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We derived added mass and damping coefficients of a vertical floating circular
cylinder due to surge motion in calm water of finite depth. This is done by de-
riving the velocity potential for the cylinder by considering two regions, namely,
interior region and exterior region. The velocity potentials for these two regions are
obtained by the method of separation of variables. The continuity of the solutions
has been maintained at the imaginary interface of these regions by matching the
functions and gradients of each solution. The complex matrix equation is numer-
ically solved to determine the unknown coefficients. Some computational results
are presented for different depth-to-radius and draft-to-radius ratios.
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1. Introduction. Offshore technology has experienced a remarkable growth

during the last forty years. At present, a wide variety of offshore structures is

being used. Some of the uses of these structures are oil and gas recovery and

ocean energy extraction. It is very important to develop methods of design

and construction which will help to produce structures which are safe, func-

tional, economical, and capable of resisting the forces induced by man and

environment over a required period of time. In recent years, there has been a

great interest in the hydrodynamic interactions between the structures due to

the presence of wave motions. The rapid development of offshore structures

has led to this interest. Prediction of the pressure distribution and resulting

hydrodynamic forces on rigid structures immersed in water in the presence

of a free surface is one of the most important research areas of many ap-

plied scientists and engineers. The forces exerted by surface waves on offshore

structures such as offshore drilling rigs or submerged oil storage tanks are of

important considerations in the design of large submerged or semisubmerged

structures. The forces induced by surface waves as well as the forces induced

by the dynamic response of a mooring vessel at sea are important factors in

the determination of the resulting motion. The former quantities are generally

referred to simply as wave forces or excitation forces while the latter are of-

ten characterized by radiation forces. Some other examples of such structures

requiring motion analysis are articulated towers, guyed tower, and tension leg

platform.
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A rigid floating structure may undergo six degrees of freedom: three trans-

lational and three rotational. Assuming a suitable coordinate system OXYZ ,

the translational motions in the x, y , and z directions are referred to as surge,

sway, and heave, respectively; and the rotational motions about the x, y , and z
axes are referred to as roll, pitch, and yaw, respectively. Here the z axis is con-

sidered to be vertically upwards from its still water level. Often the structure

is restrained to have fewer degrees of freedom due to the type of mechanical

connection used to fasten it to the seafloor.

Numerical results for the added mass and damping coefficients of semisub-

merged two-dimensional heaving cylinders in water of finite depth were pre-

sented by Bai [1]. He showed that the added mass is bounded for all frequencies

in water of finite depth. He studied the limits of the added mass and damping

coefficients for high and low frequencies. Yeung [5] presented a set of theo-

retical added masses and damping coefficients for a floating circular cylinder

in finite-depth water. Sabuncu and Calisal [3] obtained hydrodynamic coeffi-

cients for vertical cylinders at finite water depth. Williams and Abul-Azm [4]

investigated the hydrodynamic interactions between the members of an array

of floating circular cylinders which occur when one member undergoes pre-

scribed forced oscillations. They presented numerical results for array config-

urations consisting of 2–6 cylinders. Numerical results for the added mass of

bodies heaving at low frequency in water of finite depth were also presented

by McIver and Linton [2].

We assume that the fluid is incompressible, the fluid motion is irrotational,

and the waves are of small amplitude. Here we consider the coefficients re-

lated to the motion with one degree of freedom, namely, translational motion

in the x direction, that is, surge. In this paper, we present a systematic math-

ematical formulation and solution for the boundary value problem to obtain

the added mass and damping coefficients for a circular cylinder with surge

motion in water of finite depth. Computational results are obtained using Java

programming language. These results are presented in graphical forms for

various depth-to-radius and draft-to-radius ratios.

2. Mathematical formulation. We consider the radiation due to surge mo-

tion by a floating circular cylinder of radius a in water of finite depth h. The

geometry of the situation is depicted in Figure 2.1. The cylinder is assumed

to be floating with a draft b in water. Cylindrical coordinate system (r ,θ,z) is

assumed with z-axis vertically upwards, r measured radially from the z-axis,

and θ measured from the positive x-axis. Then, for an incompressible and in-

viscid fluid and for small-amplitude wave, we can introduce a velocity potential

Φ(r ,θ,z,t) such that

∇2Φ = 0. (2.1)
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Figure 2.1. Definition sketch.

