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We discuss the approximation properties of nets of positive linear operators acting
on function spaces defined on Hausdorff completely regular spaces. A particular
attention is devoted to positive operators which are defined in terms of integrals
with respect to a given family of Borel measures. We present several applications
which, in particular, show the advantages of such a general approach. Among other
things, some new Korovkin-type theorems on function spaces on arbitrary topo-
logical spaces are obtained. Finally, a natural extension of the so-called Bernstein-
Schnabl operators for convex (not necessarily compact) subsets of a locally convex
space is presented as well.

2000 Mathematics Subject Classification: 41A36, 47A58, 47B65.

1. Introduction. Korovkin’s original theorem and its subsequent extensions
and generalizations give useful criteria in order to decide whether a sequence
of positive linear operators converges to the identity operator. As it is well
known, these criteria involve the convergence of the sequence on special sub-
sets of the underlying space, called Korovkin subsets.

In many concrete cases, it is also possible to give estimates of the rates of
convergence in terms of quantities connected to the Korovkin subsets. We refer
to [1] for more details on this subject.

On the other hand, many positive approximation processes can be defined
in terms of mathematical expectation of suitable random variables taking their
values into a Borel subset of some Euclidean space. In these cases, both qualita-
tive and quantitative properties of the approximation processes can be studied
by means of probabilistic methods (see [1, Section 5.2] for more details and
for the relevant references).

It turns out that this approach seems to be very useful, especially for non-
compact domains (for compact ones, it is indeed equivalent to the use of
Korovkin-type theorems).

As a generalization of these probabilistic methods, in [11], de la Cal and
Luquin proposed a general approach for studying sequences of positive linear
operators defined in terms of probability measures on a given metric space
or, equivalently, in terms of mathematical expectations of random variables
taking their values into the same space.
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In this paper, we suggest a further more general approach for studying pos-
itive approximation processes. This approach, which is very simple and direct,
generalizes the above-mentioned measure-theoretical methods and permits to
extend some well-known Korovkin-type theorems as well.

The generalization we propose concerns Hausdorff topological spaces which
are completely regular or, equivalently, uniformizable.

Thus this approach applies not only to metric spaces, but also to locally
compact spaces, normal spaces, topological vector spaces, and so on.

The need to have some tools to study positive approximation processes on
function spaces defined on possibly nonlocally compact spaces (in the locally
compact case the theory is rather rich and complete, see, e.g., [1]) as well as the
aim to study the approximation of continuous functions on subsets of infinite-
dimensional locally convex spaces were the main motivations which led us to
consider such a general setting.

In the first part of the paper (Sections 3 and 4), we consider nets of positive
linear operators of the form

Li(f)(x):= Lfdux,i (iel,xeX, fE€E), (1.1)

where X is a Hausdorff completely regular space, (L i)xex,icr is a family of
positive Borel measures on X, and E is the vector subspace (ycy, ie; £ (X, Ux,i)-
Moreover, the set I is endowed with a directed ordering <.

We discuss under which conditions on the measures p,; the net (L), is a
positive approximation process on E with respect to the pointwise as well as
to the uniform convergence on X, that is,

i Li(f) = f (1.2)

pointwise or uniformly on X, and we provide the relative rates of convergence.

All the results heavily depend on the family of pseudometrics which gener-
ates the topology of X.

In Section 5, we establish some new Korovkin-type theorems for general nets
of positive linear operators (not necessarily of the form (1.1)) in the setting of
completely regular spaces, extending several useful Korovkin-type theorems
which have been previously established for compact spaces. Also in this case,
the proofs are simple and direct.

In Section 6, we study two approximating sequences of positive linear op-
erators acting on spaces of weakly continuous functions defined on a convex
subset of some locally convex Hausdorff space.

The first one deals with the so-called Bernstein-Schnabl operators, and our
results extend similar ones obtained for compact convex subsets (see [1, Chap-
ter 6] for more details; see also [2, 3, 21, 22] for some generalization to un-
bounded domains).
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The other sequence of positive linear operators, which generalizes the first
one, seems to be considered here for the first time, and it appears to be useful
for approximating continuous functions by means of other systems of basic
functions.

All the approximation formulae given throughout the paper are completed
with some estimates (both pointwise and uniform) of the rate of convergence.

However, these estimates are not sharp because of the general context con-
sidered here. Better estimates can be obtained in particular settings and by
using results involving other moduli of smoothness (see, e.g., [1, Chapter 5]
and [13, 14, 15, 18]).

2. Preliminaries and main definitions. A topological space X is said to be
completely regular if for every xo € X and for every neighbourhood U of xy,
there exists a continuous function f: X — R, 0 < f < 1, such that

f(x0)=1, f(x)=0 VxeX\U. (2.1)

Locally compact spaces, normal spaces (and hence metric spaces), and topo-
logical vector spaces are completely regular.

A Hausdorff topological space is completely regular if and only if it is uni-
formizable (see [9, Chapter 2, Sections 5 and 6]) so that there exists a saturated
family &% of pseudometrics on X which generates the topology of X.

From now on, we will fix a completely regular Hausdorff space and a satu-
rated family & of pseudometrics on X which generates the topology of X.

If xoeX,deP,and 6 > 0, we set

Bi(x0,6) :={y € X:d(xo,y) <6}. (2.2)
The family
(Bd (X0v6))de€n,6>0 (2.3)

is a fundamental system of neighbourhoods of the point xj.
Accordingly, a function f: X — R is continuous at xo € X if for every € > 0,
there exist d € @ and 6 > 0 such that

| f(x)=f(x0)| <€ Vx €Ba(xo,9). (2.4)

Furthermore, f is uniformly continuous if for every ¢ > 0, there exist d € &
and 6 > 0 such that

|f(x)-f()| <e Vx,yeX, d(x,y) <. (2.5)

Moreover, f is Holder continuous with exponent « > 0 if there exist d € % and
M > 0 such that

| f(x)=f(¥)| =Md(x,»)* Vx,y€X. (2.6)
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A set H of real-valued functions on X is equicontinuous at some point x € X
if for every € > 0, there exist d € @ and 6 > 0 such that

|f)-f(y)| <e VfeH, yeX, dx,y)<9. (2.7)

Furthermore, H is uniformly equicontinuous on X if for every ¢ > 0, there exist
d € % and 6 > 0 such that

| fx)-f(¥)| <e VfeH, x,yeX, dx,y)<4. (2.8)

Throughout the paper, we will use the symbols %(X,R), B(X,R), €(X,R),
%p(X,R), UCp(X,R), and Lip(X, x) to denote the space of all real-valued func-
tions on X (resp., functions which are bounded, continuous, continuous and
bounded, uniformly continuous and bounded, Hélder continuous with expo-
nent « > 0).

