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A homogeneous-mixing population model for HIV transmission, which incorpo-
rates an anti-HIV preventive vaccine, is studied qualitatively. The local and global
stability analysis of the associated equilibria of the model reveals that the model
can have multiple stable equilibria simultaneously. The epidemiological conse-
quence of this (bistability) phenomenon is that the disease may still persist in the
community even when the classical requirement of the basic reproductive number
of infection (R() being less than unity is satisfied. It is shown that under specific
conditions, the community-wide eradication of HIV is feasible if R < %4, where
PR« is some threshold quantity less than unity. Furthermore, for the bistability case
(which occurs when R4« < R < 1), it is shown that HIV eradication is dependent
on the initial sizes of the subpopulations of the model.

2000 Mathematics Subject Classification: 92B05, 37C75.

1. Introduction. It is well known that the basic reproductive number of in-
fection (o) being less than unity provides a necessary condition for communi-
ty-wide eradication of an epidemic [1]. However, a number of studies have
shown that this condition is not sufficient [3, 4, 6, 7, 8, 11, 12, 13, 14]. These
studies have verified this fact by exploring the phenomenon of bistability,
where multiple stable equilibria coexist, in some epidemic models. These mod-
els, in general, undergo backward bifurcations which are sufficient for the ex-
istence of stable endemic equilibria when %y < 1 (see [4, 6, 7, 8, 11, 13]). In
other words, these studies have shown that a stable endemic equilibrium can
coexist with a stable disease-free equilibrium. Thus, unlike in many classical
disease transmission models (see, for instance, [1, 2, 5, 15, 16]), reducing R, to
values less than unity does not guarantee the community-wide eradication of
an epidemic. This fact has important public health implications in the control
or eradication of an epidemic.

The phenomenon of bistability has been observed in various types of epi-
demic models (see [13] for a general reference). For instance, Hadeler and
Castillo-Chavez [10] studied the impact of the core group (the group of in-
dividuals who are sexually very active) on the existence of multiple infective
steady-states in an epidemic model for some curable STDs. Feng et al. [6] con-
sidered an SEIT model for the transmission dynamics of TB with reinfection.
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They proved that a backward bifurcation occurs at %y = 1 and that two en-
demic equilibria of the model coexist as long as %, < Ry < 1, where R, is
a positive constant threshold. Kribs-Zaleta and Velasco-Hernandez [14] pre-
sented an SVI vaccination model which exhibits a backward bifurcation un-
der certain conditions. Gumel and Moghadas [9] proposed an SVIS vaccination
model for the transmission dynamics of some curable diseases. Their study
shows that although the model has no endemic equilibria under some con-
ditions, changing the model parameters causes multiple endemic equilibria
to occur when %Ry < 1. Greenhalgh et al. [8] examined the impact of condom
use on the dynamics of a multigroup SIR-type model of HIV/AIDS transmis-
sion amongst a male homosexual population. They showed, using numerical
simulations, that their model has two endemic equilibria even when % < 1.

To the authors’ knowledge, no rigorous qualitative study has been carried
out to explore the effect of bistability on the transmission dynamics of HIV in-
fection. Consequently, this study focuses on investigating the role of bistability
in the spread and control of HIV within a homogeneous-mixing population. To
achieve this objective, we consider a deterministic model of HIV transmission
that incorporates anti-HIV preventive vaccine. Although there are numerous
modes of HIV transmission (such as mother-to-child, needle-sharing by IV drug
users, blood transfusion, etc.), our study focuses on HIV transmission via sex-
ual means.

Our study leads to the determination of a certain threshold quantity %.
such that if Ry < R, then HIV will be eradicated from the community. This
threshold quantity (%) gives a subthreshold domain of bistable equilibria of
the model %, < Ry < 1, where the model has a stable endemic equilibrium co-
existing with a stable disease-free equilibrium. Thus, the use of anti-HIV con-
trol measures that can reduce % below this threshold quantity (which leads
to community-wide eradication of HIV) is of enormous public health impor-
tance.

The other feature of this study is the numerical estimation of the basins
of attraction of the associated bistable equilibria of the model. These basins
are separated by a stable manifold of an endemic equilibrium. Such estimate
enables us to predict, for the bistability case, the persistence or eradication
of HIV based on the initial sizes of the subpopulations of the model. Thus,
controlling the initial sizes of the subpopulations can lead to the elimination
of HIV infection in place of persistence.