Free-surface boundary condition is

∂2Φ
∂t2

+g∂Φ
∂z

= 0 at z = 0. (2.2)

Boundary condition at the sea bottom is

∂Φ
∂z

= 0 at z =−h. (2.3)

Body surface boundary condition at the bottom of the body is

∂Φ
∂z

= 0 on r ≤ a, z =−b. (2.4)

Body surface boundary condition at the side of the body is

∂Φ
∂r

= dξ
dt

cosθ at r = a, −b ≤ z ≤ 0, (2.5)

where ξ is the surge displacement.
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The velocity potential Φ and the surge displacement ξ can be written as

Φ(r ,θ,z,t)= Re
[
ξ̂φ(r ,θ,z)e−iσt

]
,

ξ = Re
[
ξ̂e−iσt

]
,

(2.6)

where σ is the angular frequency and ξ̂ is the complex surge amplitude. Thus

the boundary value problem reduces to

∇2φ= 0,

g
∂φ
∂z

−σ 2φ= 0 at z = 0,

∂φ
∂z

= 0 at z =−h,
∂φ
∂z

= 0 on r ≤ a, z =−b,
∂φ
∂r

=−iσ cosθ at r = a, −b ≤ z ≤ 0,

(2.7)

and the radiation condition

lim
r→∞

√
r
(
∂φ
∂r

−iλφ
)
= 0, (2.8)

where λ is an eigenvalue. We assume that φ takes the form

φ(r ,θ,z)=
∞∑
m=0

ψm(r ,z)cosmθ. (2.9)

Now we obtain the interior solution and exterior solution. Superscripts i and

e are used to denote the interior and exterior, respectively.

3. Interior solution. To obtain the interior solution for φ, we write φi =∑∞
m=0ψim(r ,z)cosmθ. Then we have

∇2ψim−
m2

r 2
ψim = 0,

∂ψim
∂z

= 0 at z =−h,
∂ψim
∂z

= 0 on z =−b.

(3.1)

Now, putting Z ′′/Z = k2
0, we can write some possible solutions as (Acoshk0z+

B sinhk0z)Jm(k0r), (Az+ B)rm, and (An cosknz+ Bn sinknz)Im(knr). Here

Jm(k0r) is the Bessel function of the first kind of orderm and Im(knr) is the

modified Bessel function of the first kind of order m.
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Out of these solutions, the first one gives a trivial solution. From the second

one, we get Z = Brm, and the third one gives

An
coskn(z+h)

cosknh
Im
(
knr

)
, where kn = nπ

h−b , n= 1,2, . . . . (3.2)

So, finally we have

ψim =
αm0

2

(
r
a

)m
+

∞∑
n=1

αmnIm
(
knr

)
Im
(
kna

) coskn(z+h), (3.3)

where αmn’s are constants.

At r = a, we have

ψim(a,z)=
αm0

2
+

∞∑
n=1

αmn coskn(z+h). (3.4)

Multiplying both sides of this equation by (2/(h−b))coskn(z+h) and then

integrating both sides from −h to −b (and using the orthogonal property of

the functions coskn(z+h)), we get an expression for αmn in the following

form:

αmn = 2
h−b

∫ −b
−h
ψim(a,z)coskn(z+h)dz. (3.5)

4. Exterior solution. In this case, the boundary value problem is

∇2ψem(r ,z)−
m2

r 2
ψem(r ,z)= 0,

g
∂ψem
∂z

−σ 2ψem = 0 at z = 0,

∂ψem
∂z

= 0 at z =−h,
∂ψem
∂r

=−iσ at r = a, −b ≤ z ≤ 0.

(4.1)

Now, putting Z ′′/Z = λ2
0, we can write some possible solutions as (Acoshλ0z+

B sinhλ0z)H
(1)
m (λ0r), (Az+B)r−m, and (Aj cosλjz+Bj sinλjz)Km(λjr). Here

H(1)m (λ0r) is the Hankel function of the first kind of order m and Km(λjr) is

the modified Bessel function of the second kind of orderm. If x is large inH(1)m
and Km(x), H

(1)
m and Km satisfy the radiation condition. Applying boundary
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conditions, we arrive at an expression

ψem(r ,z)=
βm0H

(1)
m
(
λ0r

)
H(1)m

(
λ0a

) Zλ0(z)+
∞∑
j=1

βmjKm
(
λjr

)
Km
(
λja

) Zλj (z), (4.2)

where

Zλ0(z)=N−1/2
λ0

coshλ0(z+h), Zλj (z)=N−1/2
λj cosλj(z+h), (4.3)

with

Nλ0 =
1
2

(
1+ sinh2λ0h

2λ0h

)
, Nλj =

1
2

(
1+ sin2λjh

2λjh

)
, (4.4)

j = 1,2, . . . . Now, at r = a, we have

ψem(a,z)=
∞∑
j=0

βmjZλj (z). (4.5)

Multiplying both sides of this equation by Zλj (z)/h and then integrating both

sides from−h to 0 (and using the orthogonal property of the functions Zλj (z)),
we get an expression for βmj in the following form:

βmj = 1
h

∫ 0

−h
ψem(a,z)Zλj (z)dz, (4.6)

j = 0,1,2, . . . .