For every f € B(X,R), we set

1flleo = sup |f0) ] (2.9)

As usual, the support of a function f € %(X,R) is defined as

Supp(f) = {x € X: f(x) = 0}. (2.10)

We will denote by #(X,R) the space of all real-valued continuous functions
whose support is a compact subset of X, and by 6, (X, R) the closure of #(X,R)
in 6, (X,R) with respect to the uniform norm, that is,

Go(X,R):={f €6p(X,R):Ve>0, Ig € H(X,R) such that ||g— f|l» < €}.
(2.11)

The cone of all (positive) Borel measures on X will be denoted by /" (X). We
will use the symbols A}, (X) and L] (X) to indicate the subsets of all bounded
(resp., probability) Borel measures on X. If u € " (X), we will denote by
$Y(X,u) the space of all real-valued p-integrable functions on X.

From now on, we will fix a family

Uxi €EMT(X) (xeX,iel), (2.12)

where the set I is endowed with a directed ordering <.
Let E := Nyex, ier L' (X, Ux,i), and for each i € I we consider the positive
linear operator L; : E — %(X,R) defined by setting

Li(f) (x) = fodux,i (f €E, x €X). (2.13)

In the sequel, the net (L;);.; will be called the canonical net associated with
the family (2.12).
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The main aim of the present paper is to study the approximation properties
of the net (L;);,. A similar investigation has been carried out in [11] when X
is a metric space.

However, even in this particular context, our results give new contributions
to the subject.

On the other hand, these operators have been extensively studied in the case
when X is a real interval. We refer to [1, Section 5.2] and [12] for more details.

A probabilistic way of constructing families of measures of the form (2.12)
is that of considering a probability space (Q,%,P) and a family (Zx i)xex, ier
of random variables from Q into X; then we can consider the distributions of
such random variables

Uxi:= PZX,L- (xeX,iel). (2.14)

In this case, the canonical net of operators associated with (2.14) can be ex-
pressed as

Li(f) (x) = foozx,idP —E(f(Zxi)), (2.15)

where the symbol E denotes the mathematical expectation.

In fact, by a result of Kolmogorov (see [6, Corollary 9.5]), every family
(Hx.i)xex, jef I AT (X) is of the form (2.14).

Also notice that if a subspace E of %(X,R) verifies the following integral
representation property:

(P) for every positive linear form p : E — R, there exists y € JL" (X) such that
Ec$'(X,u) and

o(f) =Lfdu VfeE, (2.16)

then every net (L;);_, of positive linear operators from E into (X, R) is the re-
striction of a net of operators of the form (2.13) or (2.15) provided, in addition,
leEand L;(1)=1foralliel.

For instance, if X is a locally compact Hausdorff space, then the class of
subspaces satisfying property (P) includes the subspaces ¥ (X,R), 6o (X,R)
and, more generally, any adapted subspace of ¢(X,R) (see [10, Chapter 8,
Section 34]). Further examples for not necessarily locally compact spaces can
be found in [8, Chapter 2, Theorem 2.2] or in [16].

Concrete examples of nets of positive linear operators of the form (2.13) or
(2.15) are, for instance, Bernstein operators, Favard-Szasz-Mirakjan operators,
Baskakov operators, Gauss-Weierstrass operators, Post-Widder operators, and
Stancu operators (see [1, Section 5.2] and [12] for further examples and for
some relevant references).

To the same class belong the so-called Bernstein-Schnabl operators and
Lototsky-Schnabl operators defined in the setting of convex compact subsets
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of locally convex spaces (see [1, Chapter 6] and [4] for details and references),
as well as the operators introduced by Altomare and Carbone in [2], Altomare
and Mangino in [3], and Mangino in [21].

Other examples and generalizations will be presented in Section 6.

Here we briefly discuss some conditions under which the spaces €, (X,R)
and 6, (X,R) are invariant with respect to the operators (2.13).

Fix i € I. It is immediately proved that, if f is any bounded function in E
and if

Sup Hy,i (X) < +oo, (2.17)

xeX

then L;(f) is bounded.
Furthermore, under assumption (2.17), L;(f) € Cp(X,R) for every f € En
Cp (X, R) if the mapping

x € X — pxi €My (X) (2.18)

is continuous with respect to the weak topology on Jt} (X).

If, in addition, X is locally compact and the measures L ; are regular, then
the mapping (2.18) is continuous with respect to the weak topology if and
only if L;(1) is continuous and (2.18) is continuous with respect to the vague
topology on .t} (X), that is, for every x, € X and g € #(X,R),

lim Hy,i(X) = Uxo,i(X)a
X=X

(2.19)
tim | gdii = [ gdu
X X

X—=X0

(see [7, Theorem 30.8]).

As regards the invariance of the space %((X,R), introduced in (2.11), we
recall that, when X is locally compact, 6 (X, R) coincides with the space of all
real continuous functions f defined on X which vanish at infinity; that is, for
every € > 0, there exists a compact subset K of X such that | f(x)| < ¢ for every
X € X \K (equivalently, limy_ f(x) = 0, where o is the point at infinity of X).

Now assume that X is locally compact and the measures pi. ; are regular. If
(2.19) hold true and

;iflg)loux,i(K) =0 (2.20)
for every compact subset K of X, then

Li(f) €6o(X,R) V.feEn%(X,R). (2.21)
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Indeed, for a given € > 0, consider two compact subsets K; and K, of X such
that

|f(t)| <e VteX\K,

pxi(K1) <€ Vx€X\Ka. (2.22)
Then, for any x € X\ K>, we have
K X\K;
< 1 b (K1) + ey (X K1) 02y

< (11 +§ggux,i<x>)s.

3. Pointwise convergence. The main aim of this section is to analyze the
pointwise approximation properties of the net (2.13). At the same time, esti-
mates of the rates of convergence will also be given.

We again fix a completely regular Hausdorff space X and a saturated family
9 of pseudometrics on X which generates the topology of X.

We will consider a family (uy i) xex,ier and the canonical net of operators
(2.13) defined on E := Nyex, ier L1 (X, x,i)-

We have the following result.