This paper is organized as follows. The model is formulated in Section 2. In
Section 3, the existence of the model equilibria is established under some spe-
cific conditions. Furthermore, by normalizing the model, the local and global
stability of the associated equilibria are investigated. It is also shown that the
model has no periodic orbits, homoclinic orbits, or polygons. The role of R,
on disease eradication are detailed in Section 4. The threshold quantity % is
also determined. Numerical simulations are reported in Section 5.
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2. Model formulation. The model monitors the temporal dynamics of three
subpopulations, namely, the susceptible population (S), the vaccinated popu-
lation (V), and the population of HIV-infected individuals (I). The total pop-
ulation is N = § + V + I. It should be mentioned that since the model under
consideration monitors populations, it is henceforth assumed that all the as-
sociated model variables and parameters are nonnegative.

2.1. Susceptible population (S). This population is generated following the
recruitment of individuals at a rate of IT per unit time. Recruitment is the in-
flow of people (either by birth or immigration) into a community. Since this
study considers only sexual mode of HIV transmission, recruitment is defined
in terms of the number of sexually active individuals admitted into the com-
munity per unit time. Furthermore, our model categorizes all individuals re-
cruited into the community as susceptible. The population of susceptible in-
dividuals diminishes, following the acquisition of HIV infection which arises
following contacts between a susceptible (S) and the infectious fraction (I/N)
with a transmission probability §;. The parameter c represents the number of
contact partners per unit time. This population is further diminished by the
administration of anti-HIV preventive vaccine at a rate & and by natural death
at arate p. This gives

as _ cBlSI
ar TN

—ES—uS. 2.1)

2.2. Vaccinated population (V). This population is generated by the vac-
cination of susceptibles at a rate &. It is diminished by HIV infection with
a transmission probability B, and natural death at a rate u. It is assumed
that the anti-HIV preventive vaccine reduces (but does not eliminate) the risk
of HIV infection. Thus f> < B;. This can be summarized in the following
equation:

CBz\/I _
N

av
S mES- uv. (2.2)

2.3. HIV-infected population (I). This population is generated following the
HIV infection of susceptible and vaccinated individuals. It diminishes by nat-
ural death at a rate y and by progression to full-blown AIDS at a rate 7. It is
assumed that individuals with full-blown AIDS do not contribute to the spread
of HIV infection. This gives

ﬂ _cp1SI N cBaVI

TN N (DL (2.3)
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3. Stability analysis

3.1. Disease-free equilibrium. In the absence of HIV infection (i.e., I = 0),
the model, given by (2.1), (2.2), and (2.3), has a unique disease-free equilibrium

m
Eo={———>"0). 3.1
0 <u+§ H(p+¥) ) (3-1)

To establish the local stability of Ey, the associated Jacobian of the model is
evaluated at Ey. This gives

cBiu
_ 0 _
(H+8) LT E
cB2
— — 2
g M TR , (3.2)
cBiu | cB2&
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with eigenvalues

Ay = c(Bip+B2E)

Ar=—(u+8), Az = —p, LTE

—(U+T71). (3.3)
Since all the model parameters are assumed to be nonnegative, it follows that
A1 and A, are both negative. Thus, the stability of Ey solely depends on the
sign of Asz. By defining

_c(Biu+B8)

T AT (3.4

it can be seen that A3 < 0 if and only if Ry < 1. Hence, we have established the
following lemma.

LEMMA 3.1. The disease-free equilibrium (E) is locally asymptotically stable
if R <1 and unstable if Ry > 1.

The quantity R, defined in (3.4), is the basic reproductive number of infec-
tion [1]. Lemma 3.1 shows that community-wide eradication of HIV is feasible
provided that the initial sizes of the model subpopulations, namely, S, V, and
I, are in the basin of attraction of Ey. However, if E is globally asymptotically
stable (see [2, 5, 15, 16]), then HIV will be eradicated from the community ir-
respective of the initial sizes of the subpopulations. The global stability of Eg
will be discussed in Section 3.3.

3.2. Endemic equilibrium

3.2.1. Existence of endemic equilibria. The endemic equilibria of the model
(if they exist) correspond to the case where HIV infection persists (I + 0). Since
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these equilibria cannot be clearly expressed in a closed form, we will investi-
gate their existence under some specific conditions. To do this, we first define

cB1I(t)

G(t) = N

(3.5)

to be the force of infection (the rate of acquisition of new infected individuals
per year [17]). It then follows that, at a steady state, (2.1) and (2.2) can be
rewritten as

I * = L (3.6)

T UrELGH v (M+E+G*)(u+(B2/B1)G*)"

*

Furthermore, using (3.5) in (2.3) gives (at equilibrium)

gy ne EB.1IG*
he (“”) <H+§+G* +Bl(u+§+c*)(u+(Bz/Bl)G*))' 5.0

Substituting I'* from (3.7) into (3.5) and noting N* = §* + V* + I'* gives

. c(upr+B2G*+EB2)G*

T (AT (it (B2/B1)GH) +E(U+T) + (u+ (B2/B1)G* +§(Bz/31))G’(‘3' 0

By solving (3.8), the positive (endemic) equilibria of the model can be ob-
tained using the expressions in (3.5) and (3.6). Clearly, G* = 0 is a fixed point
of (3.8). Furthermore, this fixed point gives the disease-free equilibrium Eq of
the model (since (3.6) and (3.7) reduce to S* =II/(u+ &), V* = EIl/u(u + &),
and I'* = 0 when G* = 0).

