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NESTED SYMMETRIC REPRESENTATION OF ELEMENTS
OF THE SUZUKI CHAIN GROUPS
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We demonstrate an economic and concise method for representing the elements
of groups involved in the Suzuki chain. For example, we represent each element of
Suz:2 by a permutation on 14 letters from L3 (2) : 2 followed by four words, each
of length at most two, in 14, 36, 100, and 416 involutory symmetric generators,
respectively. Such expressions will have an obvious advantage over permutations
on 1782 provided that it is reasonably simple to multiply and invert them. We
refer to this as nested symmetric representation of an element of the group.

2000 Mathematics Subject Classification: 20B40, 20D60.

1. Introduction. An element of order three in the class 3D (see [2]) of Con-
way’s group Co; is centralized by 3 X Ag and the chain of subgroups K; (of
Cop) which are the centralizers of the subgroups A; obtained by fixing all but
i points in this Ag is called Suzuki chain, see [2, 8, 9]. This chain of subgroups
in Coy, discovered by Thompson (unpublished), see [6], has been of interest in
finite groups.

In the present work, each of the Suzuki chain groups emerges as a group G
generated by a set of |(K;:2): (Kj:1:2)| involutions whose set normalizer in
G is isomorphic to K; : 2. Most of these groups are constructed by hand using
the double coset enumeration technique shown in [5].

The main purpose of this paper is to introduce the concept of nested sym-
metric representation of elements of a group. In general, if we wish to multiply
and invert elements in a straightforward manner, we must represent them
as either permutations or matrices. The two operations are particularly easy
to perform on permutations. Moreover, the cycle shape of an element immedi-
ately yields its order, and often its conjugacy class. However, for large sporadic
groups, the lowest degree of permutation representations are unmanageable.
Operations on matrices are much more difficult and basic information about
an element is not readily recovered from its matrix representation. The ap-
proach illustrated in this paper combines conciseness with acceptable ease
of manipulation and makes hand calculations with the elements possible. In-
version and multiplication can be performed manually or mechanically [1] by
means of short recursive algorithms.


http://dx.doi.org/10.1155/S0161171203212023
http://dx.doi.org/10.1155/S0161171203212023
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com

3932 MOHAMED SAYED

2. Involutory symmetric generators of groups. Let G be a group and let
T = {to,t1,...,tn—1} be a set of elements of order m in G. Making the defini-
tions T; = (t;) and T = {Ty, T1,..., Tn_1} allows us to define N = N¢(T), the set
normalizer in G of T. We say that T is a symmetric generating set for G if the
following two conditions hold:

i) G =(T),

(ii) N permutes T transitively.
We call N the control subgroup. Conditions (i) and (ii) imply that G is a homo-
morphic image of the progenitor

m*":N, (2.1)

where m*" represents a free product of n copies of the cyclic group Cp, and N
is a group of automorphisms of m*" which permutes the n cyclic subgroups
by conjugation, see [3, 4, 5].

Since in this paper we are only concerned with involutory symmetric gener-
ators, we restrict our attention to the case m = 2 (while N will simply act by
conjugation as permutations of the n involutory symmetric generators).

THEOREM 2.1. All non-abelian finite simple groups can arise as finite homo-
morphic images of progenitors of the form 2*" : N,

PROOF. Let H be a maximal subgroup of a finite simple group G. Suppose
that 1 # t € G, t? = 1. Under the subgroup H, t°, the conjugacy class of tin G,
splits into orbits as

tC=T,0T,0U---UT,. (2.2)

Without loss of generality, we may assume that 7, = {to,t;,...,t,—1} is not a
subset of H. It is clear that

Ne({(T1))=(H, 1) =G (2.3)
since H is maximal in G and 7 is not a subset of H. Therefore,
1+(7,)<G, (2.4)
and, since G is simple, we have
(71) =G. (2.5)

Moreover, if m € Hand t] =t; (i =0,1,...,n—1), then T € %¥(G) and so T = 1,
that is, H permutes the elements of J; faithfully (and transitively). Now, let
2*" denote a free product of n copies of the cyclic group C, with involutory
generators to,t1,...,tn—1 and let N = H consist of all automorphisms of 2*"
which permute the t; as H permutes the t;:

Tl'_ltﬂT = tzT =tn formeN. (2.6)
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Then, clearly G is a homomorphic image of 2*" : N, a split extension of 2*" by
the permutation automorphisms N. |

Since the progenitor is a semidirect product (of (T) with N), it follows that,
in any homomorphic image G, we may use the equation

ti;r = 'ITtZ'T =Tln(i) 2.7)

orimr = 1ri™ as we will more commonly write (see below) to gather the elements
of N over to the left. Another consequence of this is that a relation of the form
(1rt;)™ = 1 for some 1T € N in a permutation progenitor becomes

= titTr(i) R t—,—rn—l(i). (28)

Each element of the progenitor can be represented as mw, where m € N and
w is a word in the symmetric generators. Indeed, this representation is unique
provided that w is simplified so that those adjacent symmetric generators are
distinct. Thus any additional relator by which we must factor the progenitor
to obtain G must have the form mmw (ty,t1,...,tn-1), where T € N and w is a
word in T.

