

ON HOPF GALOIS HIRATA EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 17 March 2003

Let H be a finite-dimensional Hopf algebra over a field k , H^* the dual Hopf algebra of H , and B a right H^* -Galois and Hirata separable extension of B^H . Then B is characterized in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H)\#H$. A sufficient condition is also given for B to be an H^* -Galois Azumaya extension of B^H .

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k , H^* the dual Hopf algebra of H , and B a right H^* -Galois extension of B^H . In [3], the class of H^* -Galois Azumaya extensions was investigated and in [8], it was shown that B is a Hirata separable extension of B^H if and only if the commutator subring $V_B(B^H)$ of B^H in B is a left H -Galois extension of C , where C is the center of B (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present paper is to characterize a right H^* -Galois and Hirata separable extension B of B^H in terms of the commutator subring $V_B(B^H)$ and the smash product $V_B(B^H)\#H$. Let B be a right H^* -Galois extension of B^H such that $B^H = B^{H^*}$. Then the following statements are equivalent:

- (1) B is a Hirata separable extension of B^H ,
- (2) $V_B(B^H)$ is an Azumaya C -algebra and $V_B(V_B(B^H)) = B^H$,
- (3) $V_B(B^H)$ is a right H^* -Galois extension of C and a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$ -bimodule,
- (4) $V_B(B^H)$ is a right H^* -Galois extension of C and $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Moreover, an equivalent condition is given for a right H^* -Galois and Hirata separable extension B of B^H to be an H^* -Galois Azumaya extension which was studied in [3, 7]. Also, let B be a right H^* -Galois and Hirata separable extension of B^H and A a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A containing A as a direct summand as an A -bimodule. Then $V_{B^H}(A)$ is a separable subalgebra of B^H over C , and there exists an H -submodule algebra D in B which is separable over C such that $D^H = V_{B^H}(A)$ and $D \cong V_{B^H}(A) \otimes_Z F$ as Azumaya Z -algebras, where Z is the center of D and F is an Azumaya Z -algebra in D .

2. Basic definitions and notations. Throughout, H denotes a finite-dimensional Hopf algebra over a field k with comultiplication Δ and counit ε , H^* the dual Hopf algebra of H , B a left H -module algebra, C the center of B , $B^H = \{b \in B \mid hb = \varepsilon(h)b \text{ for all } h \in H\}$ which is called the H -invariants of B , and $B \# H$ the smash product of B with H , where $B \# H = B \otimes_k H$ such that for all $b \# h$ and $b' \# h'$ in $B \# H$, $(b \# h)(b' \# h') = \sum b(h_1 b') \# h_2 h'$, where $\Delta(h) = \sum h_1 \otimes h_2$. The ring B is called a right H^* -Galois extension of B^H if B is a right H^* -comodule algebra with structure map $\rho: B \rightarrow B \otimes_k H^*$ such that $\beta: B \otimes_{B^H} B \rightarrow B \otimes_k H^*$ is a bijection, where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, \dots, m\}$ such that $\sum a_i b_i = 1$ and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B , where \otimes is over A . An Azumaya algebra is a separable extension of its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B -bimodule. A right H^* -Galois extension B is called an H^* -Galois Azumaya extension if B is separable over B^H which is an Azumaya algebra over C^H . A right H^* -Galois extension B of B^H is called an H^* -Galois Hirata extension if B is also a Hirata separable extension of B^H . Throughout, an H^* -Galois extension means a right H^* -Galois extension unless it is stated otherwise.

3. The H^* -Galois Hirata extensions. In this section, we will characterize an H^* -Galois Hirata extension B of B^H in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H) \# H$. A relationship between an H^* -Galois Hirata extension and an H^* -Galois Azumaya extension is also given. We begin with some properties of an H^* -Galois Hirata extension B of B^H . Throughout, we assume $B^H = B^{H^*}$.