THEOREM 3.1. Let x € X and assume that
lim=py i (X) = 1. (3.1
iel

Then, the following statements hold true.
(1) If for every d € 9 and 6 > 0,

lim =4 (X\ Ba(x,8)) = 0, (3.2)

then for every function f € E which is bounded and continuous at x,
liigSLi(f)(x) = f(x). (3.3)
Moreover, if H is an equibounded subset of ENB(X,R), that is, sup sep [|.f |l <
+00, Which is equicontinuous at x, then (3.3) holds true uniformly with respect

tof eH.
(2) If there exists B > 0 such that for each d € %,

lim* [ d(x, ) duei(v) =0, (3.4)
iel X

then (3.3) holds true for every f € EnLip(X,x) with0 < «x < .
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PROOF. (1) Consider a bounded function f € E and assume that it is con-
tinuous at x € X; for € > 0, there exist 6 > 0 and d € 9 such that

|f(x)-f(¥)| <& VyeBi(x,0). (3.5)

Moreover, by virtue of (3.1) and (3.2), there exists ip € I such that forall i €1,
i > i, one has

’IJx,i(X)_1| <&,

(3.6)
uxli(X\Bd(x,(S)) <E.
Therefore, for any i > i,
[Li(f)(x) = f(x)| < [Li(f)(x) = pxi (X) f (%) | + | i (X) f (%) = f(x) |
< L | £ = £ bt () + [ i (0 =1 | F(x) |
sj | £ = £ | dpi ()
By (x,6) (3.7)

+| £ = £ [ dptys () + €] £x) |
X\Bd(X,(s)

< &y, i (X)) + 201 flloo i (X \ Ba(x,8)) + €] f(x)]
<e(1+&+31flle)-

The second part of the statement may be proved in a similar way.
(2) Consider f € EnLip(X,«) for some « € ]0,B]; then there exist M > 0
and d € & such that

| f(x)=f(y)| <Md(x,y)* Vx,yeX. (3.8)

Fix € > 0 and set § := £!/%, By hypothesis, there is an index ig € I such that, for
alliel, i>1ip, one has

[pxi(X)—1] <€,

(3.9
| ae ) Paui) < est.
X
Now observe that, for every v € X, d(x,y) > §, we have
d(x,y)P-« M
[FOO=F )| = Md(x,3)* 2 = d () (3.10)



POSITIVE OPERATORS AND APPROXIMATION IN FUNCTION ... 3849
therefore, for i € I, i > ip, one has
[Li(f)(x) = f(x) ]

< a0~ 1] | £ ()| +J oy OV F G0 dpei )

By

+JX\Bd(x,5) | f ) = () | bt () (3.11)

M
<& X)|+Mepy i (X +—J
O+ Mepa X+ e |

<e(|fx)|+MQ+e€)+Me).

d(x,y)Pdpyi(y)

d

REMARK 3.2. (1) Condition (3.1) is also necessary provided 1 € E. Indeed, it
corresponds to formula (3.3) in the particular case in which f = 1.

(2) If the measures py; are the distributions of suitable random variables
Zx,i as in (2.14), then condition (3.2) means that

lim=Z, ; = Zy (3.12)
iel

stochastically, that is, for every d € @ and 6 > 0,
lmlfp{d(zx,i,zx) > 5} =0. (3.13)
1€

Here Z, : Q — X denotes the random variable which takes the constant value x.

(3) Condition (3.4) implies (3.2). Indeed, by the Chebychev-Markov inequality
(see [7, Lemma 20.1]), for any d € %, we have

1
Hx,i (X\Bg(x,0)) = pxi{d(x,-) = 6} < 58 L(d(x, DPdpy.i. (3.14)
(4) If X is bounded, that is, for every d € &,

diamg (X) := sup d(x,y) < +oo, (3.15)
x,yeX
then conditions (3.1) and (3.2) imply condition (3.4) for every § > 0 and d € 9.
Indeed, for a given 6 > 0, we have

[ e Pau - |

Bg(x,

d(x, ->f‘dux,i+j A, )Pdpi
5) X\Bg (x,8) (3.16)

< 6Py i (X) +diamy (X)P iy i (X \ Ba(x,8))

and so (3.4) follows since § was arbitrarily chosen.

We will complete the previous results about pointwise convergence by pro-
viding some estimates of the rate of convergence.

However, these estimates (as well as the uniform ones we will present in the
next sections) are not sharp because of the generality of the context considered



3850 F. ALTOMARE AND S. DIOMEDE

here. Better estimates can be obtained in particular settings (especially in real
intervals) by using results involving other moduli of smoothness (see, e.g., [1,
Chapter 5] and [13, 14, 15, 18]).

We will now introduce the following generalized moduli of continuity.

For every f € #(X,R), 6 > 0, and x € X, we set

Wax(f,6):= sup | f(x)=f(¥)]| €RU{+o0}, (3.17)
d(x,y)<d
wa(f,8):= x?;/lepx |f(x)=f(¥)] ERU{+00}. (3.18)
d(x,y)<d
Then we have the following result.
PROPOSITION 3.3. Let x € X. Then
(1) ifde®,6>0,8>0,i€l,and f € En®B(X,R), then
[Li(f)(x) = f ()| < ax (f,8)px,i(X) + 21| f oo i (X \ Ba(x,6))
+ 001 = px i (X) |
(3.19)
< was(£,0)+ 2000 [ de P

+ OO 1= pxi(X) [

(2) for every o« > 0 and for all f € EnLip(X,«x), there are M >0 and d € @
such that for every B>, 60 >0, x € X, andi€l,

ILi(f) (%) - f(x) | sMcS“ux,i<X>+l,J A(x, ) Pdpix
oB-« Jy

+ OO 1T =px i (X) ]

(3.20)

In particular, for 6 := ([, d(x, -)Bdux,i)”ﬂ (Which can always be assumed to
be strictly positive),

/B
[Li(f)(x) = f(x)]| <M (px,i(X) +1)(J d(x,-)Bdux,i)
X
O = pxi (X .

(3.21)

PROOEF. It is enough to refer to the same inequalities and arguments used
in the proof of Theorem 3.1 (see also Remark 3.2(3)). |

4. Uniform convergence. Before examining the uniform convergence of the
approximation process given by (2.13), we present some preliminary results
which can be proved in the same way as for metric spaces.

LEMMA 4.1. The space 6y(X,R) is contained in the space UCp(X,R).
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LEMMA 4.2. Let K be a compact subset of X and (U;)ic; a family of open
subsets of X such that

KcJu. (4.1)

iel

Then there are 6 > 0 and d € 9 such that, for any x € K, there exists i € I for
which Bd(x,é) c U;.

Making use of Lemmas 4.1 and 4.2, we deduce the following result.

PROPOSITION 4.3. Let H be an equicontinuous subset of €,(X,R) and as-
sume that it is equibounded, that is, M := sup ey || fllo < +oo; then for any
u e H(X,R), the set

uH:={uf:feH} (4.2)

is uniformly equicontinuous.
In particular, if X is compact, then H itself is uniformly equicontinuous.