Now, if NxN is a double coset of N in G, we have

NxN = NmtmwN = NwN, (2.9)

where x = mw € G, with it € N, and w a word in the symmetric generators. We
denote this double coset by [w]; for example, [01] denotes the double coset
Ntot1N. The double coset NeN = N, where e is the identity element, is denoted

by [*].

NOTATION 2.2. We will allow i to stand for the coset Nt;, ij for the coset
Nt;t;, and so on. We will also let i stand for the symmetric generator t; when
there is no danger of confusion. Thus we write, for instance, ij ~ k to mean
Ntitj = Nty and ij = k to mean &;t; = ty.

We define the subgroups N, N/ N/ (for i,j, and k distinct) as follows:

Ni=%n((t:)), NY=%n((tit;)), NU*=%Gy({t:;t;tk)) (2.10)
or, more generally,

Niliz..-im :%N((tilytizv--'atim>) (2'11)

for iy, i»,...,1im distinct.
Let g be an element of G. Then we define

N@ = {reN|Ngm=Ng}, (2.12)
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where N9 is called the coset stabilizing subgroup (of Ng in N). Clearly, N* <
N®) for w being a word in the symmetric generators and the number of cosets
in the double coset [w] = NwN is given by |[N|/|INW)|, see [5, 7].

LEMMA 2.3. In2*n:N, (t;,t;) "N < Gx(NW).

PROOF. Suppose that some element of G is in (t;,t;) and N; then it must
centralize everything in N/ —since, by definition, everything in N¥/ commutes
with everything in (t;,tj)—and also in N, see [4]. Of course, this result can be
readily generalized to more than two symmetric generators, and the general
result is

<ti1,ti2,...,tim>ONS(@N(Nilizmim). (2.13)
O

LEMMA 2.4. In (2":N)/ (14 = aba) (ab is called a special pair),
N > (N 1; with ik and kj special pairs ). (2.14)

PROOF. Since ij ~ik-kj~i-Tyj-k ~i™ -k = (ij)™, then my; fixes the
coset ij. Then 11y; € N, o

3. Manual double coset enumeration. Itis now clear that we intend to take
our progenitor of shape 2*" : N, where N is a transitive permutation group on
n letters. A canonical presentation for this progenitor is

(x,y,t]{x,y) =N, t>=1=[N°1t]), (3.1)

where x and y generate N, and ¢ corresponds to ty. The meaning of 1 = [N, ¢]
is that we adjoin the relations 1 = [x,t] = [x»,t] = --- = [xp,t], where xi,
X2,...,Xp generate N' 0 and (x,y) = N means that we adjoin sufficient relations
between x and y to define N.

3.1. The progenitor 2*7*7) : (L3(2) : 2). A presentation for the progenitor is
(x,y,5 | x* =33 = (xy)¥ =[x, ¥]* =s* = [s,y] = [s,[x,¥1*] = 1), (3.2)

where the action of the elements of the control subgroup N = L3(2) : 2 on the 14
symmetric generators may be given by x = (0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)
and y = (0,5,6)(1,2,4)(1,6,5)(2,4,3). Here the symmetric generators are de-
noted by seven points 0,1,2,3,4,5, and 6, and seven lines 0,1,2,3,4,5, and 6 in the
projective plane shown in Figure 3.1. In order to obtain a finite homomorphic
image of such a progenitor, we must factor by some additional relations. There
are three two-point stabilizers N/, depending on whether i is a point and j is
a line not through it, i is a point and j is a line through it, or i and j are two
different points or two different lines. Now consider the first case

N0 = ((2,4)(5,6)(2,4)(5,6),(1,2)(3,6)(1,2)(3,6)) = S3, 3.3)
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FIGURE 3.1. Seven-point projective plane.

which is centralized by the involution 1ty = (0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6).
Lemma 2.3 stated that 71, is the only permutation of N which can be written
in terms of sy and s,. We make the assumption that 719, = 595,50, @ word in the
symmetric generators so and s, of the shortest length that does not lead to
collapse. Also

N% =((0,1)(2,5)(0,4)(2,3),(0,2)(1,5)(0,4) (1,6),
(0,1,2,5)(3,4)(0,6,4,1)(2,3)) (3.4)
= Dg,

which is centralized by the involution 1145 = (0,2)(1,5)(0,4)(1,6). If we can
write the involution 7145 as a word in the symmetric generators sg and ss, the
shortest possibility is 1165 = (s655)2. The third relation is 191 = (S¢s1)2, where
o1 = (2,5)(4,6)(0,3)(2,4) € 6N (NOD).