LEMMA 3.1. *If A_1 and A_2 are H^* -Galois extensions such that $A_1^H = A_2^H$ and $A_1 \subset A_2$, then $A_1 = A_2$.*

PROOF. By [3, Theorem 5.1], there exist $\{x_i, y_i \in A_1 \mid i = 1, 2, \dots, n\}$ for some integer n such that, for all $h \in H$, $\sum x_i (hy_i) = T(h)1_{A_1}$, where $T \in \int_{H^*}^r$, the set of right integrals in H^* . Let $t \in \int_H^l$, the set of left integrals in H , such that $T(t) = 1$, then $\{x_i, f_i = t(y_i -) \mid i = 1, 2, \dots, n\}$ is a dual basis of the finitely generated and projective right module A_1 over A_1^H . Since $A_1 \subset A_2$ such that $A_1^H = A_2^H$, $\{x_i, f_i \mid i = 1, 2, \dots, n\}$ is also a dual basis of the finitely generated and projective right module A_2 over A_1^H . This implies that $A_1 = A_2$. \square

LEMMA 3.2. *If B is an H^* -Galois Hirata extension of B^H , then B^H is a direct summand of B as a B^H -bimodule.*

PROOF. We use the argument as given in [2]. Since B is an H^* -Galois and a Hirata separable extension of B^H , $V_B(B^H)$ is a left H -Galois extension of C (see [8, Lemma 2.1, Theorem 2.6]). Hence, $V_B(B^H)$ is a finitely generated and

projective module over C (see [3, Theorem 2.2]). Let $\Omega = \text{Hom}_C(V_B(B^H), V_B(B^H))$. Since C is commutative, $V_B(B^H)$ is a progenerator of C . Thus, B is a right Ω -module such that $B \cong V_B(B^H) \otimes_C \text{Hom}_\Omega(V_B(B^H), B) \cong V_B(B^H) \otimes_C B^{H^*}$ as C -algebras, where $f(1) \in B^{H^*}$ for each $f \in \text{Hom}_\Omega(V_B(B^H), B)$ by the proof of [2, Lemma 2.8]. But $V_B(V_B(B^H)) = B^H$ (see [2, Lemma 2.5]), so $B \cong V_B(B^H) \otimes_C B^H$. This implies that $V_B(B^H)$ is an H^* -Galois extension of C (see [2, Lemma 2.8]); and so C is a direct summand of $V_B(B^H)$ as a C -bimodule (see [2, Corollaries 1.9 and 1.10]). Therefore, B^H is a direct summand of B as a B^H -bimodule. \square

By the proof of [Lemma 3.2](#), $V_B(B^H)$ is an H^* -Galois extension of C .

COROLLARY 3.3. *If B is an H^* -Galois Hirata extension of B^H , then $V_B(B^H)$ is an H^* -Galois extension of C .*

COROLLARY 3.4. *If B is an H^* -Galois Hirata extension of B^H , then $B = B^H \cdot V_B(B^H)$ and the centers of B , B^H , and $V_B(B^H)$ are the same C .*

PROOF. By [Corollary 3.3](#), $V_B(B^H)$ is an H^* -Galois extension of C , so $B^H \cdot V_B(B^H)$ is also an H^* -Galois extension of B^H ($= (B^H \cdot V_B(B^H))^H$) with the same Galois system as $V_B(B^H)$ (see [3, Theorem 5.1]). Noting that $B^H \cdot V_B(B^H) \subset B$, we conclude that $B = B^H \cdot V_B(B^H)$ by [Lemma 3.1](#). Moreover, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]), so the centers of B^H , $V_B(B^H)$, and B are the same C . \square

THEOREM 3.5. *Let B be an H^* -Galois extension of B^H . The following statements are equivalent:*

- (1) *B is a Hirata separable extension of B^H ,*
- (2) *$V_B(B^H)$ is an H^* -Galois extension of C and a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$ -bimodule,*
- (3) *$V_B(B^H)$ is an Azumaya C -algebra and $V_B(V_B(B^H)) = B^H$,*
- (4) *$V_B(B^H)$ is an H^* -Galois extension of C and $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.*

PROOF. (1) \Rightarrow (3). Since B is an H^* -Galois and a Hirata separable extension of B^H , by [Lemma 3.2](#), B^H is a direct summand of B as a B^H -bimodule. Thus, $V_B(V_B(B^H)) = B^H$ and $V_B(B^H)$ is a separable C -algebra (see [4, Propositions 1.3 and 1.4]). But the center of $V_B(B^H)$ is C by [Corollary 3.4](#), so $V_B(B^H)$ is an Azumaya C -algebra.

