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ORTHANT SPANNING SIMPLEXES WITH MINIMAL VOLUME
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A geometry problem is to find an (n — 1)-dimensional simplex in R" of minimal
volume with vertices on the positive coordinate axes, and constrained to pass
through a given point A in the first orthant. In this paper, it is shown that the opti-
mal simplex is identified by the only positive root of a (2" —1)-degree polynomial
pn(t). Theroots of py, (t) cannot be expressed using radicals when the coordinates
of A are transcendental over Q, for 3 < n < 15, and supposedly for every n. Fur-
thermore, limited to dimension 3, parametric representations are given to points
A to which correspond triangles of minimal area with integer vertex coordinates
and area.

2000 Mathematics Subject Classification: 26B15, 11D99.

1. Introduction. A geometry problem is to find an (n — 1)-dimensional sim-
plex S in R" of minimal volume, whose n vertices are points V; = (0,...,0,v;,
0,...,0), with v; > 0 on the ith coordinate axis and 1 < i < n, which is con-
strained to pass through a given point A = (a,az,...,a,) € R™ in the positive
orthant a; > 0, 1 < i < n. Throughout the paper, this problem, which was
proposed and numerically solved in [8], will be referred to as the optimal sim-
plex problem. The simplex belongs by definition to a plane with “segmental”
equation > /-, x;/v; = 1, that s,

"oa;
gv— = (1.1)

and its volume (see [7, pages 123-124]) is

(1.2)

The volume S is the objective function of a constrained optimization problem
with constraint (1.1) and v; > 0, i = 1,...,n. A standard way to look for a
solution with objective function of the form (1.2) is to apply the Lagrange
multiplier method to the logarithm of this function, namely,
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where A is computed to satisfy the constraint (1.1). The derivatives of L with
respect to each v;

oL (1 __ v 1) ,a ._
avi(“w ST (1/v) 3) A i=loom, (1.4)

equated to 0 give n conditions, which are sufficient to specify the n unknowns
v;. The value A = n — 1 of the Lagrange multiplier is obtained from the sum
> vi(0L/dv;) = 0. Thus, setting 1/t = 37, (l/vjz) > 0, n quadratic polyno-
mials Q;(v) = v?— (n—1)a;v —t are obtained from the partial derivatives,
each with a single positive root

2
—ai+ t+<—ai), l<i<n, (1.5)

that identifies a vertex of the optimal simplex. The positive parameter t turns
out to be the only nonnegative zero of the function

an=SY_1-% 4 1. (16
=1 Vi i=1((m-1)/2) aJ+\/t+ n-1)/2)a;)’

Equations g(t) = 0, (1.5), and (1.2) offer a numerical way to compute vertices
and volume of the optimal simplex S for any A € R" [8]. The only positive zero
of g(t) =0 is a root of a polynomial p, (t) of degree 2" —1 whose coefficients
are rational functions of a;’s obtained as follows. Let 6(Q;(v)) be the Galois
group of Q;(v) which has order 2. Let 0s(g(t)) denote the function

os(g(t) = >

Jj=1

(1.7)
O'J

associated to a specified sequence of Galois automorphisms s = (01, 02,...,0%)
and o; € 6(Q;(v)). Since the product P(t) = [[; 05(g(t)) over all 2" sequences
s is a symmetric function of the roots of Q;(v), for every i = 1,...,n, then
P(t) = pn(t)/tzn’1 is a rational function over Q(a,...,a,). The coefficients
of p,(t) belong to Q(ay,...,an).

Although the solutions of geometry problems are numerically computable,
itis a common practice to look for closed form solutions expressed using rad-
icals. Alongside the three classical Greek problems [9] and the construction
of regular polygons [4], there are numerous other problems. For example, the
problem of computing the distance between two circles in space [5] and the
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problem of computing the length of a tangential polygon [6]. The optimal sim-
plex problem [8] is a problem of this sort. The simplest cases n = 2 and 3
illustrate the situation for any n > 3.