Consider the group

2%7+7D) - (Lg(2) : 2)

G= 5 (3.5)
oo = 505050, Tes5 = (S655)
from which a simple presentation follows:
(x.y.51x2 =% = (x3)® = [x,¥]* = 5% = [5,¥]
(3.6)

= [5,06,71%] = (sx)° = (xys¥¥)* = 1>.

We are now in a position to carry out the double coset enumeration of G over
N. The set of all double cosets [w] = NwN, the coset stabilizing subgroups
N® and the number of single cosets each contains are shown in Table 3.1.
The double coset enumeration shows that the group defined by the symmetric
presentation contains a homomorphic image of L3(2) : 2 to index at most 36,
and gives a convenient name to each of the 36 cosets in terms of 14 symmetric
generators. Moreover, the action of the generators on the 36 cosets, by right
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TABLE 3.1. Double coset enumeration for U3(3) : 2.

Label [w] Coset stabilizing subgroup N®) No. of cosets
[*] N 1
0_ N©O) =

[0] NP=NT =S . 14
with orbits 1+ 6+ 3 +4 on the 14 points

[00] =[0] Since 000 ~ % = 00~ 0
NO1 = Vy.
Since 01 ~05:51 ~05-71T15:5~61-5~65,

[01] 115 =(0,6)(1,5)(2,4)(3,1)(4,0)(5,2)(6,3) 21

>NOD >((2,4)(5,6)(2,4)(5,6),p)= D12,

p=1(0,6,1,5)(3,1)(2,0,4,4,5,3,6,2),
with orbits 2 +4 + 8 on the 14 points
01~06-61~06-616-6~ 061161 -6

[01] =[01] ~216~1-26~46-2~42~13 ~ 31,
161 = (0,2)(1,3)(2,4)(3,5)(4,6)(5,0)(6,1)
012~312~3-121-1~ 3121 -1 ~ 61 ~ 46,

[012] = [01] 21 = (0,2)(1,0)(2,1)(3,6)(4,3)(5,5)(6,4).

Also 31 ~36-61~36-616-6 ~36-1161 -6
~516~1-56~66-5~65~56~01~10

[*] (0]

FIGURE 3.2

multiplication, is implicit in the enumeration and so it is readily checked that
these permutations satisfy the given relations. Thus, |G : N| < 36, so |G| <
12096 = |U3(3) : 2|, and the (relatively) easy task of finding generators for
U;(3) : 2 satisfying the required relations completes the identification of G
with Us(3) : 2. Table 3.1 shows that the Cayley graph of G over N has the form
shown in Figure 3.2.

We conclude our work on G by giving symmetrically represented generators
for each of the maximal subgroups of: G = ((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),80): U3(3) = ((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6) 50,
(0,5,6)(1,2,4)(1,6,5)(2,4,3)) is a simple subgroup of index 2 in G;

3142:8:2 =((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(3.7)

(0,2,2,0,4,5,3,1)(1,4,6,6)(5,3)S6S3)
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is a subgroup of order 432 with index 28 in G and is the normalizer of
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6) S5, (3.8)

an element of order 3 in class 3A4;

L3(2):2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(3.9
(0,5,6)(1,2,4)(1,6,5)(2,4,3))

is a subgroup of order 336 with index 36 in G and is the stabilizer of a point
in the 36-point graph; and

4-84:2=(50,(2,6)(4,5)(0,3)(5,6)8150) (3.10)
is a subgroup of order 192 with index 63 in G and is the centralizer of
(2,4)(5,6)(2,4) (5,6), (3.11)

an involution in class 2A.

3.2. The progenitor 2*3%: (U3(3) : 2). A presentation for the progenitor is

(x, 3,57 1x2 =y = (x3)® =[x, 71} = s? = [5,5] = [5,[x,¥]*]
.y (3.12)
=(x8)3 = (xys*) =2 =[r,x] =[r,y] = 1>.