(3) \Rightarrow (1). Since $V_B(B^H)$ is an Azumaya C -algebra and B is a bimodule over $V_B(B^H)$, $B \cong V_B(B^H) \otimes_C V_B(V_B(B^H)) = V_B(B^H) \otimes_C B^H$ as a bimodule over $V_B(B^H)$ (see [1, Corollary 3.6, page 54]). Noting that $B \cong V_B(B^H) \otimes_C B^H$ is also an isomorphism as C -algebras and that $V_B(B^H)$ is an Azumaya C -algebra, we conclude that $V_B(B^H) \otimes_C B^H$ is a Hirata separable extension of B^H ; and so B is a Hirata separable extension of B^H .

(3) \Rightarrow (2). By the proof of (3) \Rightarrow (1), $B \cong V_B(B^H) \otimes_C B^H$ such that $V_B(B^H)$ is a finitely generated and projective module over C , so $V_B(B^H)$ is an H^* -Galois extension of C (see [2, Lemma 2.8]). Moreover, since $V_B(B^H)$ is an Azumaya

C -algebra, $V_B(B^H)$ is a direct summand of $V_B(B^H) \otimes_C (V_B(B^H))^\circ$ as a $V_B(B^H)$ -bimodule, where $(V_B(B^H))^\circ$ is the opposite algebra of $V_B(B^H)$. But $V_B(B^H) \otimes_C (V_B(B^H))^\circ \cong \text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H)\#H$ (see [3, Theorem 2.2]), so $V_B(B^H)$ is a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$ -bimodule.

(2) \Rightarrow (3). Since $V_B(B^H)$ is an H^* -Galois extension of C , $B^H \cdot V_B(B^H)$ is an H^* -Galois extension of $(B^H \cdot V_B(B^H))^H = B^H$. But $(B^H \cdot V_B(B^H))^H = B^H$, so $B^H \cdot V_B(B^H)$ and B are H^* -Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence, $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. Thus, the centers of B and $V_B(B^H)$ are the same C . Moreover, $V_B(B^H)$ is a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$ -bimodule by hypothesis, so it is a separable C -algebra (see [3, Theorem 2.3]). Thus, $V_B(B^H)$ is an Azumaya C -algebra. But then $B \cong V_B(B^H) \otimes_C V_B(B^H)$. On the other hand, by hypothesis, $V_B(B^H)$ is an H^* -Galois extension of C , so $B \cong V_B(B^H) \otimes_C B^H$ (see [2, Lemma 2.8]). Therefore, $V_B(V_B(B^H)) = B^H$.

(3) \Leftrightarrow (4). Since $V_B(B^H)$ is an H^* -Galois extension of C , it is a finitely generated and projective module over C and $\text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H)\#H$ (see [3, Theorem 2.2]). But then $V_B(B^H)$ is a Hirata separable extension of C if and only if $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$ (see [5, Corollary 3]). Thus, $V_B(B^H)$ is an Azumaya C -algebra if and only if $V_B(B^H)$ is an H^* -Galois extension of C and $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

□

By Theorem 3.5, we can obtain a relationship between the class of H^* -Galois Hirata extensions and the class of H^* -Galois Azumaya extensions which were studied in [3, 7].

COROLLARY 3.6. *Let B be an H^* -Galois Azumaya extension of B^H . Then B is an H^* -Galois Hirata extension of B^H if and only if $C = C^H$.*

PROOF. (\Rightarrow) Since B is an H^* -Galois Hirata extension of B^H , $V_B(B^H)$ is an Azumaya algebra over C and a left H -Galois extension of C (see [8, Theorem 2.6]). Hence, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]). Thus, $C \subset B^H$; and so $C = C^H$.