Suppose now that G* = 0. In this case, (3.8) becomes

B2(G*) + [uB1 +EBs+ Bo(u+T +d) — B B2]G*

(3.9)
+Bi[(u+E) (u+T)—c(uBi1+EP2)] = 0.

The endemic equilibria of the model can then be obtained by substituting the
solutions of (3.9) into (3.6) and (3.7). In order to discuss the possible solutions
of (3.9), we define

A= U+E)(H+T)—c(uP1+EB2), (3.10)

and consider the following cases.

CASE 1 (A <0). In this case, (3.9) has real roots with opposite signs. Let G*
denote the positive real root of (3.9). Thus, a unique positive endemic equilib-
rium of the model can then be obtained by substituting G* into the expressions
of (3.6) and (3.7).
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CASE 2 (A =0). This assumption reduces (3.9) to

[B2G* +uBi+EBo+ Ba(u+T)—cBiB2]G* = 0. (3.11)

It is clear, in this case, that the root G* = 0 of (3.11) gives the disease-free
equilibrium E,. Let

B=pBi+&B2+Po(u+T)—cPiBe. (3.12)

If B <0, then G* = —B/f> is the unique positive root of (3.9) which corresponds
to a unique endemic equilibrium of the model (obtained by substituting G*
into the expressions of (3.6) and (3.7)). If B = 0, then (3.11) has no positive
root. Hence, the model has no endemic equilibrium if B > 0.

CASE 3 (A > 0). Here, we consider the following three possibilities.

(a) Suppose B2 —4p;B2A > 0.

(i) If B > 0, then the roots of (3.9) are both real and negative. Hence, the
model has no endemic equilibrium.

(i) If B <0, then (3.9) has two positive real roots. Thus, the model has two
endemic equilibrium.

(iii) If B = 0, then (3.9) has two complex roots and, in this case, no endemic

equilibrium of the model exists.

(b) Suppose B2 -4, >A < 0. Under this assumption, (3.9) has no real roots.
Thus, the model has no endemic equilibrium.

(c) Suppose B? —4p;B>A = 0. This implies that (3.9) has a unique positive
real root given by G* = —B/2f, if B < 0 and no positive root if B > 0. Thus, for
B?—4,8,A = 0, the model has a unique endemic equilibrium if B < 0 and no
endemic equilibrium if B > 0.

Noting that A = (u+ &) (u+T1)(1—-%Rg), the above results can be summarized
in Theorem 3.2.

THEOREM 3.2. (i) If Ry > 1, then the model has a unique endemic equilib-
rium.

(ii) If R’ = 1, then the model has a unique endemic equilibrium if B < 0 and
no endemic equilibrium if B > 0.

(iii) If Ry < 1 and B%> —4B1B2A > 0, then the model has two endemic equilibria
if B < 0 and no endemic equilibrium if B > 0.

(iv) If Ro < 1 and B> —4B1B,A < 0, then no endemic equilibrium of the model
exists.

W) If Ry < 1 and B> — 4B1B2A = 0, then the model has a unique endemic
equilibrium if B < 0 and no endemic equilibrium if B > 0.

3.2.2. Nonexistence of periodic orbits. Using the results of the existence of
the endemic equilibria, we will discuss their stability based on some qualitative
properties of the model. To do this, the model represented by (2.1), (2.2), and
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(2.3) is normalized using the following change of variables and parameters:

S = %5, Vi = %v, L= %1, (3.13)

[ = put, Bl—CTBl, Bz=cuﬁ, é=5, f%. (3.14)
Thus, the normalized model has the form

‘;‘? =1—B%ih—§"sl—sl, (3.15)

% =}§SI—BZNLiII—V1, (3.16)

%:&%III+BZNL;II—(1+%)A, (3.17)

where N; = §1 + V; + I;. Clearly, this normalized model has an equilibrium
solution ey = (1/(1 + f),‘g:/(l + Z:),O) which corresponds to the disease-free
equilibrium E; of the original model. It can be seen, by adding (3.15), (3.16),
and (3.17), that

dN,
dat

=1-N;—-TI. (3.18)