Here the symmetric generators are labeled with the vertices of the 36-point
graph as follows. A single vertex is labeled oo, 14 vertices are labeled 0,1,2,3,4,
5,6,0,1,2,3, 4,5, and 6, and the 21 vertices are labeled by the 21 flags (a point with
a line through it) 01, 02, 04, 10, 11, 13, 20, 22, 26, 31, 35, 36, 40, 44, 45, 53, 54, 56,
62, 63, and 65. We would like to know which elements of the control subgroup
N = U3(3) : 2 can be written in terms of two symmetric generators. Lemma 2.3
says that €x (N*°) = (s). We make the assumption that o (= $§) = Y77, a
word in the symmetric generators 7. and 7, of the shortest length that does
not lead to collapse.
Consider the group

2%36: (U3(3):2)
Too = Ve ¥o¥oo

= (3.13)

from which a simple presentation follows:

(x, 0,571 x% =33 = (x2)® = [x,01* = 52 = [5, 7] = [5,[x, 1]
=(x5)3 = (xys)V =2 = [r,x] = [r,¥] = (s1)3 = 1>.
(3.14)

The double cosets and coset stabilizing subgroups are shown in Table 3.2. The
double coset enumeration yields a Cayley diagram of G over N (see Figure 3.3).



3938

MOHAMED SAYED

TABLE 3.2. Double coset enumeration for J» : 2.

Label [w] Coset stabilizing subgroup Nw) No. of cosets
[*] N 1
N® =N(®) =[3(2):2,
[oo] ) ) ) 36
with orbits 1+ 14+ 21 on the 36 points
[000] = [o0] Since 00000 ~ * = 000 ~ 00
N®I = ((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6), (0,3)
(2,5,4,6)(0,3)(2,6,4,5),(2,4)(5,6)(0,3)(2,4)) = Dig.
Each element i of the (2 +4)-orbits of D¢ is joined
to both o and 11, that is, coi and i11 are special
pairs = N > (1101;, 7111, 311, To11, T 11,311,
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(2,4)(5,6)(0,3)
[o011] (2,4),(0,3)(2,5,4,6)(0,3)(2,6,4,5)) =4-54:2, 63

011 = S05350 = (2,4)(5,6)(2,4)(5,6)s3,
111 = $15151 = (2,4)(5,6)(2,4) (5,6) 51,
311 = $35053 = (2,4)(5,6)(2,4) (5,6) S0,
Tlo11 = S08350 = (2,4)(5,6)(2,4) (5,6) 3,
M1 = 815181 = (2,4)(5,6)(2,4)(5,6) 51,
311 = 535053 = (2,4)(5,6)(2,4) (5,6) S0,
with orbits 12 + 24 on the 36 points

[00112] =[o011]

Voo?1172 = V1170?72 =711 " T2 " Voo = V1152V 0
~7]3% Since 11-2 ~112 ~1-1212-21
~1-(0,5)(3,6)(1,3)(2,6) - 21 ~ 321 ~ 31

[oo] [eo11]

FIGURE 3.3

One should note that the graph obtained above is not the regular graph, but
the Cayley one. The regular graph whose automorphism group is G is obtained
from the above one by joining the coset w to the coset iw. We may readily con-
struct our symmetric generators as permutations of 1+ 36 +63 = 100 letters
and verify that they do indeed satisfy the relations we assumed, thus proving
that the group G has order 12096 x 100 = 1209600 = | /> : 2|. Identifying G
with J, : 2 is straightforward and follows immediately from the construction
of Jo : 2 as the automorphism group of a rank-3 graph on 100 points, with
suborbits 1, 36, and 63, and point stabilizer U3 (3) : 2, see [2].



NESTED SYMMETRIC REPRESENTATION OF ELEMENTS ... 3939

Every element of G can be represented by a permutation on 36 letters fol-
lowed by a word in the symmetric generators of length at most two. Alterna-
tively and more concisely, we can represent each element of G by an expression
of the form Tuv, where 1t is a permutation on 14 letters (element of L3(2) : 2)
and u and v are words of length at most two in the symmetric generators
s’s and 7’s, respectively. The nested symmetrical representation of generators
for each of the maximal subgroups of G = ((0,0) (1,1)(2,2)(3,3)(4,4)(5,5) (6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),50,7c0)

J2 = {(0,0)(1,1)(2,2)(3,3)(4,4) (5,5)(6,6) 50, (0,5,6) (1,2,4)(1,6,5) (2,4,3),
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6) 7w ) (3.15)

is a simple subgroup of index 2 in G;