THE CASE n = 2. The problem consists in finding the shortest line passing
through A = (a,b) with endpoints on the positive axes. A direct solution is
well known [8]; however, using the method outlined above, the same cubic
polynomial

p2(t) = t3 -3b%a’t — (b%a* + b*a?), (1.8)
which has the positive root expressed by radicals
to =b(a?b)"* +a(ab?®)'?, (1.9)

is obtained.
The length £ of the segment V;V> is

2 »1/2
#—[(g+,/t+cf) +<Ig+ t+€f)} =\(a23 +p23)°, (1.10)

THE CASE n = 3. The problem consists in finding a triangle of smallest area,
passing through A = (a, b, c), with vertices on the positive axes. Using the same
method, we obtain a 7-degree polynomial

p3(t) =t" +401t8 +607t° +4(0 —1003) t*
+01 (0} —12803)t® — 803 (17072 +807) t> (1.11)

—~1603(307 +80102 — 503)t — 640301 (0102 — 03),

where 01 = a? +b% +c?, 0 = a’b? + b?c? + c2a?, and 03 = a’b?c? are elemen-
tary symmetric functions of a?, b2, and c?.

In Section 2, it will be proved that p3(t) is not solvable by radicals when a, b,
and c are distinct and transcendental over Q. The same unsolvability will also
be proved for a large set of triples a, b, and c of integers. As a partial counter-
part, the converse Diophantine problem will be solved, namely, to find points
A with integer coordinates such that the corresponding optimal triangles have
vertices with integer coordinates and integer areas.

2. Impossibility of solutions by radicals. In this section, two proofs of
the unsolvability of ps3(t) will be given. The first is better for proving the
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unsolvability of p, (t) for any n > 3. The second is more appropriate for ad-
dressing the solvability question with points A of integer coordinates.
We consider the polynomial p;(t) obtained by settinga =1, b = 4, and c = 6,

P3(t) = t7+212t%+16854t° +572468t* +3982897¢3

(2.1)
— 243196416t - 6543571968t — 63904628736.

This polynomial is easily checked to be irreducible over Q. It is therefore un-
solvable by radicals if its Galois group G(P;) is unsolvable. This group is ob-
tained by applying a method described in [10, Volume I, page 190]. The basis
of this technique is that the Galois group of an irreducible polynomial over
Q includes the Galois groups of the same polynomial considered over finite
Galois fields of prime order p. The Galois group of an irreducible polynomial
over a Galois field is a cyclic group of order equal to its degree. Therefore, if an
irreducible polynomial over Q splits into irreducible factors over a prime field
GF(p), its Galois group will contain the cyclic Galois groups of these irreducible
factors as subgroups.

THEOREM 2.1. The Galois group 6(P3) is isomorphic to the symmetric group
S7, thus P5(t) is not solvable by radicals.

PROOF. The irreducible polynomial P5(t) factors modulo 13 and 7, respec-
tively, as

P3(t) = (t5+4t°> +6t* +9t> + 5t + 2)t mod 13,

2.2
P3(t) = (£2+3t+6) (t+1)3(t +5)°mod 7. (2.2)

The presence of a 6-degree factor in the factoring modulo 13 implies that the
Galois group of P;(t) over Q contains a cycle of 6 symbols, while the single
2-degree factor and 5 linear factors in the factoring modulo 7 imply that the
Galois group contains a cycle of 2 symbols. The conclusion follows from a
theorem [10, Volume I, page 191] stating that a transitive permutation group
of n objects containing a cycle of two symbols and an (n—1)-cycle is a symmetric
group Sy, with n = 7. Since S7 is a nonsolvable group [10, volume I, page 149],
then P;3(t) cannot be solved by radicals. O

A specialization principle incorporated in Galois theory itself proves that
p3(t) is unsolvable by radicals over the coefficient field Q(a,b,c) when a, b,
and c¢ are distinct and transcendental over Q.

PROPOSITION 2.2. Let cy,...,cx be transcendental over Q. If a polynomial
p(x,ci1,...,cx) over Q is solvable by radicals with respect to x, then every poly-
nomial obtained setting cj, = «,...,Cj, = Qp With «1,...,&p € Q, for some
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h <k, is solvable by radicals. On the contrary, if there is a set of rational num-
bers such that p(x, «y,...,&) is not solvable by radicals, then p(x,c1,...,Cx) is
not solvable by radicals.