PROOF. Set € > 0; by Lemma 4.1, u is uniformly continuous, and therefore
there are 6, > 0 and d; € & so that

lux)-u(y)| <e Vvx,yeX, di(x,y) <b1. (4.3)

For each x € Supp(u), by the equicontinuity of H, there exist 6(x) > 0 and
dy € 9 for which

|[fx)=f(y)| <€ (f€H, yeB, (x,56x))). (4.4)
Since
Supp(u) ¢ |J  Bay(x,6(x)), (4.5)
xeSupp(u)

by virtue of Lemma 4.2, there exist §, > 0 and d, € % such that, for any x €
Supp(u), there is some z € Supp(u) so that

Ba, (x,02) C B4, (2,6(2)). (4.6)
Now, set
§:=min {81,652}, d:=sup{d;,d,} €D, 4.7)

and consider f € H and x,y € X such that d(x,y) < 6. In case both x and y
do not belong to Supp(u), then, of course,

| fOOux)—fuy)| =0=<e. (4.8)
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If Supp(u) contains one (or both) of the points x and y, say, for instance, x,
then
| f(x)u(x) = fo)u)|
< [fOul) - fu) [+ [ fuy) - fu)|
< [fO) | Julx) —u) [+ |[u) | [ fx)=f()]
<Mu(x)—u(y) | +llulle | f(x)=F()].

(4.9)

Moreover, there is some z € Supp(u) as required in (4.6). As do(x,y) < d(x,y)
<6 < 0, we have

¥ € By, (x,62) CBa.(2,6(2)), (4.10)
and so y,x € By, (z,0(z)); thus, by virtue of (4.4),
| feO) = f)] <2 (4.11)
Moreover, since d; (x,y) <d(x,y) <6 < 61,
[u(x)-u(y)| <¢, (4.12)

because of (4.3). This last inequality, joined with (4.11) and inserted in (4.9),
leads to the assertion.

Finally, if X is compact, by applying the previous result to u = 1, we get the
last statement. |

Now we recall that the space X is said to be precompact, or totally bounded,
if for every € > 0 and d € 9, there exist finitely many subsets Xi,...,X;, of X
such that

n
X=X, diamg(X;) <e (4.13)
i=1

for every i = 1,...,n (see, e.g., [9, page 83]).

If X is precompact, then it is bounded. Moreover, if X is compact, then it is
precompact.

We can now state the main results of this section.

THEOREM 4.4. Assume that

ljr?sux,i(X) =1 uniformly with respect to x € X, (4.14)
e
leIIlSuX’i(X\Bd(X,5)) =0 uniformly with respect to x € X, (4.15)
1€
for everyd € 9 and 6 > 0.

The following statements hold true.
(1) For every f € ENUC,(X,R), lim7,; L;(f) = f uniformly on X.
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(2) If H is an equibounded and uniformly equicontinuous subset H of E N
Cp(X,R), then lim;.; L;(f) = f uniformly on X and uniformly with respect to
feH.

(3) If X is bounded, then statement (2) implies (4.14) and (4.15).

(4) If X is precompact, then statement (1) implies (4.14) and (4.15).

PROOF. (1) Consider f € UC,(X,R) and fix € > 0; then there are 6 > 0 and
d € 9 so that

[fx)=f() | <e V¥x,yeX,dx,y) <6, (4.16)
and there exists an index iy € I such that

M := sup sup py,i (X) < +oo, 4.17)

i=ig X€X
and for any i > iy,

Hx,i(X\Ba(x,8)) <€ Vx€X,

4.18
|pxi(X)—1| <& VxeX. (4.18)

Then, given x € X and i > ip, one has
[Li(f)(x) = f(x) |
< lpa X = 1] LfGo) ] + o O = F G0 dpei )
alx,

+J | f() = f(x) | dpyi () (4.19)
X\Bg4(x,0)

< €l f lloo + &, i (X) + 2] f ll oo px,i (X \ Ba(x,0))
<&M +3[1fllw).

With a similar reasoning, one can also show part (2).

Now assume that X is bounded and that statement (2) holds true. Clearly,
we get (4.14) by simply applying assertion (2) to H := {1}.

Moreover, according to Remark 3.2(3), to obtain (4.15), it suffices to show
that limj,; [y d(x,-)dpy,; = 0 uniformly with respect to x € X, for every d € 9,
that is,

leIIISLi(d(X, ))(x) =0 uniformly with respect to x € X. (4.20)

1€

This last limit relation will follow from statement (2) if we show that the set
H:={d(x,-):x € X} (4.21)

is equibounded and uniformly equicontinuous.
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Clearly, H is equibounded since M := diamg(X) < +o. On the other hand,
for every x,y,z € X, we get

|d(x,v)-d(x,z)| <d(y,z), (4.22)

and hence H is uniformly equicontinuous.

Finally, assume that X is precompact and that statement (1) holds true.

Clearly, (4.14) is straightforward. To obtain (4.15), we will again prove (4.20).

For given d € 9 and ¢ > 0, choose finitely many subsets X1,...,X, of X such
that X = U,_; X, and diam,(X,) <& forallp = 1,...,n.

Choose apoint x, € X, forany p = 1,...,n. By the above reasoning, we know
thateachd(xy,-) € EnNUCy (X, R); and hence from statement (1), it follows that
there exist M > 0 and iy € I such that, for i > ip, p = 1,...,n, and x € X, we
have

|Li(d(xp,-))(x)—d(xp,x)| <€, Uyx,i(X) <M. (4.23)

Therefore, if i > iy and x € X, after choosing p = 1,...,n such that x € X,,, we
obtain

Ld(x,,, Ddpx,i < |Li(d(xp,-)) (x)—d(xp,x) | +d(xp,x) < 26, (4.24)
and hence

j d(x,-mux,isj |d<x.->—d(xp,-)|dux,i+J d(xp, )it
X X X (4.25)
ijd(xp,x)dux,i+2es(2+M)e.

This completes the proof of Theorem 4.4. |

When X is locally compact, we can say something about the convergence of
the net (2.13) on not necessarily uniformly continuous functions.

THEOREM 4.5. Assume that X is locally compact and that properties (4.14)
and (4.15) hold true. Then
(1) for every f € En Cp(X,R), limi,,L;(f) = f uniformly on compact
subsets of X;
(2) if H is an equibounded and equicontinuous subset H of ENnCp(X,R), then
lim7_; L;(f) = f uniformly on compact subsets of X and uniformly with
respect to f € H.

PROOF. (1) Let f € En%,(X,R), let K be a compact subset of X, and let
choose ¢ € 10, 1[. By virtue of Urysohn’s theorem, there exists u € #(X,R) so
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that0<u <1 and
l-e<u onkKk. (4.26)

We remark that both u,uf € UCp(X,R) (see Lemma 4.1) and thus, applying
Theorem 4.4(1), there is ig € I so that, for all i > ip and x € X,

[Li(1-u)(x)—(1-u)(x)| <&,

|Li(fu)(x) - f(x)ulx)| <e. .27
Observe, in particular, that for any y € K, one has
J (1-w)dpy,; =Li(1-u)(y) <2¢ (i=ip). (4.28)
X
Let x € K; then for any i > iy,
LG F0) | < | [ fdui [ Fudp
X X
+ ‘ foude,i_f(x)u(X)‘ + | fOulx) - f(x)|
(4.29)

< ufuw[xu—u)dux,i

+ [ Li(fw) () = F)u) | + 1111w (1T -u(x))
< Bllflle+1)e.