(\Leftarrow) Since B is an H^* -Galois Azumaya extension of B^H , $V_B(B^H)$ is separable over C^H (see [3, Lemma 4.1]). Since B is an H^* -Galois Azumaya extension of B^H again, $V_B(B^H)$ is an H^* -Galois extension of $(V_B(B^H))^H$ (see [3, Lemma 4.1]), so both $B^H \cdot V_B(B^H)$ and B are H^* -Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence, $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. This implies that the center of $V_B(B^H)$ is C . But by hypothesis, $C = C^H$, so $V_B(B^H)$ is an Azumaya C -algebra. Hence, $V_B(B^H)$ is a Hirata separable extension of C . But $B = B^H \cdot V_B(B^H) \cong B^H \otimes_C V_B(B^H)$ as Azumaya C -algebras, so B is a Hirata separable extension of B^H . Thus, B is an H^* -Galois Hirata extension of B^H . □

COROLLARY 3.7. *Let B be an H^* -Galois Hirata extension of B^H . Then B is an H^* -Galois Azumaya extension of B^H if and only if B is an Azumaya C^H -algebra.*

PROOF. (\Rightarrow) Since B is an H^* -Galois Azumaya extension of B^H , B^H is an Azumaya C^H -algebra and B is separable over B^H (see [3, Theorem 3.4]). Hence, B is separable over C^H by the transitivity of separable extensions. But B is an H^* -Galois Azumaya extension of B^H and an H^* -Galois Hirata extension of B^H by hypothesis, so $C = C^H$ by [Corollary 3.6](#). This implies that B is an Azumaya C^H -algebra.

(\Leftarrow) By hypothesis, B is an Azumaya C^H -algebra. Hence, $C = C^H$. But B is an H^* -Galois Hirata extension of B^H , so $V_B(B^H)$ is an Azumaya subalgebra of B over C by [Theorem 3.5\(3\)](#). Since B is an H^* -Galois Hirata extension of B^H again, B is a Hirata separable extension of B^H and a finitely generated and projective module over B^H . Thus, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]); and so $B^H (= V_B(V_B(B^H)))$ is an Azumaya subalgebra of B over C^H by the commutator theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that B is an H^* -Galois Azumaya extension of B^H . \square

4. Invariant subalgebras. For an H^* -Galois Hirata extension B as given in [Theorem 3.5](#), let A be a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A -bimodule. In this section, we show that $V_{B^H}(A)$ is the H -invariant subalgebra of a separable subalgebra D in B over C , that is, $D^H = V_{B^H}(A)$. We denote by \mathcal{S} the set $\{A \mid A \text{ is a subalgebra of } B^H \text{ over } C \text{ such that } B^H \text{ is a projective Hirata separable extension of } A \text{ and contains } A \text{ as a direct summand as an } A\text{-bimodule}\}$.

LEMMA 4.1. *Let B be an H^* -Galois Hirata extension of B^H . For any $A \in \mathcal{S}$, $V_B(A)$ is an H -submodule algebra of B and separable over C , and $(V_B(A))^H = V_{B^H}(A)$ which is a separable C -algebra.*

PROOF. Since $A \in \mathcal{S}$, B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A -bimodule. But B is an H^* -Galois Hirata extension of B^H , so B is a projective Hirata separable extension of B^H . Hence, by the transitivity property of projective Hirata separable extensions, B is a projective Hirata separable extension of A . Also B^H is a direct summand of B as a B^H -bimodule by [Lemma 3.2](#), so A is a direct summand of B as an A -bimodule. Thus, $V_B(A)$ is a separable algebra over C (see [6, Theorem 1]). Moreover, it is clear that $(V_B(A))^H = V_{B^H}(A)$, so $V_{B^H}(A)$ is a separable C -algebra (see [Corollary 3.4](#) and [6, Theorem 1]). \square

Next we want to show which separable subalgebra of B^H over C is an H -invariant subring of an H -submodule algebra in B . Let $\mathcal{T} = \{E \subset B \mid E \text{ is a separable } C\text{-subalgebra of } B^H \text{ and satisfies the double centralizer property in } B^H \text{ such that } V_{B^H}(E) \in \mathcal{S}\}$. Next we show that for any $E \in \mathcal{T}$, E is the H -invariant subring of an H -submodule algebra D in B which is separable over C .