Us(3):2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6),

(0,5,6)(1,2,4)(1,6,5)(2,4,3),50) (3.16)

is a subgroup of order 12096 with index 100 in G and is the stabilizer of a
point in the 100-point graph;
3-A6-2%2=((0,3)(1,1)(2,5)(3,0)(4,6)(5,4) (6,2) S65:73702, S0) (3.17)
is a subgroup of order 4320 with index 280 in G and is the normalizer of
(0,3)(1,1)(2,6)(3,0)(4,5)(5,2)(6,4)s3, (3.18)
an element of order 3 in class 3A4;

21741 65 = ((0,0)(1,1)(2,2)(3,3) (4,4) (5,5) (6,6) So,

(3.19)
(0,3)(5,6)(2,6)(4,5)§351 700 )

is a subgroup of order 3840 with index 315 in G and is the normalizer of
(2,4)(5,6)(2,4) (5,6), (3.20)
an involution in class 2A;

224 (3% 83): 2

(3.21)
= ((0,5,6)(1,2,4)(1,6,5)(2,4,3),(1,2)(3,6) (1,2)(3,6), 50,71 )

is a subgroup of order 2304 with index 525 in G and is the normalizer of
((0,5)(3,6)(1,3)(2,6),(0,6)(3,5)(1,3) (4,5)), (3.22)

a four-group whose involutions are in class 2A,;

(Agx As) : 2 =((0,0)(1,4)(2,2)(3,5)(4,1)(5,3)(6,6) 3676,

(3.23)
(1,2)(3,6)(1,2)(3,6) So¥wo )
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is a subgroup of order 1440 with index 840 in G;

(As xD1g) -2 = ((0,0,3,4,2,1,4,6) (1,5,5,2)(6,3) 5655,

(0,1)(1,2,3,4)(2,5,5,0,6,6,4,3) S¥3¥53) (3.24)

is a subgroup of order 1200 with index 1008 in G and is the normalizer of
(0,2,6)(1,3,5)(0,5,4) (1,6,3) $25274736, (3.25)

an element of order 5 in class 5A;

L3(2):2%x2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(3.26)
(0,5,6)(1,2,4)(1,6,5)(2,4,3),%e0)

is a subgroup of order 672 with index 1800 in G and is the centralizer of 7,
an involution in class 2C;
52: (4% S3) =((0,6,5,4,3,2,1)(0,1,2,3,4,5,6) s470,
(0,3,2)(1,5,6)(0,4,5)(1,6,2) 5653, (3.27)
(0,6)(1,3)(2,2)(3,4)(4,5)(5,1)(6,0) 6 )

is a subgroup of order 600 with index 2016 in G; and
S5 =((0,2,6)(1,3,5)(0,5,4) (1,6,3) $25274736, 0 ) (3.28)

is a subgroup of order 120 with index 10080 in G.

There are 63 such sets of six couples corresponding to the choices of
N (= 4.8,:2) in N. Now we label each set of six couples corresponding
to N@) by i.j. It is clear that i.j has 6 (unordered) images under N/, Exam-
ples of set of six couples are

[(c0,11), [(2,13),
(1,1), (4,11),
.11 = 4 0.3), 2.13 = A (140, (3.29)
(0,3), (3,20),
(10,13), (04,35),
| (01,31), | (56,62).

3.3. The progenitor 2*1%0: (J, : 2). A presentation for the progenitor is
(x,y.57.a1x2 =% = (x3)® = [x,y1* = s? = [5,3] = [5,[x,7]]
= (x5)* = (xys¥)  =#2 = [r,x] = [r,y] = (s7)°  (3.30)

=q’=la.x]=[q.y]1=[a,s1=1).
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TABLE 3.3. Double coset enumeration for G»(4) : 2.

Label [w] Coset stabilizing subgroup N®) No. of cosets
[*] N 1
X — NX) ~ .
(x| N. N . = U3(3):2, . 100
with orbits 1+ 36+ 63 on the 100 points
[xoo] = [x] Since XocoX ~ * = X00 ~ X
NX05 = ((0,5)(1,6)(2,3)(3,1) (4,4) (5,0) (6,2) 5454,
(1,2)(3,6)(1,2)(3,6),(1,6)(2,3)(0,5)(1,2),(1,3)
(2,6)(0,5)(3,6)S455) =2-S4: 2.
Each element i of the 12-orbits of 2-54:2 is
joined to both of x and 0.5, that is, xi and 0.5
[x0.5] 315

are special pairs = NX-5 > (17,05, T00.5, T40.5,
T050.5T700.5, T140.5, TT50.5, T1040.5, T1400.5 T1440.5, T1450.5
T540.5, (1,3)(2,6)(0,5) (3.6) 5455, (0,5) (1,6) (2,3)
(3,1)(4,4)(5,0)(6,2)5454) = 2174 .85,

with 20 + 80 orbits on 100 points

axqo.541 = qo.54x41 = qo.5Tx1qx = qo.571qx ~ qo.4qx

[x0.51] =[x0.5] X
since ro¥s11 = Vo¥sV1Vs¥s = VoTl1575 ~ V4¥s ~ Yoy

[*] [x] [x 0.5]