As a consequence of this proposition, a fortiori the roots of p3(t) cannot be
computed by radicals when a, b, and c are distinct and transcendental over Q.

The fact observed with P3(t) is not extemporary. Any irreducible polynomial
p3(t) obtained from a triple of integers a, b, and c is actually unsolvable by
radicals. To prove this, let a variable substitution ¢ = z2 — 2za, b? = x, and
c? = y be performed on p3(t). A 14-degree polynomial in z, which splits over
the coefficient field into two polynomials of degree 7, is obtained. Since each
of these two factors is transformed into the other by a linear substitution
z — —z+2a, for the following analysis it is indifferent which factor is retained:

a3(z) =z"—4az%+ (2y +6a° +2x)z° + (—4ay —4a® — 4ax)z*
+(v?+2xy+at+x°+2a’y +2a°x)z% +8ayxz® (2.3)

—12a’yxz+8axy’ +8ax’y.

Since q3(z) and p3(t) are related by the Tschirnhaus transformation t = z% —
2za, both are solvable or unsolvable in the same way. The proof of Theorem 2.4
uses the following property, reported from [3] without proof.

PROPOSITION 2.3 [3, page 266]. Let f(z) be a polynomial of degree n over
Q. The Galois group 6(f) is isomorphic to a subgroup of the alternating group
Ay, of degree n if and only if the discriminant of f(z) is a perfect square in Q.

THEOREM 2.4. If q3(z) is irreducible over Q, then its Galois group 6(qs3) is
isomorphic neither to the cyclic group C; nor to the metacyclic group M;. Thus,
qs(z) is not solvable by radicals.

PROOF. Observing that the discriminant
A=2(y+4x)*y*abx* (v +a® +x)°mod5 (2.4)

of q3(z) is not a quadratic residue modulo 5, because 2 is not, then A cannot be
a perfect square in Q. It follows by Proposition 2.3 that 6(g3) is not a subgroup
of A7.

Recalling that an irreducible polynomial of prime degree is solvable by rad-
icals if and only if its Galois group is either a cyclic or a metacyclic group [1],
the theorem is proved by a contradiction: both C; and M7 are subgroups of the
alternating group A; since 7 is an odd prime and cyclic permutations of odd
length are even, that is, they belong to the alternating group. |

2.1. Optimal simplexes in dimension n > 3. Theresult that p,, (t) is unsolv-
able by radicals can be proved for every n, considering special points A € R".
For instance, assuming a; = 1, a, =4,and as = a4 = - - - = a, = 6, the positive
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TABLE 2.1. Primes p» and pg identifying 2- and 6-cycles in G(py (1)).

n Pe p2
4 41 3803
5 17 5
6 19 1439
7 37 2281
8 29 2971
9 11 6619
10 73 7
11 11 31
12 13 61
13 41 1259
14 41 3121
15 23 1459

root of p,, (t) is the root of a factor polynomial f7(t) of degree 7:

fr(t) =(m—-1)8t" +848(m-2)(n—1)5t°
+32(612n3 +3547n% —20888n + 22644) (n — 1)*t°
+256(33012n* - 17766713 +299918n> — 126444n —53776) (n —1)%t*
+28(320008961 +395280n° +9437312n° + 3118673n*
—31326888n°% —2446776n° —11090288)t3
+215(-7415124 +19258460n +8716105n3
—~1777968n* —18997599n° + 112752n°) t*
+218(-27802116+67636164n +26141625n3
—4641624n* —62170322n> +198288n°)t

—-641728512(36n—55)(n—-2)(In—-14)(36n-71).
(2.5)

Applying the van der Waerden technique, with the primes given in Table 2.1,
the Galois group of f-(t) is S7 for 4 <n < 15.

Unfortunately, it remains unproven that the same technique works for every
n without exception.