(2) It suffices to follow the scheme of the proof of part (1), recalling that, by
Proposition 4.3, for any u € #(X,R), the set uH is uniformly equicontinuous.
O

REMARK 4.6. (1) If the uy ; are the distributions of some random variables
Zx.i, then by arguing as in Remark 3.2, one can see that condition (4.15) means
that limj; Zy ; = Zx stochastically uniformly with respect to x € X, that is, for
everyd € @ and 6 > 0,

lim*sup P{d(Zyx.i,Zx) = 6} = 0. (4.30)

i€l xex
Moreover, (4.15) holds true if there exists f > 0 such that, for every d € &,

l_ir?s d(x, -)Bdux,i =0 uniformly with respect to x € X. (4.31)
i€ X

Conversely, if X is bounded, then (4.14) and (4.15) imply (4.31) for every > 0
(see Remark 3.2(4)).
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(2) From the proof of Theorem 4.4 and from Chebychev-Markov inequality
(see Remark 3.2(3)), it follows that if f € EnUC,(X,R), then for every d € 9,
6 >0, and B > 0, one gets

sup |Li(f)(x) = f(x) | < [1fleoSUP | tx;i (X) = 1| + w0y (f,6) sup px,i (X)
xeX xeX xeX
+2||f||ooSugUx,i(X\Bd(X,(s))

<N f Nl SUP | p,i (X) = 1| + wa (f,5) sup px,i (X) (4.32)
xeX xeX

+ 2l sup | d(x,)Pduy;
o0F  xexJx ’
for every i € I. Furthermore, there exists iy € I dependingon d € % and 6 > 0
(resp.,on d € % and B > 0 provided (4.15) is replaced by (4.31)) such that, for
any i € I, i > i, all the suprema indicated in (4.32) are finite.
Finally, Proposition 3.3(2) implies that, if f € ENnCp(X,R) NnLip(X, ), 0 < «,
then there exist M > 0 and d € % such that, for any 6 > 0 and 8 > «, we have

sup |Li(f)(x) = f() | < [1f lleoSUP | px,i (X) — 1]+ M S SUp i i (X)
xeX xeX

= (4.33)
M .
4+ — a i ﬁd .
5haSUP | (%, )Pdpy,i
for every i € I. Furthermore, if (4.31) holds true for some > x and d € 9,
then there exists ig € I depending on d and § such that for any i € I, i > iy, all
the suprema indicated in (4.33) are finite.

In particular, for i > ig and & := (supycy [x d(x, -)fdpy i)'/# (which we may
always assume to be strictly positive), we get

[[ILi(f) = fllo < IIfIstulg [ i (X) — 1]

(4.34)

/B
+M<supux,i(X)+l)<sup d(x,-)ﬁdux,i) }
xeX xeXJX

5. Some Korovkin-type theorems. In this section, by using some simple
methods similar to those used in the previous sections, we will prove some
Korovkin-type theorems. Notice also that the next results concern arbitrary
nets of positive linear operators (not necessarily of the form (2.13)).

Again we fix a completely regular Hausdorff space X and a saturated family
9% of pseudometrics on X which generates the topology of X.

The next result generalizes [5, Theorem 3], which was established for com-
pact metric spaces with different methods.

THEOREM 5.1. Let E be a linear subspace of #(X,R) such that 1 € E. Also
assume that there exist f > 0 and a family (Y 4.x)xex, des I E such that d(x, -)B
< Wax foreveryx € X andd € %. Let (L;);-; be a net of positive linear operators
from E into ¥(X,R) such that
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(i) lim;_; L;(1) = 1 uniformly (resp., pointwise) on X;
(ii) foreachd €9,

l,in}lSLi(Wd,x)(x) =0 (5.1)

uniformly with respect to x € X (resp., for every x € X).
Then

LIm=L;(f) = f (5.2)
i€l

uniformly on X for every f € EnUCy(X,R), respectively,
Lm=L;(f) = f (5.3)
iel

pointwise on X for every f € En%,(X,R). Moreover, if X is locally compact,
Wm=L;(f) = f (5.4)
iel

uniformly on compact subsets of X, for every f € En%,(X,R).

Finally, the limits (5.2) and (5.4) (vesp., the limit (5.3)) hold uniformly with
respect to f € H provided H is an equibounded and uniformly equicontinuous
(resp., equicontinuous) subset of E N6, (X,R).

PROOF. letf e ENUC,(X,R) and fix € > 0; then there existd € Y and 6 > 0
such that

|fxX)=f(»)] <e Vx,yeX, d(x,y)<8. (5.5)

On the other hand, if x,y € X and d(x,y) > 6§, we have

£ - F | <20 fl <2171, 25" (5.6)
In any case, for any x,y € X, we get
£ - F) | = ex2lfl. 22T (5.7)
that is,
|f(xX)1-f] <el+2 Hf||°°d(x P <e1+42 ”flﬁl“’ WYdx- (5.8)

On the other hand, there exist iy € I and M > 0 such that, for each i > iy and
x € X, we have

LD (x)| <M,  Li(pax)(x)<esf, |Lil)(x)-1] <e.  (5.9)
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Accordingly, since

IIme

|Li(f) = f)Li(1) ] < eLi(1)+2 Li(Wax), (5.10)
we get
|Li(f) ()= £ | < [Li(f)(x) = F(x)Li(1)(x) |
+ ] f )] [Li(1)(x)—1]
Il £ 1l oo (5.11)
SELi(l)(X)+2 Li((lld,x)(X)

oB
Ll [ Li(1) () = 1] < (M +3]l fll) €.

A similar proof runs provided f € H, with H being equibounded and uni-
formly equicontinuous.
The proof of the other statements is similar to the one of Theorem 4.5. O

REMARK 5.2. (1) As the above proof shows, for f € ENC,(X,R),i €I, x € X,
d € %, and 6 > 0, we have (see (3.18))

[Li(f)(x)=fOO)| < [fO)][Li(1)(x) 1]

+Wax(f,8)Li(1)(x )+2||J;Hm Li(Wa) () (5.12)
and, if f € UC,(X,R),
Li () = fllo < 1f ol [Li (1) = 1],
+wa(f,0)||Li(D]] +2 Hf”°° sgh((lfd,x)(x). (5.13)

Moreover, if f € ENn%,(X,R)NLip(X, «), with 0 < & < 8, then there exist M > 0
and d € @ such that, for every i € I and 6 > 0, one has

IILi (f) = fllo = ILf o] [Li (1) = 1],

5.14
MBI ¢ s (a0
(see Remark 4.6(2)).
In particular,
L (f) = fllo < I |ILi (1) = 1]
(5.15)

/B
ML+ 1) (supLi(Wax) )
xeX

Indeed, set 5o := (SUPycx Li(Wax)(x)) /B If §¢ = 0, then (5.15) follows from
(5.14) by letting 6 — 0; if, instead, 6o > 0, then (5.15) is obtained applying (5.14)
to 6 = do.
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(2) If d(x,-)P € E for every x € X and d € @ and for some B > 0, clearly,
Theorem 5.1 applies with @4 = d(x,-)#. Under these last assumptions, and
if, in addition, the subspace E verifies the integral representation property (P),
then Theorem 5.1 is an obvious consequence of Theorems 3.1, 4.4, and 4.5.