Consequently, in the absence of HIV infection (I; = 0), the total population size
of the normalized model is N; = 1 (as t — o). Since the spread of HIV infection
within the community is expected to reduce N; (due to disease-induced death),
we study the normalized model in the following feasible region:

9 = {(S],V],I]) ZS],V],I] = 0, S] +Vi+5L < 1} (319)

It follows from (3.18) that if Ny > 1, then dN, /dt < 0. Hence, 9 is a positively
invariant region for the normalized model. Furthermore, since dN,/df < 0
when S; +V, + (1+ )1, > 1 and dN,/dt > 0 when S; +V; + (1 +T)I; < 1, then

* = {($1,V1,[1) €D:S51+Vi+ (1 +T) =1} (3.20)

is also a positively invariant region for the normalized model. This implies
that every solution of (3.15), (3.16), and (3.17) with an initial condition in %
tends toward @* as t — o and every solution with an initial condition in %*
remains there for { > 0. Therefore, the w-limit sets of (3.15), (3.16), and (3.17)
are contained in %*.

Here we will show, using [2, Lemma 3.1], the nonexistence of certain types
of solutions such as periodic orbits, homoclinic orbits, or polygons associated
with the normalized model.

THEOREM 3.3. The normalized model (3.15), (3.16), and (3.17) has no peri-
odic orbits, homoclinic orbits, or polygons in the interior of &*.
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PROOF. Let f1, f>, and f3 denote the right-hand sides of (3.15), (3.16), and
(3.17), respectively. The relation S; + V1 +(1+7)I; = 1 is used to obtain f;(V1,11),
fi(S1,11), and f1(S1,V1) for j = 2,3,k =1,3,and L = 1,2. Define G = g1 + g» + g3
as a vector field with

[y =fAWVLn) fo(vih)
gl(vllll) - _0, Vlll ) VlIl ];
[ AL o —fi(SLh)
g2(S1,I) = s ,0, Sil ], (3.21)

g3(51,V1) = _fzs(f‘zvl),flg‘?"/lvl),o]

Clearly, G -F = 0 in the interior of 9%*, where F = (f1, f2, f3). Using the normal
vectorn = (1,1,1+7) to @*, it can be shown, after some tedious manipulations,
that

N 1-s, &
CurlG) - (1,1,1+7T) = — +——<0. 3.22
(CurlG) - ( T) (valll th) (3.22)
Thus, it follows from [2, Lemma 3.1] that the normalized model (3.15), (3.16),
and (3.17) has no periodic orbits, homoclinic orbits, or polygons. O

As an immediate consequence of the above theorem, it can be seen that
since 9* is a bounded-invariant set, it follows from the Poincaré-Bendixson
theorem in two-dimensional simplex %* that the w-limit set of every solution
of the normalized model is an equilibrium point (see also [18]).

3.3. Stability analysis of the normalized model. It should be mentioned
that since the infected population I (t) is changing in time (except at equilibria),
(3.18) shows that the size of the total population is not constant. Thus, the
normalized model (3.15), (3.16), and (3.17) (and, consequently, the original
model) cannot be reduced to a two-dimensional model (by eliminating one of
the model variables). Here, we will discuss the stability of the equilibria of
the normalized model in 9%* by taking advantage of Theorems 3.2 and 3.3 as
follows.

First of all, note that the expressions A and B (defined in (3.10) and (3.12))
can be rewritten in terms of the new parameters defined in (3.14). This gives

A=[(1+8)Q+T)— (B1+EP2) Iu?
B=[B1+EB: +Bz(1+f)—3132]%-

(3.23)

Thus, we have the following result on the existence of the equilibria of the
normalized model.

COROLLARY 3.4. (i) If A < 0, then the normalized model has a unique en-
demic equilibrium in the interior of %*.
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(ii) If A = 0, then the normalized model has a unique endemic equilibrium if
B < 0 and no endemic equilibrium if B = 0 in the interior of %*.

(iii) If A > 0 and B2 —4(u?/c?) B1 B> A > 0, then the normalized model has two
endemic equilibria if B < 0 and no endemic equilibrium if B = 0 in the interior
of @*.

(iv) IfA > 0 and B2 —4(u?/c?) B B2 A < 0, then no endemic equilibrium of the
normalized model exists in the interior of %&*.

W) IfA> 0 and B2 —4(u2/c?)B1B2A = 0, then the normalized model has a
unique endemic equilibrium if B < 0 and no endemic equilibrium if B > 0 in the
interior of &*.

It should be noted that, for the normalized model, the basic reproductive
number R, reduces to

Gy = Bl+§~1§2

- _Piteb 3.24
T 1+ +7) (3:24)

It is easy to check that the disease-free equilibrium of the normalized model e,
is locally asymptotically stable if %y < 1 and unstable if %, > 1. Furthermore,
we have the following result.