3. Solutions by radicals. As a consequence of Theorems 2.1 and 2.4, poly-

nomial g3(z) is solvable by radicals only when it splits over the coefficient
field. This factoring certainly occurs if ¢ = b, in which case we have

a3(z) = (23 =2az* +a’z +4ax) (2x —az +z%)°, (3.1)
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so that solving the cubic equation z3 — 2az? + a%z + 4ax = 0 for z, and com-
puting t, we obtain

a’|( s b2 b4 b3 b2
t=" \J1+36E+216E+24$ 34815
2 2
. 1+24(b?/a?) L
3\/1+36(b2/a2)+216(b4/a4)+24(b3/a3) 3+81(b2/a?)
(3.2)

From now on, a, b, and ¢ are assumed to be distinct rational numbers. The
most meaningful situation concerns the splitting of g3(z) with at least one
linear factor. To analyze this case, it is convenient to assume a and z to be
parameters and to consider g3(z) = Q(x,y,a,z) = 0 as a defining equation of
a cubic curve %63 with respect to variables x and y.

A straightforward calculation shows that 3 is a singular cubic with a double
point

az-z% az-z2
) »

Therefore, a rational representation for €3 is obtained considering the inter-
section with a straight line through Pp and slope n/m,

az-z?° az—z?
X = +mu, =

> v > +nu. (3.4)

The value of u + 0 identifies the third intersection of the line with the cubic

1
Bamn(m+n)
x z(z°m? + z°n® + 4m?a® + 4n’a® — 4azn’? (3.5)
—8azmn +2z°mn —4azm? +4ma°n)
so that points on 63 have the parametric representation
—z(2ma—-nz—-zm)? —z(2na—-nz-zm)?
X = , Y= . (3.6)
8an(n+m) 8am(n+m)
Setting z = —2ak, we have t = 4a®(k? + k) and, correspondingly, polynomial

q3(z) has a linear factor z + 2ak. Recalling that b = \/x and ¢ = ./, we have

K K
A= (a,a(m+nK+Km) m,a(n-‘rnK-‘er) m) (37)
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as a function of k, m, n, and a. The vertex coordinates of the optimal triangle
are

vy =2a(k+1),

K
v =2a(K+1)(m+n)\/%’ (3.8)

Kk
mmn+m)’

S=2a2(K+1)2(m+n)1/%. (3.9)

4. Optimal Diophantine triangles. Minimal triangles having rational vertex
coordinates vi, vz, and v3, and possibly rational areas S, are called optimal
Diophantine triangles. It is evident that points A, with every coordinate being
anonzero rational number, and optimal Diophantine triangles are obtained by
placing rational parameter values into (3.7) and (3.8), respectively. Moreover,
the next theorem shows that every optimal Diophantine triangle with nonzero
vertices is obtained in this way.

vy=2a(k+1)(m+n)

and the area is

THEOREM 4.1. Let A be a point of the first orthant with rational coordinates,
none of which equals 0. Every optimal Diophantine triangle with vertices Vi, V>,
and V3 is originated by a point with coordinates

A= (Spnp (Afu3 +A305), H10AT (A3 +13), S A3 (A +447)),  (41)

where 9 is a rational number and A1, Az, p1, and uy are integers. The vertex
coordinates are
U1 = 29U 2 (A2A3 + A2 3 + A3uE),
v = 282112 (AJAS + AT 3 + A3 7)), 4.2)
U3 = 2900y (A2A% + A2 13 + A3 u3).
Correspondingly, the positive root t and area S are
t=49°ATASUT 5 (ATAS + AT 3 + ASHT),
S =292 o (A3A3 + A3 pd + A3pd) %, @

PROOF. Since v; is rational by assumption, then z = v, is a rational root
of q3(z). It follows that every rational triple {vy, v, v3} admits the parametric
representation (3.8). Furthermore, rational v; and a imply rational k, while
rational v, and v3 require that

2 2
K(l‘l’%):ﬁ K<1+%>:)\—§, (44)
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where A1, Ao, up, and pp are integers. It follows that