If, in addition, X is bounded, then, according to Remark 3.2(4), Theorem 5.1,
in turn, implies Theorems 3.1, 4.4, and 4.5.

(3) If X is a metric space, then results similar to Theorem 5.1 which involve
other particular classes of test functions can also be found in [19].

Now we will briefly discuss a simple application of Theorem 5.1.
Let X be a set and consider a subset S of (X, R) which separates the points
of X. For every m > 1 and for every @,...,pn, € S, consider the pseudometric

Ap,,...pm - XXX — R defined by
dg,...om (%,¥) = sUp. Qi) —@i(») | (x,» € X). (5.16)
The family
B:={de,..om | M=21, @1,...,Qm €S} (5.17)

is saturated and generates a topology Js on X with respect to which X is a
completely regular Hausdorff space. The topology Js is the coarsest topology
of X with respect to which each function @ € S is continuous.

Thus, if (X,7) is a topological space and § € €(X,R), then Ts Cc J.If (X,T)
is a compact Hausdorff space, then 5 = 7. If (X,7) is a locally compact Haus-
dorff space, S is a subset of continuous functions on X which are convergent
to the point at infinity c of X and which separate the points of X, that is,
S separates the points of X, and for any x € X, there exists @ € S such that
@(x) #limy_. @(y), then again Js = J.

Consider, indeed, the one-point compactification (X«,J «) of X, where X, :=
X U {o} (see [17, Subsection 3.15, page 45]), and for any @ € S, denote by

~

@ : X« — R the function defined by

N @ (x), xeX,
@(x) =1 (5.18)
lime(o), x - .

Then the subset S := {@ : @ € S} is contained in 6(X.,R) and separates the
points of X, and hence T = T.

On the other hand, since @ x = @ for every @ € S, then (see [17, Subsection
15.8, page 221])

«

Tg =T =Toox = (5.19)



3860 F. ALTOMARE AND S. DIOMEDE

From now on, we will fix a set X and a subset S of %(X,R) which separates
the points of X. On X we will consider the topology 75 generated by the family
of pseudometrics (5.17).

The spaces of all real-valued functions on X which are continuous (resp.,
bounded and continuous, bounded and uniformly continuous) with respect
to Js will be denoted by €s(X,R), €s»(X,R) and U%6s,(X,R). The symbol
Lips (X, ) denotes the corresponding space of Holder continuous functions
with exponent « > 0.

THEOREM 5.3. LetE be a vector subspace of %(X,R) such that {1} uSuUS? C
E, where S2 := {@? | @ € S}. Let (L;)ier be a net of positive linear operators
from E into % (X, R) such thatlim;_, L;(¢p) = @ uniformly on X (resp., pointwise
on X) forevery @ € {1} USUS?2.

Then,

im=L;(f) = f (5.20)
iel

uniformly on X for every f € EnUCs(X,R), respectively,
Um=L(f) = f (5.21)
iel

pointwise on X for every f € Ens ,(X,R). Moreover, if (X,Ts) is locally com-
pact,

limL; (f) = f (5.22)

uniformly on compact subsets of X for every f € ENn%s 1, (X,R).

Finally, the limits (5.20) and (5.22) (resp., the limit (5.21)) hold true uniformly
with respect to f € H provided H is an equibounded and uniformly equicontin-
uous (resp., equicontinuous) subset of EN6s,(X,R).

PROOF. Foreveryd =dg,,. ¢, €9 and for every x € X, set

.....

Wax = > (@n(x)—n)° €E. (5.23)
h=1
Then d(x,-)?> < Y4 and
lm=Li(Wxa) () =Hm* 3 Li((@n () ~@n)*) () =0 (5.24)
e S h=1

uniformly with respect to x € X (resp., pointwise on X).
The result now follows from Theorem 5.1. |

In order to provide some estimates of the rates of the convergence consid-
ered in Theorem 5.3, it is useful to introduce the following quantities which
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will replace the corresponding ones defined by (3.17) and (3.18), respectively,
by considering the system of pseudometrics (5.17).
Given @1,...,pm €S, m > 1, for any f € F(X,R), 6 > 0, and x € X, we set

mtpl ..... (pm;x(fy5)
n - (5.25)
=supq [ f(x)-fO) |1y eX, D (Qn(x)—@n(y)" <6°¢,
h=1
w(pl ..... (pm(fyé)

n 5.26
:=sup{|f(x)f(y)| X,y €X, > (@n(x) - pn()? séz}; 520
h=1

both Wy, ,...pmx (f,0) and Wgy, ..,
We have the following result.

om (f,0) belong to RU {+oo}.

PROPOSITION 5.4. Under the same assumptions of Theorem 5.3, for every
feEN%sp(X,R),icl,6>0,@1,....pmeS, m=1,and x € X,

[Lif () = f OO | < I flle | Li(1) () = 1| + Dy, qpmix (f, 6)Li (1) (x)

2 . (5.27)
L7 ZL (@) —@n)?) ().
If feEnUCsp(X,R),
HLi(f) = flleo < 1 Neo]|Li (1) = 1| + @D py .o (s HI|Li (D] |
L 20f N (5.28)

m
Li((@n(x) —@n)*) (x0).
52 XEB% i((@nx)—n)?)
Finally, if f € En%sp(X,R) NLipg(X,®), with 0 < & < 2, then there exist
M >0 and @1,...,pm € S such that for everyi eI and 6 > 0,

ILi () = fllo = I o lILi (1) = 1| + M| Li(D) |
(5.29)

M
+ 52 SUD Z Li((@n(x) = @n)*) (x)

and, in particular,

L (f) = flleo < 1N l|Li(1) = 1] + M([[L:(1)]] +1)

m /2
x (sup > Li((@n(x) cph)z)<x)) :

xeXy_1

(5.30)

PROOF. Since for every x,y € X, we have

2
| f)=f ()| £ Wgy,pmx (f,0) + ——5—= Hf s 5 > (@r(x) - Pr()%,

h=1
(5.31)
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we get

|L1(f) —f(X)L1(1)| = wcpl ..... (pm;x(fya)Li(l)

2 flls < (5.32)
+ ({2 > Li((@n(x) —@n)),
h=1
and hence (5.27) and (5.28) follow.
The estimates (5.29) and (5.30) directly come from (5.13) and (5.14). O

REMARK 5.5. (1) Theorem 5.3 extends and generalizes several useful
Korovkin-type theorems which have been previously established in the setting
of compact spaces (see [1, Section 4.4 and the final Notes and references)).