THEOREM 3.5. The equilibrium e of the normalized model is globally asymp-
totically stable if one of the following statements holds:
(i) o<1 and B = 0;
(ii) %o <1 and B2—4(u2/c?)B1B-A < 0.

PROOF. We first note that %y < 1 if and only if A > 0. It follows from
Corollary 3.4 that, in either of cases (i) and (ii), the normalized model has no en-
demic equilibrium in the interior of %*. Thus, e is the only equilibrium point
of the normalized model in @*. Since @* is a bounded-positively invariant set
and the model has no periodic orbit in the interior of %* (by Theorem 3.3),
the Poincaré-Bendixson theorem implies that the w-limit set of every solution
must be the equilibrium point ey. Consequently, ey is globally asymptotically
stable. |

For the stability of the unique endemic equilibrium of the normalized model,
we offer the following theorem.

THEOREM 3.6. The normalized model has a unique endemic equilibrium in
9* which is globally asymptotically stable if one of the following statements
holds: (i) Ro > 1; (ii) Ro = 1 and B < 0.

PrROOF. It follows from Corollary 3.4 that the normalized model has a
unique endemic equilibrium in the interior of %* if one of the above cases ((i) or
(ii)) holds. Since % > 1, the equilibrium e is unstable with a two-dimensional
stable manifold and a one-dimensional unstable manifold. The stable man-
ifold of eq is located in the (S;,V;)-plane. Thus, ey only attracts the region
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Do = {(51,V1,0) : S +V; = 1} € D*. Since the model has no periodic orbits
in the interior of @*, it follows from Theorem 3.3 and the Poincaré-Bendixson
theorem that the cvo-limit set of every solution in the interior of %* must be
the unique endemic equilibrium. Thus, this endemic equilibrium is globally
asymptotically stable in %* \ 9. O

REMARK 3.7. Itis clear that e is locally asymptotically stable if A > 0 (% <
1). The authors have tried to establish the stability of the endemic equilibrium
whenever A > 0 and B2 —4(u2/c?)B1B2A = 0 (see Corollary 3.4(v)) but without
any success.

We now continue our analysis for the case where the normalized model has
two endemic equilibria (namely, e; and e,) where the following three conditions
are satisfied (see Corollary 3.4(iii)):

A>0, B’-4=p.1$A>0, B<O. (3.25)

Here, we will show that these two endemic equilibria cannot be repellers
(in 9*) simultaneously. In other words, it is shown that one of the endemic
equilibria must have a stable manifold in @*.

It is clear that since A > 0 (R < 1), the equilibrium e, is locally asymptot-
ically stable. Let A be the basin of attraction of ey and Q = An%*. Since eg
attracts %y, it follows that @y C Q. Furthermore, since A is an open set, it can
be seen that 0Q Nint(%*) + &, where 0Q is the boundary of Q and int(%*) is
9%\ %y. Suppose X0 = (5%, V?,1¥) is an arbitrary point in dQ Nint(%*), which
is not in the basin attraction of eg. Let ®(t,X°) be a solution of the normal-
ized model with ® (0, X?) = X°. Noting that e; and e, are located in the interior
of @*, we can pick X° such that X° ¢ {e;,e»}. Since X° is not in the basin of
attraction of ey, it follows that ®(t,X%) cannot converge to eg. Since X0 € &*
and 9* is positively invariant, it follows that the w-limit set of the solution
®(t,X%) must be in 9* \ Q. Furthermore, since the model has no periodic or-
bits in 9* (Theorem 3.3), the solution ® (¢, X°) must converge to one of the two
endemic equilibria. This implies that these equilibria cannot be both repellers
in @* simultaneously. Thus, although e is locally asymptotically stable (since
%o < 1), this equilibrium point is not globally asymptotically stable. Thus, we
have established the following theorem.

THEOREM 3.8. IfA > 0,B2—4(u2/c?)B1B2A > 0, and B < 0, then the endemic
equilibria of the normalized model cannot be repellers in @* simultaneously.
Furthermore, the equilibrium ey is not globally asymptotically stable.