2
m_ (K PR (4.5)
no \mdz)’ ATps +Asu '

In summary, setting a = u; t2 (AZu3 +A3u?) in

)\3 )\2+ 2 )\3 )\2+ 2
A= (aa i), o ), 4o
pr(ATps +A5u7) " po (ATps +ASHT)

we obtain the representation (4.1) for A, where possible integer denominators
are included in rational ¢. In conclusion, S and (4.2) are obtained directly from
(3.9) and (3.8), respectively. O

4.1. Integer solutions. Let 7 (A) be an optimal Diophantine triangle having
integer vertex coordinates with the restriction that A(a, b, c) is a point having
integer coordinates. Any triangle obtained by scaling the coordinates of J(A)
with an integer factor A is minimal for a point B(Aa,Ab,Ac) obtained by scal-
ing the A coordinates of the same factor. Therefore, solutions with relatively
prime point coordinates are of most interest. Any point A with a, b, and ¢
relatively prime integers is said to be a primitive point and, correspondingly,
J (A) is called a primitive optimal Diophantine triangle. Every primitive opti-
mal Diophantine triangle is given by the following theorem, whose proof stems
from Theorem 4.1.

THEOREM 4.2. The integer coordinates of every primitive point A, associated
to an optimal Diophantine triangle, are given by (4.1), with a possible coordinate
permutation, where the parameters A1, Uy, A2, and u, are integers satisfying the
conditions gcd (A1, u1) = ged(Ap, u2) = ged(A1,A2) = ged(uy, u2) =1, and either
9 =1, if at least one of the four parameters is even in which case v1, v, and v3
are even integers, or & = 1/2, if all four parameters are odd.

PROOF. The coordinates of A are relatively prime if ¢ is chosen to cancel
the greatest common factor

G = ged {pnp2 (Afp3 +A305), koA (A3 + ), i A3 (AT + i)} (47)

Let the conditions gcd(A1, ;) = ged(Az,u2) = 1 be assumed to avoid trivial
common factors. Furthermore, assuming gcd(uy,p2) = 1 and ged(A1,A2) = 1,
the factors p, po, Af, and 2\% are dropped, computing G. Thus, subtracting the
second term multiplied by A? from the first term in

G = ged {(ATp3 +A3u7), (A3 +43), (AT +pi) (4.8)
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we obtain

G =ged{(A3uf —A3A3), (A3 +u3), (A3 +ui)}

(4.9)
= ged {(uf — A7), (A3 +p3), (AT + i)},

where the A3 factor in the first term which is relatively prime with (A3 + u3) has
been dropped. Adding the last term to the first one, we get G = ged{2u?, (A3 +
u3), (A3 + u3)}, which shows that G is either 1 or 2 if and only if the four
parameters are odd.

Since (4.1) was obtained referring to the first coordinate a of point A, when
we are looking for every integer solution, it is necessary to refer to the similar
solutions obtained considering the b and then the ¢ coordinate. This is tan-
tamount to a permutation of the coordinates of any integer solution obtained
with a. O

Note that it is possible to have J (A) with integer vertex coordinates and A
having rational coordinates. For example, taking A(75/13,17/13,45/26), the
corresponding optimal triangle has integral vertices v; =12, v, =4, and v3 =3.

Although a = 0 is not included in Theorem 4.2, in this case any point A with
b and c integers has an optimal triangle with integer vertex coordinates v; = 0,
vy =2b, and v3 = 2c¢ and area S = 2bc.

The integer solutions with ¢ = b are obtained directly from (4.1) and (4.2),
with Ay /p = Ao/ = A/, k = (A2/2u?), and a = 29 u. We have

A= (293,90 (A% + %), 9A (A2 +u?)),  t=49N7p* (A% +2p?),
(4.10)
vy =29u(A% +2u?), V2 = v3 = 29A(A% +2u?)

and the area is

S=292/\<\/2\2+2u2)5. 4.11)