(2) The idea of associating a metric such as (5.16) to finitely many test func-
tions has already been used in [19] when X is a subset of some Euclidean space
(see also [23], where an abstract modulus of continuity similar to (5.26) is also
introduced in the case when X is a convex compact subset of a locally convex
space).

6. Some positive approximation processes on convex subsets. In this sec-
tion, we will present some applications of the previous results in the setting of
spaces of weakly continuous functions defined on a convex subset of a locally
convex space.

Let Y be a locally convex Hausdorff space and let Y’ be its topological dual.
Consider a convex subset X of Y, and denote by

Yy ={px:peY'} (6.1)

the set of all the restrictions to X of the continuous linear functionals on Y.

In this case, the topology 7 Y} introduced in Section 5 coincides with the
weak topology 7, on X. Thus, in the sequel, we will use the symbols 6, , (X, R)
and UCy, » (X, R) to denote the spaces of all real-bounded functions on X which
are weakly continuous and, respectively, uniformly weakly continuous.

Moreover, the symbol L], (X) (resp., M;’w (X) and .t{,, (X)) will denote the
cone of all positive (resp., positive and bounded, probability) measures defined
on the Borel o-algebra generated by J,, on X (which is included in the natural
Borel o-algebra of X).

We recall that the topology 7, is separated as a consequence of the Hahn-
Banach theorem.

From now on, we will fix a nontrivial family (uy)xex in Mf‘w (X) such that,
foreveryx e Xand p €Y/,

@lx e [ LX), (6.2)

xeX

JX(p|XdIJx =@ (x). (6.3)



POSITIVE OPERATORS AND APPROXIMATION IN FUNCTION ... 3863

Here the term “nontrivial” means that p, + &y, with &, being the point mass
at x, for every x € X.

Notice that, since the measures pu, are bounded, the following inclusion
holds true:

Guwp(X,R) C () LH(X, ). (6.4)

xeX

Moreover, from Holder’s inequality and from (6.3), it also follows that
9200 < | Phdue @eY, xeX), (6.5)

For every n > 1, consider the mapping 1, : X" — X defined by

X1t o+ Xp

" (x1y...,xn €X) (6.6)

T (X1,...,Xn)
and denote by
Hxn =T (Ux®---®Uy) (xe€X, nz1) (6.7)

the image measure of the n-times tensorial product Ly ® - - - ® Ly under 1,.
In this case, the sequence of positive linear operators associated with (6.7)
is given by

Ba(f)(x) = L- : -Lf(Lny”)dux (x1)---dpx(xn)  (6.8)

for every n = 1, x € X, and f € E := yex, n=1 L1 (X, tix,n). These operators
have been extensively studied for compact convex sets (see [1, Chapter 6] for
details) and are called Bernstein-Schnabl operators.

More generally, for every n > 1, consider a mapping o, : X — X and set

n
N 1= nn<®ugh(x)) n=1, x € X). (6.9)
h=1

In this case, the operators associated with (6.9) are defined as

Xp 4+ X
(M)dﬂm 0 (X1) - AU, () (Xn)  (6.10)

foreveryn=1,x € X, and f € E:= Nyex, n=1 LHX, Nxn).

Notice that if the mapping x — p, is continuous with respect to the weak
topology on X and the weak topology on .7, (X)—that is, for every f e
%wp(X,R), the function x — [y fduy is weakly continuous—then there By, (f)
€Cwp(X,R) (f €y p(X,R), n>1).

If, in addition, each mapping o, is weak-to-weak continuous, then A, (f) €
Guwp(X,R) (f €€uwpX,R), n>1).
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EXAMPLE 6.1. (1) Set X :=[0,1] and consider the family (uy)o<x<1 defined
by

Uy i=(1-x)eo+xe7 (0=<=x<1); (6.11)

then the operators defined by (6.8) are the Bernstein operators, while the se-
quence (6.10) becomes

AP = Y b (1) 6.12)

h=0

for every f € %([0,1],R), where for h =0,1,...,n,

by (x)
(n
[[(1-0i(x)), h=0,
i=1
> [ A-0ix)) [] oi(x), 1=h=n-1, (6.13)
= 1<iy<---<ip<n l<i<n i=11,.0,1p
1#1] yeusy ip
n
[Joi(x), h=n.
Li=1

Moreover, the operators in (6.12) were first introduced by King [20] by a com-
pletely different method (see also [1, Subsection 5.2.5, page 294]).
(2) Let X :=[0, +oo[ and consider the family (L) xso defined by

+oo Xh
Py = > e ¥ ren (x=0). (6.14)
h=0 :

In this case, we get

(al(x>+---+an(x>)”f(%)

il (6.15)

An(f)(x) = Z e~ (T1(X)+ - +on (X))
h=0

for every n > 1, x > 0, and f € E := ﬂxzoynzlil([O,Jroo[,nx,n), while the
operators B, defined by (6.8) are the Favard-Szasz-Mirakjan operators.
(3) Finally, for X := R, set for every x € R,

Ux := gx,1A1; (6.16)

that is, py denotes the measure with density gy relative to the Lebesgue mea-
sure on R, where gy is the normal density defined by

1
G (1) = ﬁe‘“/z)“"”z (t €R). (6.17)
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In this case, using some properties of the normal densities, we get
Nxn = Yo (x)+--+0on(x))/n,1/n A (xeR, n=1), (6.18)
where

n _ _ 2
901 (x0)+-+0on () 1 /n(l) =,/§e /2 (t=(o1(X)+---+om ()M ( g R),
(6.19)

and hence

An(f)(x) =, /% Jﬂof(t)e—(nxzwf(m<x>+---+an<x)>/n>2dt (6.20)

forevery n > 1, x € R, and f € E:=ycg n=1 L (R, N ).
In a similar way, one can show that the operators B, defined by (6.8) are
given by

B (f)(x) :1/%Jﬁwf(t)e*‘"/”(ff’”zdt (6.21)

(Gauss-Weierstrass operators).

From Theorem 5.3, we may derive the following result concerning the ap-
proximation properties of the operators (6.8) and (6.10).
We will keep the same notation so far introduced.

THEOREM 6.2. Assume that for every @ € Yy,

p’e () LHX, py). (6.22)
xeX
Then the following statements hold true.
(1) For every f € 6, (X,R),limy,_ B, (f) = f pointwise on X. If, in addition,

sup(J qudux—(pz(x)) <+ V@evy, (6.23)
xeX X
then limy,—.. By (f) = f uniformly on X for every f € UCy p(X,R).