5. Matching of the interior and exterior solutions at r = a. To preserve

the continuity of the two solutions φi and φe at the imaginary interface r = a,

it is required to satisfy

φi(a,θ,z)=φe(a,θ,z), ∂φi

∂r

∣∣∣∣
r=a

= ∂φ
e

∂r

∣∣∣∣
r=a
, (5.1)

for −h≤ z ≤−b. Thus we have

ψim(a,z)=ψem(a,z), (5.2)

∂ψim
∂r

∣∣∣∣
r=a

= ∂ψ
e
m

∂r

∣∣∣∣
r=a
, (5.3)

for −h≤ z ≤−b. Also, body surface condition, namely,

∂φe

∂r

∣∣∣∣
r=a

=−iσ cosθ, (5.4)
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that is,

∂ψem
∂r

∣∣∣∣
r=a

=−iσ (5.5)

is to be satisfied. From (3.5) and condition (5.2),

αmn = 2
h−b

∫ −b
−h
ψim(a,z)coskn(z+h)dz

= 2
h−b

∫ −b
−h
ψem(a,z)coskn(z+h)dz

= 2
h−b

∫ −b
−h

∞∑
j=0

βmjZλj coskn(z+h)dz

= 2
∞∑
j=0

βmjLnλj ,

(5.6)

where

L0λj =
1

h−b
∫ −b
−h
Zλjdz,

Lnλj =
1

h−b
∫ −b
−h
Zλj coskn(z+h)dz.

(5.7)

Thus

Lnλ0 =
1

h−b
∫ −b
−h
Zλ0 coskn(z+h)dz

= N
−1/2
λ0

h−b
∫ h−b

0
coshλ0ucosknudu

= (−1)nN−1/2
λ0

(h−b)λ0 sinhλ0(h−b)
(h−b)2λ2

0+n2π2
,

Lnλj =
1

h−b
∫ −b
−h
Zλj coskn(z+h)dz

=
N−1/2
λj

h−b
∫ h−b

0
cosλjucosknudu

=
(−1)nN−1/2

λj (h−b)λj sinλj(h−b)
(h−b)2λ2

j −n2π2
,

(5.8)

n= 0,1,2, . . . , j = 1,2, . . . .
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Now, from the gradient condition (5.3) and body surface condition (5.5), we

have

∞∑
n=1

αmnGmn coskn(z+h)+
∞∑
j=0

βmj�mjZλj (z)

= mαm0

2
for −h≤ z ≤−b,

∞∑
j=0

βmj�mjZλj (z)=−iσa for −b ≤ z ≤ 0,

(5.9)

where

Gmn =−knaI
′
m
(
kna

)
Im
(
kna

) , �m0 = λ0aH
(1)

′
m
(
λ0a

)
H(1)m

(
λ0a

)
�mn = λnaK

′
m
(
λna

)
Km
(
λna

) .

(5.10)

Now, multiplying (5.9) by Zλl(z)/h, l= 0,1,2, . . . , and integrating in the regions

of validity and adding them, we get

∞∑
n=1

αmnGmnLnλl+
∞∑
j=0

h
h−bβmj�mjδλjλl

= mαm0

2
L0λl−

h
h−b iσaMλl ,

(5.11)

where

Mλl =
∫ 0

−b
Zλl(z)
h

dz. (5.12)

Thus

Mλ0 =
N−1/2
λ0

λ0h
[
sinhλ0h−sinhλ0(h−b)

]
,

Mλj =
N−1/2
λj

λjh
[
sinλjh−sinλj(h−b)

]
,

(5.13)

j = 1,2, . . . . Now, substituting the values of αmn from (5.6) in (5.11), we get a

system of equations

∞∑
j=0

Eljγmj =Xml, (5.14)
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where

Elj =−mL0λlL0λj +
h
h−b�mjδλjλl+2

∞∑
n=1

GmnLnλlLnλj ,

Xml =− h
h−bMλl , γmj = βmjiσa

,

(5.15)

l= 0,1,2, . . . .