The above result shows that one of the endemic equilibria has at least a one-
dimensional stable manifold. Without loss of generality, suppose this equilib-
rium is e;. Further, suppose e; is in the interior of &%* \ 0Q Nint(2*). Then,
since the basin of attraction of ey is an open set (which does not include
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0Q Nint(%*)), discontinuity occurs in the direction field of the model in 0Q N
int(@*). This is because solutions with initiating points very close to X°, but
in the basin of attraction of e, approach ej. Consequently, e; must be located
on 0QNint(%*) in the interior of @*. Therefore, the stable manifold of e; sep-
arates 9* into two basins of attraction. Furthermore, the unstable manifold
of ey in the interior of ¥* \ 0Q Nint(%*) approaches e,. This shows that the
endemic equilibrium e is stable. In summary, in this case, the model has two
stable equilibria, namely, eg and e», and a saddle endemic equilibrium e; (Where
the stable manifold of e; separates the basins of attraction of ¢y and ey).

4. The role of % on disease eradication. Since, for this model, the require-
ment Rg < 1 does not guarantee community-wide eradication of HIV, it is of
public health interest to specifically determine the range of %, that can ensure
the global stability of ¢y (and, consequently, the community-wide eradication
of HIV). In this section, the role of & in the global dynamics of e is investi-
gated. Consider ® as a function of §~ and let

= Pi = P
R1_1+'T" R2_1+f' .1
Notice that since R > R, if R» > 1, then
Go(€) =R+ LR o [ RimRe 4.2)

1+& 1+&

In this case, no amount of vaccination is sufficient to bring %o below 1 (which
is a necessary condition for disease eradication). Therefore, from now on, we
consider the case R, < 1. Suppose R; > 1. Differentiating R (£) gives

B>~ B

Ro (&) = RPSIeE (4.3)

Since f; > B> in the original model, it follows that B 1> Bz in the normalized
model. Thus, Ry (f) is a decreasing function of }f Itis easy to see that there is a
unique critical vaccination rate £ = (1-R;)/(R>—1) such that R (§) < 1if € >
£, (with equality at € = £.). We also note that ((0) = R; and 1im§~w9}0(g) =
R». This implies that Ry <R < R;.

We now determine the range of % that guarantees disease eradication using
Theorem 3.6. Note that B = 0 if and only if

e a1 (4.4)
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It follows, using Theorem 3.6 (i), that eq is globally asymptotically stable when-
ever

£>max{&, %} = &.. (4.5)

Thus, HIV will be eradicated from the community whenever R, < ®g < %o (E,).
We will extend our discussion by considering the quantity B? — 4(u?/
c2)B1B-A. Using the expressions for A and B (defined in (3.23)) gives
2. o o y o
B 45 BiBA = {(BeB)" + 2Bl B+ (B 2B1) (1+7) + B |E

+[Br+B(1+7+d) - BiB2]°
(4.6)
—43132[(1+T)—31]}u—2
EP(E).
Since R; > 1, it follows that
[B1+B2(1+7%) = BrfB2]* —4P1 B[ (1+F) = pr] > 0. 4.7)

Thus, the quadratic P(S) either has no real root or has two real roots. If
P(‘g:) has real roots, then they must have the same sign (both negative or both
positive). Notice that P(0) > 0 and lim_, P(§) = c. This implies that if P ()
has no real roots, then P(g) > 0 for S > 0. Similarly, if P(‘g:) has two negative
real roots, then P( S) > 0 for E > 0. Therefore, in order to establish the global
stability of eq when B2 —4(u2/c?)B1B2A = 0, we require that % < 1 and B >
0. Thus, a similar argument to that of Theorem 3.6 (i) now shows that the
conditions in Theorem 3.6 (ii) are always satisfied whenever £ > £,. This also
implies that HIV will be eradicated from the community whenever R, < % <
97tO (g* ) . . ~

Finally, suppose P(&) has two positive real roots, namely, §1 and & with
£, < &. In this case, B2 —4(u2/c?)B1BA > 0 for € € [0,&1) U (&, 00) and B2 —
4(u2/c?)B1B2A < 0 for € € [€,E,]. However, as long as € > &, the conditions
(i) and (ii) of Theorem 3.5 are satisfied. It should be noted that if R, < 1, then

Ro=——222 <Ry <1, 4.8)

for any amount of vaccination (even f = 0).Itis easy to see that, in this case, the
above discussion is valid. Hence, we have established the following theorem.

THEOREM 4.1. If R < 1, then the equilibrium ey is globally asymptotically
stable if € > E.. If R, = 1, then the unique endemic equilibrium is globally
asymptotically stable and it attracts 9* \ 9.

REMARK 4.2. It is easy to see that the same result can be obtained when
P(&) has a real root of multiplicity 2 (&, = &»).
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In summary, the epidemiological implication of the above theorem is that
HIV will be eradicated from the community whenever R < 97{0(5*) =G, It
should be mentioned that g"* (and consequently 9, exists as long as R» < 1.
In other words, if R> > 1, no level of vaccination contributes to HIV eradica-
tion. It is clear that %4 < 1 (when R» < 1) since &, = &.. If &, < 1, then two
endemic equilibria of the model exist as long as Ry < Ry < 1. In this case,
HIV eradication depends on the initial sizes of the three subpopulations of the
model (in this scenario, HIV can only be eradicated if the initial sizes of the
subpopulations are in the basin of attraction of eg).