Moreover, if (X,T ) is locally compact, then lim,, .. B, (f) = f uniformly on
compact subsets of X for every f € €, »(X,R).

(2) If for every x € X,

n
lim % Z oi(x) =x weakly on X, (6.24)
i=1

N—+o00

that is, for any x € X,

(ol(x)+---+0n(x)

" ) =@p(x) Vpeyy, (6.25)
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(resp., (6.24) holds uniformly with respect to x € X), and if

Ll ,
nlerm = z (Jszduai<X) —(pZ(O'i(X))> =0 Vpevy, (6.26)

i=1

(resp., limy ;o (1/12%) SUPyex 2imq ([x P2 Ao, x) — P*(0i(x))) = 0), then for ev-
ery f € €y p(X,R), lim,_ 0 An(f) = f pointwise on X (resp., for every f €
UCwp(X,R), limy .0 An(f) = f uniformly on X).

Moreover, if (X, ) is locally compact, thenlim,,_.., A, (f) = f uniformly on
compact subsets of X for every f € 6, »(X,R).

PROOF. (1) First notice that for each x € X, n > 1, and @ € Yy, we have

Bn(1)(x) := pxn(X) =1,
Ba@) () = | @dptn = @ 0), 627

Bu(@?)(x) := JXWZde,n = @2(x) + % (JX Q*dux —wz(x)).

Hence, for any @ € {1} U Yy U (Yy)?, By(®) — @ pointwise on X, therefore
Theorem 5.3 applies.

With the same reasoning, but taking (6.23) into account, we get the uni-
form convergence on X. The last part of assertion (1) comes directly from
Theorem 5.3.

(2) We intend to apply Theorem 5.3 again to the sequence (Ay)n>1-

To this aim, observe that

An(1)(x) :=nNxen(X) =1,

An(@)(x):= JX @dnxn = cp(

Ul(x)+---+an(x))
n b

1 & (6.28)
An(@) ) i= [ @Pdin =53 (| @2dpto -0 (0:000))
i=1

+(p2(al(x)+ n +Un(X))

for everyn > 1, x € X, and @ € Yy.

Then, by virtue of (6.24) and (6.26), A, () — @ pointwise on X for any
@ € {1} UY{U(Yy)?, and therefore Theorem 5.3 applies.

The uniform case is analogous. O

REMARK 6.3. We examine the behavior of the sequences of operators intro-
duced in Example 6.1 on the light of Theorem 6.2.
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First notice that, in all the three cases, Yy = {e;1}, where e; (x) := x (x € X).
Moreover, condition (6.24) is equivalent to

lim % > oilx)=x (x€X). (6.29)
i=1

Nn—+oo

For every x € X, set e»>(x) := x2 = e1(x)2.
(1) First consider the family (6.11) and observe that

Jxezdugn(x) 2 (00 (X)) = 0 () (1— 0 (x)) (6.30)

so that (6.26) holds uniformly on [0,1].

Therefore, if (6.29) holds true uniformly on [0, 1], then for every f €¢([0,1]),
we have that A, (f) — f uniformly on [0, 1], where the operators A,, are defined
by (6.12). This shows, in particular, that if the functions o, are continuous, the
subalgebra generated by {1} U {0}, : n > 1} is dense in %([0,1]), and the se-
quence (A, (f))n=1 represents an explicit example of a sequence of elements
of such a subalgebra which converges uniformly to f.

(2) Now consider the measures (6.14). In this case,

jxezduan(x> o2 (0 (%)) = 0w (x), 6.31)
thus (6.26) becomes
lim 29 _ o, (6.32)
n—to N

which is satisfied pointwise, but in general not uniformly on [0, +oco[.
(3) Finally, take the measures (6.16) into account. Since

JXeZdUUn(X)_eZ(Un(X)) =1, (6.33)

(6.26) is uniformly satisfied on R and (6.23) holds too.

Our next purpose is to evaluate the rates of convergence analyzed in Theo-
rem 6.2. To this aim we remark that, in this case, the moduli (5.25) and (5.26)
become

Wx (f5@1,.., Pm, 0) 1= sup{lf(x>—f(y)| v eEX, D pilx—y) <52},
h=1

w(f;91,...,Qm,0) = sup{|f(x)—f(y)| X,y EX, D pilx-y) < 62},
h-1
(6.34)

for all f €€y p(X,R),6>0, 1,...,pm € Yy, m>1,and x € X.
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These moduli of continuity have been already considered in [1, Section 5.1,
page 270] in the setting of a convex compact subset of a locally convex space.
However, they were first introduced and studied by Nishishiraho [23, 24, 25].

PROPOSITION 6.4. Under the assumption of Theorem 6.2, the following state-
ments hold true.

(1) Foranyn,m >1,x € X, 0 > 0, and ®1,...,om € Yy, if f € €wp(X,R),
then

| Bu(f)(x) = f(x)] < wx(f;@1,...,9m,0)

/s g <Jx(pidux—q9,21(x)>,

(6.35)

and if f € UCy »(X,R),

||Bn(f)_f||oo Sw(f:%,---,(Pm,5)

“f”"" sup 3" (L(midux—wi(x))-

xeXh 1

(6.36)

Moreover, if f € 6, (X,R) NLip(X, @), with0 < « < 2, then there exist M > 0
and @1,...,m € Yy (m > 1) so that for any é > 0,

[Bn(f) = flle < MO* +

" sup Z (L Pidpix —qoi(x)). (6.37)

xXeXp_q

(2) Foranyn,m=>1,x € X, 6§ >0, and @1,...,om € Yy, if f € 6w (X,R),
then

| An (f)(x) = f(x) ]

<wx(f;@1,-.,Pm,5)

Rl Z[cp;gx)—chh(x)(ph(;zoi(x))
1 &
*"’ﬁ(nz )

(6.38)
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and if f € UCy p(X,R),

< w(f;P1,..,9Pm,0)

S|

4o [1Lf 1l oo sup Z |:(ph(x) —2w(x)mn<

0% xex; o

> m(x))
i=1

(6.39)

S|

+<pﬁ( im(:ﬁ)
i=1
i([ @hdtlo; o) — qoh(on(x))ﬂ

L L
n
Finally, if f € €, »(X,R) nLip(X, &), with 0 < & < 2, then there exist M > 0
and @1,...,m € Yy (m > 1) so that for any é > 0,

1An () = fll = MS®

+M&* 2 sup > [Q?ﬁ(x) —CPh(X)QDh(% > Ui(x))
i=1

xXeX 1

(6.40)

PROOF. It suffices to apply the general results obtained in Proposition 5.4 to
the operators A,, and B, taking the linearity of the functionals @1,..., @, € Yy
and formulas (6.27) and (6.28) into account. O
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