THEOREM 4.2. *Let E be in \mathcal{T} . Then there exists an H -submodule algebra D in B which is separable over C such that $D^H = E$.*

PROOF. Since E is in \mathcal{T} , $V_{B^H}(E)$ is in \mathcal{S} such that $V_{B^H}(V_{B^H}(E)) = E$. Now by [Lemma 4.1](#), $V_B(V_{B^H}(E))$ is an H -submodule algebra of B and separable over C such that $(V_B(V_{B^H}(E)))^H = V_{B^H}(V_{B^H}(E))$. But $V_{B^H}(V_{B^H}(E)) = E$, so

$$(V_B(V_{B^H}(E)))^H = E. \quad (4.1)$$

Let $D = V_B(V_{B^H}(E))$. Then D satisfies the theorem. \square

By [Theorem 4.2](#), we obtain an expression for the separable H -submodule algebra D for a given E in \mathcal{T} .

COROLLARY 4.3. *By keeping the notations as given in [Theorem 4.2](#), let Z be the center of E . Then $D \cong E \otimes_Z V_D(E)$ as Azumaya Z -algebras.*

PROOF. Since E satisfies the double centralizer property in B^H , $V_{B^H}(V_{B^H}(E)) = E$. Hence, the centers of E and $V_{B^H}(E)$ are the same Z . Similarly as given in the proof of [Lemma 4.1](#), since $V_{B^H}(E)$ is in \mathcal{S} , $B (= B^H \cdot V_B(B^H))$ is a projective Hirata separable extension of $V_{B^H}(E)$ and contains $V_{B^H}(E)$ as a direct summand as a $V_{B^H}(E)$ -bimodule by the transitivity property of projective Hirata separable extensions and the direct summand conditions. Thus, $V_{B^H}(E)$ satisfies the double centralizer property in B , that is, $V_B(V_B(V_{B^H}(E))) = V_{B^H}(E)$. This implies that the centers of $V_{B^H}(E)$ and $V_B(V_{B^H}(E))$ are the same. Therefore, D and E have the same center Z . Noting that D and E are separable C -algebras by [Theorem 4.2](#), we conclude that $E (= D^H)$ is an Azumaya subalgebra of D over Z ; and so $D \cong E \otimes_Z V_D(E)$ as Azumaya Z -algebras (see [\[1\]](#), Theorem 4.3, page 57)).

\square

REMARK 4.4. When B is an H^* -Galois Azumaya extension of B^H , the correspondence $A \rightarrow V_B(A)$ as given in [Lemma 4.1](#) recovers the one-to-one correspondence between the set of separable subalgebras of B^H and the set of H^* -Galois extensions in B containing $V_B(B^H)$ as given in [\[3\]](#).

ACKNOWLEDGMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

REFERENCES

- [1] F. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, New York, 1971.
- [2] H. F. Kreimer and M. Takeuchi, *Hopf algebras and Galois extensions of an algebra*, Indiana Univ. Math. J. **30** (1981), no. 5, 675–692.
- [3] M. Ouyang, *Azumaya extensions and Galois correspondence*, Algebra Colloq. **7** (2000), no. 1, 43–57.
- [4] K. Sugano, *On centralizers in separable extensions*, Osaka J. Math. **7** (1970), 29–40.
- [5] ———, *Note on separability of endomorphism rings*, J. Fac. Sci. Hokkaido Univ. Ser. I **21** (1970/1971), 196–208.
- [6] ———, *On centralizers in separable extensions. II*, Osaka J. Math. **8** (1971), 465–469.

- [7] G. Szeto and L. Xue, *On Hopf DeMeyer-Kanzaki Galois extensions*, Int. J. Math. Math. Sci. **2003** (2003), no. 26, 1627–1632.
- [8] K.-H. Ulbrich, *Galoiserweiterungen von nicht-kommunitativen ringen [Galois extensions of noncommutative rings]*, Comm. Algebra **10** (1982), no. 6, 655–672 (German).

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk