable

C-algebra (see Corollary 3.4 and [6, Theorem 1]).

Next we want to show which separable subalgebra of BH over C is an H-

invariant subring of an H-submodule algebra in B. Let � = {E ⊂ B | E is a

separable C-subalgebra of BH and satisfies the double centralizer property in

BH such that VBH (E)∈�}. Next we show that for any E ∈�, E is theH-invariant

subring of an H-submodule algebra D in B which is separable over C .

Theorem 4.2. Let E be in �. Then there exists an H-submodule algebra D
in B which is separable over C such that DH = E.
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Proof. Since E is in �, VBH (E) is in � such that VBH (VBH (E)) = E. Now by

Lemma 4.1, VB(VBH (E)) is an H-submodule algebra of B and separable over C
such that (VB(VBH (E)))H = VBH (VBH (E)). But VBH (VBH (E))= E, so

(
VB
(
VBH (E)

))H = E. (4.1)

Let D = VB(VBH (E)). Then D satisfies the theorem.

By Theorem 4.2, we obtain an expression for the separable H-submodule

algebra D for a given E in �.

Corollary 4.3. By keeping the notations as given in Theorem 4.2, let Z be

the center of E. Then D � E⊗Z VD(E) as Azumaya Z-algebras.

Proof. Since E satisfies the double centralizer property in BH , VBH (VBH (E))
= E. Hence, the centers of E and VBH (E) are the same Z . Similarly as given in the

proof of Lemma 4.1, since VBH (E) is in �, B (= BH ·VB(BH)) is a projective Hi-

rata separable extension of VBH (E) and contains VBH (E) as a direct summand

as a VBH (E)-bimodule by the transitivity property of projective Hirata sepa-

rable extensions and the direct summand conditions. Thus, VBH (E) satisfies

the double centralizer property in B, that is, VB(VB(VBH (E))) = VBH (E). This

implies that the centers of VBH (E) and VB(VBH (E)) are the same. Therefore, D
and E have the same center Z . Noting thatD and E are separable C-algebras by

Theorem 4.2, we conclude that E (=DH) is an Azumaya subalgebra ofD overZ ;

and so D � E⊗Z VD(E) as Azumaya Z-algebras (see [1, Theorem 4.3, page 57]).

Remark 4.4. When B is an H∗-Galois Azumaya extension of BH , the cor-

respondence A → VB(A) as given in Lemma 4.1 recovers the one-to-one cor-

respondence between the set of separable subalgebras of BH and the set of

H∗-Galois extensions in B containing VB(BH) as given in [3].
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