REMARK 4.3. The theoretical results of this paper confirm the possibility of
bistability for some values of the vaccination parameter & under some specific
conditions. Here, we seek to explore the reason for the phenomenon of bista-
bility in our model. To do so, we consider the case where & = 0. In this case, the
model reduces to the following two-dimensional vaccination-free (VF) model:

ds _\ _chSI_ o dl_chSI

ar N At N —(u+71)I. 4.9)

Theoretical analysis of the above VF model reveals the following results.
(i) The VF model has a disease-free equilibrium xo = (IT/ i, 0) which is lo-
cally asymptotically stable if 7y < 1, where

B

= naT (4.10)

"o

(ii) The model has a unique stable endemic equilibrium given by

(O T(rp-1)
x| = (cﬁl—T’ BT ) (4.11)

whenever 1y > 1.

(iv) The positive quadrant I' = {(5,I) : $ = 0, I > 0} is a positively invariant
region for the VF model.

(v) Using the Dulac function D = 1/I, it can be seen that the VF model has

no periodic orbits in T.

(vi) The disease-free equilibrium x is globally asymptotically stable if 7y <
1 and unstable if 79 > 1.

(vii) The endemic equilibrium x; is globally asymptotically stable if 75 > 1.

Therefore, in the absence of vaccination (§ = 0), the above results show that
if ¥y < 1, HIV will be eradicated from the community. Thus, the VF model can-
not exhibit bistability since no endemic equilibrium exists for vy < 1. We also
note that in the presence of a perfect vaccine which offers 100% protection
(i.e., B2 = 0), the quadratic equation (3.9) reduces to a linear equation with
at most one positive solution (corresponding to the unique endemic equilib-
rium). This implies that, if the vaccine is 100% effective, the model (2.1), (2.2),
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and (2.3) cannot exhibit multiple endemic equilibria. These results strongly
suggest that the low efficacy of vaccines (leading to S, > 0) is the reason for
the bistability phenomenon in our three-dimensional-model (2.1), (2.2), and
(2.3). The public health implication of this is that the use of vaccines with
low efficacy will not guarantee community-wide eradication of HIV even when
Ro < 1.

5. Numerical simulations. In order to illustrate the theoretical results of
the paper, the model was simulated under various scenarios (using Matlab
software). In particular, we will monitor the effect of varying vaccination rates
& on the dynamical behaviour of the model. For simulation purposes, the fol-
lowing set of parameter values were used: IT = 50000 per year, 8; = 0.06 per
contact, 82 = 0.006 per contact, u = 0.02 per year, T = 0.125 per year and
¢ = 10 contact per year. The values of = 0.02 and T = 0.125 represent a life
expectancy of 50 years and a period of (approximately) 8 years, respectively, to
progress to full-blown AIDS. With this choice of parameter values, the critical
vaccination rate is & = 0.1025 and R, = 0.41 < 1. Simulations were then run
with varying values of & (the vaccination rate) as follows.

5.1. Experiment 1: disease persistence. In this experiment, we chose & =
0.09 < & and initial condition Xy = (5(0),V(0),1(0)) = (1000000,50000,
1000). With this value of &, the basic reproductive number is %9 = 1.07 > 1.
Simulation results obtained, tabulated in Table 5.1, show that the model has
two equilibria: the disease-free equilibrium and a unique endemic equilibrium.
The profile of I(t), depicted in Figure 5.1, reveals that the solution with ini-
tial condition X, converges to the unique endemic equilibrium. This implies
that the rate of vaccination (£ = 0.09) is insufficient to eradicate HIV. Conse-
quently, the disease persists within the community. These simulation results
are consistent with the theoretical results given in Theorems 3.5 and 3.8.

5.2. Experiment 2: bistability. The goal of this experiment is to illustrate
the coexistence of bistable equilibria of the model for some values of £. Here,
we chose & = 0.105 sufficiently small, but greater than . = 0.1025. In this case,
PRo = 0.989 < 1. Using an initial condition X; = (100000,5000,40), the profile
of I(t), depicted in Figure 5.2, shows that the solution with initial condition
X, approaches the disease-free equilibrium ey. On the other hand, the solution
with initial condition X, = (100000, 5000,100) approaches the stable endemic
equilibrium e, (see Figure 5.2 and Table 5.1). These simulations reveal that the
model exhibits bistability for this choice of &. In this case, community-wide
eradication of HIV depends on the initial sizes of the subpopulations of the
model.