FIGURE 3.4

Here the symmetric generators are labeled with the vertices of the 100-point
graph. A single vertex is labeled x, 36 vertices are labeled ~,0,1,2,3,4,5,6,0,1,2,3,
4,5,6, 01, 02, 04, 10, 11, 13, 20, 22, 26, 31, 35, 36, 40, 44, 45, 53, 54, 56, 62, 63, and
65 and 63 vertices are labeled by the elements of the set of all six couples.
We would like to know which elements of the control subgroup N = J, : 2
can be written in terms of two symmetric generators. Lemma 2.3 says that
CN(N*®) = (r). We make the assumption that Tty (= 7) = gxd~qx, @ word in
the symmetric generators gy and g« of the shortest length that does not lead
to collapse.
Consider the group

2*100 . (]2 : 2)

G .
Tlxco = (xd o0 qx

1

(3.31)

The double cosets and coset stabilizing subgroups are shown in Table 3.3. The
double coset enumeration yields a Cayley diagram of G over N (see Figure 3.4).
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The coset enumeration shows that the group defined by the symmetric presen-
tation contains a homomorphic image of N to index at most 1+100+315 = 416,
and gives a convenient name to each 416 cosets in terms of 100 symmetric gen-
erators. Moreover, the action of the generators on the 416 cosets, by right mul-
tiplication, is implicit in the enumeration and so it is readily checked that these
permutations satisfy the given relation. Moreover, G has order |J,: 2| x416 =
503193600, and G is the automorphism group of a rank-3 graph (obtained
from the above diagram by joining the coset w to the coset iw) of valence 100
on 416 points in which the point stabilizer is J» : 2. This is, of course, the group
G2(4):2, see [2].

Every element of G can be represented by a permutation on 100 letters (el-
ements of J, : 2) followed by a word in the symmetric generators of length at
most two. Also each element of G can be represented by the expression muvw,
where 11 is a permutation on 14 letters (element of L3(2) : 2) and u,v,w are
words of length at most two in the symmetric generators s’s, r’s, and q’s, re-
spectively. We refer to this as nested symmetric representation of an element of
the group. The (nested) symmetrically represented generators for each of the
maximal subgroups of G = ((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(0,5,6)(1,2,4)
(1,6,5)(2,4,3), 50,70, qx)

G2(4) =((0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6) S0V qxs

(0,5,6)(1,2,4)(1,6,5)(2,4,3)) (3.32)
is a simple group of index 2 in G;
J2:2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6),
(3.33)

(0,5,6)(1,2,4)(1,6,5)(2,4,3), 50, %0 )

is a subgroup of index 416 in G and is the stabilizer of a point in the 416-point
graph;

2278 (3% As)12=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6)72713d6d1.65,S0) (3.34)
is a subgroup of index 1365 in G;

2476 (A5%3):2=((0,1,2,6,5,3,4)(0,2,3,6,5,4,1)71 41 q4.63,

(3.35)
(0,1)(2,4,5,6)(0,4,3,2) (5,6)S65572¥53443.53)
is a subgroup of index 1365 in G;
Usz(4) :4=((0,5,2)(3,6,4)(0,1,3) (2,6,4) S572s,
(3.36)

(0,1,4)(2,5,3)(0,4,1)(2,3,5) Se¥ 22411 )
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is a subgroup of index 2016 in G;

3-L3(4):2% = ((0,0)(1,1)(2,4)(3,3)(4,2)(5,6)(6,5)dx,
(0,5)(1,6,2,3)(0,5)(1,3,2,6) 54, (3.37)
(0,5,5,0)(1,1,3,6,2,2,6,3) (4,4)¥o75)

is a subgroup of index 2080 in G and is the normalizer of
(0,0)(1,1)(2,2)(3,3)(4,4) (5,5) (6,6) 50, (3.38)

an element of order 3 in class 3A;

Us(3):2x2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(0,5,6)(1,2,4)(1,6,5) (2,4,3), S0, dx) (3.39)

is a subgroup of index 20800 in G and is the centralizer of gy, an involution in
class 2C;

(Asx As):2=((0,5,1,4,6,1,4,3)(2,6) (3,0,5,2) o7 7243,

3.40
(0,4,3)(1,5,6)(0,6,2) (1,4,5) S45071 7454543 40) (5:40
is a subgroup of index 69888 in G; and
L(13):2=((0,4,4,0,2,2)(1,6,6,1,5,5) (3,3) SV dx,
(3.41)

(0,6)(1,4)(1,5)(3,4)qos)
is a subgroup of index 230400 in G.