Solutions with integer S are obtained when A% + 2u? = w? is a square of an
integer w. A general solution of this quadratic equation is

u=o2uv, A=pQu*-v?), w=o90(2u*+v?), (4.12)

with © and v relatively prime [2].
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Every primitive integer solution is given by Theorem 4.2; particular choices
of these parameters yield interesting integer solutions. For example, with p; =
A2 =1, A» = &, and pp = u, we have

A= (u(1+p%0), ue3(1+p2), (1+a?)),
(4.13)
t=4p”c®(1+ &+ pa?),
and vy = 2u(1+ o +p2e?), vo = 2uex(1+ o + pu?ex?), and vz = 2(1 + &® + p2 x?).
Furthermore, the area of the triangle S = 2u+/(1 + &2 + u2x?)> is an integer if
1+ o+ p?o® = y?, equivalently y? — (1 +pu?)x? = 1. One solution is « = 2u and
y = 2u% +1, and for any u, we have an infinity of solutions from the expression

yu+ o1 = ((2u2+1) + 21 442) " (4.14)

For example, the smallest solution having distinct a, b, and c is obtained
with yu = 2. We have «,, = Fg,,/2, where F,, denotes a Fibonacci number, and

a (e (B oY o(iea(Be))). s

Some initial integer values of « are 4, 72, and 1292, to which correspond
points A

(17,640,130), (5185,3732480,41474), (1669265,21566890880,13354114)
(4.16)

and areas 236196, 432702467204, 805003373860133796, respectively.

5. Conclusions. The problem of finding a simplex with minimum volume
and passing through a given point belongs to that sort of the elementary prob-
lem made famous by the three classical Greek problems and it is solved using
the same methods.

Specifically, in this paper, it has been proved that the solution of the opti-
mal simplex problem depends on the positive root of a (2" —1)-degree poly-
nomial. This polynomial cannot be solved using radicals for any n from 3 up
to 15 when the coordinates of A are transcendental over Q. It is likely that it
cannot be solved by radicals for any n, although a proof has not been found.
Limited to dimension n = 3 and points A of distinct integer coordinates, it has
been shown that if the polynomial p3(t) of degree 7 is irreducible, then it is
unsolvable by radicals. A parametric representation of every integer solution,
which corresponds to polynomials p3(t) that split with a linear factor, has
been obtained.



4006 MICHELE ELIA

ACKNOWLEDGMENTS. I would like to thank the referee for some very con-
structive criticism that improved the formulation of the paper. A preliminary
version of this paper was presented at the Tenth International Conference on
Fibonacci Numbers and Their Applications, 24-28 June 2002, Flagstaff, Ari-
zona, USA.

REFERENCES

[1] R. Bourgne and J.-P. Azra, Ecrits et Mémoires Mathématiques d’Evariste Galois,
Edition Critique Intégrale de ses Manuscrits et Publications. Préface de
J. Dieudonné, Gauthier-Villars & Cie, Imprimeur-Editeur-Libraire, Paris,
1962.

[2] L. E. Dickson, Introduction to the Theory of Numbers, Dover Publications, New
York, 1957.

[3] J.-P. Escofier, Galois Theory, Graduate Texts in Mathematics, vol. 204, Springer-
Verlag, New York, 2001.

[4]  C.F. Gauss, Disquisitiones Arithmeticae, Springer-Verlag, New York, 1986.

[5] C. A. Neff, Finding the distance between two circles in three-dimensional space,
IBM J. Res. Develop. 34 (1990), no. 5, 770-775.

[6] M. Radic¢ and T. K. Pogany, Algebraic equations connected with tangential poly-
gons and their solvability by radicals, Appl. Math. E-Notes 1 (2001), 118-
123.

[7] D.M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, Dover
Publications, New York, 1958.

[8] D. Spring, Solution of a calculus problem on minimal volume, Amer. Math.
Monthly 108 (2001), no. 3, 217-221.

[9] I Stewart, Galois Theory, Chapman & Hall Mathematics, New York, 1998.

[10] B.L.van der Waerden, Modern Algebra, Vol. I and II, Frederick Ungar Publishing,

New York, 1966.

Michele Elia: Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
E-mail address: elia@polito.it


mailto:elia@polito.it

Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