It is easy to see, in this case, that &, ~ 0.1086 and consequently, &, = &.
Therefore, as predicted in Section 4, the model has bistable equilibria whenever
& < &€ < &,. Itis worth mentioning that R (&) =~ 0.973 <Ry =0.989 < 1.
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FIGURE 5.1. Profile of infected individuals (I) for & = 0.09 with initial
condition Xjp.
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FIGURE 5.2. Profile of infected individuals (I) for & = 0.105 with two
initial conditions X; and X». Solid line shows the profile of 10 x I
with initial condition X;. Dashed line shows the profile of I with
initial condition X>.
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FIGURE 5.3. Phase diagram for & = 0.105 with different initial condi-
tions. This figure shows the coexistence of stable disease-free equi-
librium (eg) with the stable endemic equilibrium (e2). The stable
manifold of the saddle point e; separates the basins of attraction of
(eo) and (e2).

The above simulations demonstrate that the disease-free equilibrium and
one of the two endemic equilibria (namely, e») are locally asymptotically sta-
ble whenever &, < & < &, (see Figure 5.3 and Table 5.1). Noting that &@* is a
positively invariant region for the normalized model, we may restrict our at-
tention to the basins of attraction of the stable equilibria in @*. Since the basin
of attraction of an attractor is an open set (by definition), it follows that &*
is separated by the stable manifold of the saddle point (e;) into the basins
of attraction of these two attractors (ep and e»). These basins can be numer-
ically specified by finding the points where the stable manifold of the saddle
point intersects the boundary of two-dimensional simplex %*. This intersec-
tion consists of exactly two points at which the w-limit set of the solutions of
the model, with initial conditions on the boundary of %*, changes from one
attractor to another.

For example, in the case where & = 0.105, this intersection consists of two
points P; and P> where P, is located on line L, = {(S,0,I) : 0.025 + 0.1481] =
50000} and P; is located on line L, = {(0,V,I) : 0.02V +0.1481 = 50000} in the
original model coordinates. Numerical results indicate that every solution of
the model with the initial condition on the line L, approaches ¢y if I < 2695
and it approaches e, if I > 2696. Further simulations also reveal that every
solution with the initial condition on the line L, approaches e if I < 79383
and approaches e, if I > 79384.
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FIGURE 5.4. Profile of infected individuals (I) for & = 0.12 with initial
condition X3.

5.3. Experiment 3: disease eradication. In this experiment, we chose & =
0.12 > &, = 0.1085 and initial condition X3 = (1000000,50000,3000). With
this vaccination rate, the basic reproductive number is Ry = 0.927 < R, =
0.973. Notice that this vaccination rate is slightly greater than &. In this case,
the model has only the disease-free equilibrium e, (see Table 5.1). Simulation
results, depicted in Figure 5.4, show that HIV will be eradicated from the com-
munity. This experiment is also consistent with Theorem 4.1.

6. Discussion. In this paper, we proposed and qualitatively analyzed a de-
terministic model for HIV epidemiology that incorporates an anti-HIV preven-
tive vaccine. The local stability of the disease-free equilibrium was established,
based on a certain threshold quantity known as the basic reproductive number.

Although the endemic equilibria of the model cannot be clearly expressed
in a closed form, the existence of endemic equilibria was established under
some specific conditions by finding the fixed point of the equation for the
force of infection [17]. Using the technique proposed in [2], we proved the
nonexistence of certain types of solutions such as periodic orbits, homoclinic
orbits, or polygons for the normalized model. This enabled us to establish the
local and global stability of the model. The results of the global analysis of the
model allowed the determination of a threshold vaccination rate &, leading to
disease eradication if € > &... This threshold quantity (§) gives a subthreshold
domain of bistable equilibria of the model, namely, R, = Ro(Ex) <R < 1.

Our study shows that, like models of some curable diseases (see [9, 13]
and the references therein), our HIV model can also exhibit bistable equilibria
(involving the disease-free equilibrium and an endemic equilibrium) whenever
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Ry < Ro < 1. In this case, the initial sizes of the subpopulations determine
which of the two stable equilibria is reached. Thus, controlling the sizes of the
model subpopulations can lead to HIV eradication in place of persistence. By
analyzing the VF model, it was also shown that the low efficacy of vaccine is
the reason for the bistability in our model.

In summary, the results of this study show that if the efficacy of vaccine is
not high enough (leading to R, > 1), no amount of vaccination rate could lead
to HIV eradication. However, if the vaccine efficacy can reduce the probability
of infection such that R, < 1 (i.e., B2 is low enough), increasing the rate of
vaccination to & > &, guarantees HIV eradication.
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