3.4. The progenitor 2*416: (G,(4) : 2). A presentation for the progenitor is

(x>vsrap|xt =y = (xy) = [x,¥)" = s* = [s, ] = [, [x,¥]]
ot =y o [y, x] = [r,p] = (s7)?

= 3 =
(xs)” = (xs (3.42)

=q°=la,x]=[a,y1=1a,s]=(rq)® =[p,x]
=Ip.y1=Ip.s1=[p,r1=1).

Here the symmetric generators which correspond to the vertices of the 416-
point graph are denoted by 0,1,...,415, where pg = py,., P1 = Pgy, and po =
Pdes---- We would like to know which elements of the control subgroup N =
G2(4) : 2 can be written in terms of two symmetric generators. Lemma 2.3
states that €5 (N?') = (q). We make the assumption that 11 (= q) = pop1Po,
aword in the symmetric generators po and p; of the shortest length that does
not lead to collapse.

A nice way of looking at Suz: 2 is the way Suzuki constructed the group [2]
as a rank-3 extension of G»(4) : 2 of degree 1782 with suborbit sizes 1, 416,
and 1365. We will be looking at the group from this point of view to identify
our homomorphic image of the progenitor with Suz: 2.
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TABLE 3.4. Double coset enumeration for 3 -Suz: 2.

Label [w] Coset stabilizing subgroup N) No. of cosets

[*] N 1
NY=NO =52

[0] Jai2, 416

with orbits 1+ 100+ 315 on the 416 points

[01] =[0] Since 010~ % =01 ~ 1, 0 is an element of the 100-orbit
NOi = p1+4: g i js an element of the 315-orbit,
IN©D| =32 x |Stabyon (0)] > 32 x 3840.

[0i] N0 ~ 2248 . ¢- thus the double coset [0i] has 4095
at most 4095 single cosets, N9 has orbits
32+320+64 on the 416 points

0il ~ Orrj;i ~ 0™il, i joined to [, [ is an element

of 320-orbit

NOIj = 21+4 . A5 jis an element of the 64-orbit since
NOij js maximal in J», adding any permutation of N
which fixes the coset Npop;p; to N0 = NO) = J,,
with orbits 315+ 100+ 1 on the 416 points

0ijl~ Oittjyj ~ (0i)™lj, j joined to I, [ is an element
of 100-orbit

NYk js maximal in G (4), adding any permutation
of N which fixes the coset Npop;pjpk to

NOLk 5 N(OK) ~ G, (4), which is transitive on the
symimetric generators

[0il] = [0i]

[0ij] 832

[0ij1] = [0ij]

[0ijk]

Consider the group

2%416: (G5 (4):2)
o1 = PoP1Po

G= (3.43)

The double cosets and coset stabilizing subgroups are given in Table 3.4. The
double coset enumeration shown in Table 3.4 yields a Cayley diagram of G
over N (see Figure 3.5).

The coset enumeration shows that the group defined by the symmetric pre-
sentation contains a homomorphic image of N to index at most (1 +416 +
4095 + 832 + 2) = 5346, and gives a convenient name to each 5346 cosets in
terms of 416 symmetric generators. Moreover, the action of the generators on
the 5346 cosets, by right multiplication, is implicit in the enumeration and so
it is readily checked that these permutations satisfy the given relation. Thus
|G| =1G2(4) :2|x5346 = 2690072965600, and G is isomorphic to the group
3 - Suz : 2. Finally, adding the relator (1tpo)'? [2], where 1T induces a permu-
tation of cyclic shape 1-3 -4 -62-123 on 416 letters, to those of G gives
Suz : 2. Again the double coset enumeration over N gives a Cayley diagram
(see Figure 3.6).
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[] [0] [01] (0] [07jk]

FIGURE 3.5

FIGURE 3.6

Every element of G(= Suz: 2) can be represented by a permutation on 416
letters (elements of G»(4) : 2) followed by a word in the symmetric genera-
tors of length at most two. Also each element of G can be represented by
the expression muvwz, where 1T is a permutation on 14 letters (element
of L3(2) : 2) and u, v, w, and z are words of length at most two in the
symmetric generators s’s, ¥’s, q’s, and p’s, respectively. We refer to this as
nested symmetric representation of an element of the group. The (nested) sym-
metrically represented generators for each of the maximal subgroups of G =
((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(0,5,6)(1,2,4)(1,6,5) (2,4,3), S0, Voo, x> P0)

Suz =((0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6) S0,
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6) ¥,
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5) (6,6)qx, (3.44)
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6) po,
(0,5,6)(1,2,4)(1,6,5)(2,4,3))

is a subgroup of index 2 in G;

G2(4):2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(0,5,6)(1,2,4)(1,6,5)(2,4,3), 50, o0, dx) (3.45)

is a subgroup of index 1782 in G and is the stabilizer of a point in the 1782-
point graph;

3U4(3): (22) 133 = ((0,6,3,5)(2,4) (1,3) (2,5,6,4) SoS2¥o Vs P0, S0dx) (3.46)



3946 MOHAMED SAYED
is a subgroup of index 22880 in G and is the normalizer of
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6) S0, (3.47)
an element of order 3 in class 3A4;
2176 U4(2) 12 = ((0,0)(1,2)(2,1)(3,6) (4,4)(5,5) (6,3) Sodx, Sa¥wP0)  (3.48)

is a subgroup of index 135135 in G and is the normalizer of (1,2) (3,6) (1,2) (3,6),
an involution in class 2A;

J2:2%x2=((0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(0,5,6)(1,2,4)(1,6,5)(2,4,3),50, %0, P0) (3.49)

is a subgroup of index 370656 in G and is the centralizer of pg, an involution
in class 2C; and

Mio:2x2=((0,6)(1,0,4,5,6,3)(2,4,3,2,5,1)¥5¥44xq45Po,

3.50
(1,6)(2,3)(0,5)(1,2)gwpo, (1,4)(3,5)(1,4) (3,5)S¢70) ( )

is a subgroup of index 2358720 in G and is the centralizer of
(0,6)(1,5)(2,2)(3,1)(4,3)(5,4)(6,0) ¥« Po, (3.51)

an involution in class 3D.

3.5. The progenitor (22)*1782: (3.Suz:2). A presentation for the progeni-
tor is

<x,y,s,r,q,p,t [x2=9y3=(xy)8 =[x, y]1*=52=[s,¥]=[s,[x,7]1°]

xyx)4 2

= (x5)3 = (xys =r°=[r,x]=[r,y]

=13 =q’=laq,x]=I[q,v]1=1a,5] = (rq)?®
=[p,x]=[p,¥]1=1[p,sl=[p,r]=(ap)®

= [t,x]=[t,y]=[t,s]=[t,q] = 1).
(3.52)

We seek a monomial semilinear 1782-dimensional representation of N = 3 -
Suz: 2 over GF4, the Galois field of order 4. Elements in 3 - Suz: 2 can thus act
as permutations of 1782 Klein four-groups, followed by the field automorphism
o of GF4. The cyclic groups T; are replaced by copies of the Klein four-groups
which we label by V; = (t;,,t;,t;;). The centralizer in N of V; is isomorphic
to G»(4) with orbits 1 +416 + 1365. Centralizing a further four-group in the
416-orbit, say V>, yeilds a subgroup isomorphic to J, whose centralizer in N
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FIGURE 3.7

is a copy of S3:
(V1,Va) NN <@y (N'?) = S3. (3.53)

Elements of order 3 in S5 cycle the involutions in each of the two fixed four-
groups, while its involutions interchange them and apply the field automor-
phism o. We thus seek an image of (22)*? : S3, where

53;<a:(‘f’ (;)),bz(i %>a>. 359

Factoring this by the relator (bt;,)? is easily seen to give the image As. For
example, if a = (3,4,5), b = (1,2)(4,5), t1, = (1,3)(4,5), then
t, = (1,3)(4,5), t, = (2,3)(4,5),
t1, = wty, = (1,4)(3,5), t2, = wtr, = (2,4)(3,5), (3.55)
tl3 =wt11 = (115)(314)! t23 :wtle = (215)(314)

If the progenitor (22)*1782 : 3.Suz : 2 is factored by a corresponding relation,
we obtain

Cop = (22)*1782. (3-Suz:2)
((; otn)’

The central element of order three [2], which fixes each of the 1782 four-groups
while cycling its nontrivial element, is ([x, y1%((x,¥12)Yx(x,y19)¥ xsrqp)'3.
With the help of the program in [5], the enumeration over N gives a Cayley
diagram (see Figure 3.7).

(3.56)
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