6. Added mass and damping coefficients. The radiated force F can be writ-

ten as the real part of fe−iσt , where f is given by

f =−iρσa
∫ 2π

θ=0

∫ 0

z=−b
ξ̂φe(a,θ,z)cosθdzdθ. (6.1)

This radiated force F can be decomposed into components in phase with the

acceleration and the velocity of the cylinder in the following way:

F =−
(
µ
∂2ξ
∂t2

+ν ∂ξ
∂t

)
, (6.2)

where µ and ν are the added mass and damping coefficients due to surge,

respectively. Hence the added mass µ and damping coefficients ν are given by

µ+i ν
σ
=− iρa

σ

∫ 2π

θ=0

∫ 0

z=−b
φe(a,θ,z)cosθdzdθ

=−
∞∑
j=0

iπρa
σ

∫ 0

−b
β1jZλj (z)dz

=πρa2h
[
N−1/2
λ0

γ10

λ0h
{

sinhλ0h−sinhλ0(h−b)
}

+
∞∑
j=1

N−1/2
λj γ1j

λjh
{

sinλjh−sinλj(h−b)
}]
.

(6.3)

7. Numerical results. The complex matrix equation (5.14) is to be solved

in order to determine the unknown coefficients. This infinite-order system is

made finite to solve it numerically by rearranging as

Np∑
j=0

�ljγ1j =�1l, (7.1)
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Figure 7.1. Nondimensional surge added mass for different h/a
and b/a.

where �lj and �1l are given by

�lj =−L0λjL0λl+
h
h−b�1jδλjλl+2

Nn∑
n=1

G1nLnλlLnλj , (7.2)

�1l =− h
h−bMλl , (7.3)

l = 0,1, . . . ,Np , j = 0,1, . . . ,Np . Thus � is a square matrix of order (Np + 1)
and � is a vector of length (Np + 1). Equation (7.1) is solved by using com-

puter programs written in Java programming language. Once these γij ’s are

known, we can easily compute the nondimensional added mass and damping

coefficients from the following:

µ+i(ν/σ)
S

=

N−1/2

λ0
γ10

λ0h
{

sinhλ0h−sinhλ0(h−b)
}

+
∞∑
j=1

N−1/2
λj γ1j

λjh
{

sinλjh−sinλj(h−b)
},

(7.4)

where S =πρa2h.

Since the series appearing in (7.2) and (7.4) have an excellent truncation

property, we have taken Np = 10 and Nn = 15. Figures 7.1 and 7.2 show the
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Figure 7.2. Nondimensional surge damping coefficients for differ-
ent h/a and b/a.
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Figure 7.3. Nondimensional surge added mass for different h/a
and b/a.
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Figure 7.4. Nondimensional surge damping coefficients for differ-
ent h/a and b/a.
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Figure 7.5. Nondimensional surge added mass for different h/a
and b/a.



SURGE MOTION ON A FLOATING CYLINDER IN WATER . . . 3655

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

h/a = 4.0, b/a = 1.0
h/a = 3.0, b/a = 1.0

ka

ν
/π
σ
ρ
a

2
h

Figure 7.6. Nondimensional surge damping coefficients for differ-
ent h/a and b/a.

nondimensional added mass and damping coefficients for various b/a when

h/a = 2.00, respectively. The nondimensional added mass and damping co-

efficients for various b/a when h/a = 3.00 are shown in Figures 7.3 and 7.4,

respectively. Figures 7.5 and 7.6 show the nondimensional added mass and

damping coefficients for various h/a when b/a = 1.00, respectively. From

these numerical results, it is clear that nondimensional added mass and damp-

ing coefficients decrease with the decrease in draft at a fixed water depth for

the same cylinder. Also for a fixed draft with the same cylinder, these coeffi-

cients decrease with the increase in water depth.

8. Conclusions. A mathematical treatment has been presented in this pa-

per to derive the expressions for the velocity potential function by considering

a floating circular cylindrical structure oscillating with surge motion in calm

water of finite depth. Mathematical solutions for the boundary value problem

are obtained in two physical regions, namely, interior region and exterior re-

gion, and matched at an imaginary interface to preserve the continuity of these

two solutions. The added mass and damping coefficients are then computed

using this potential. Results for different depth-to-radius and draft-to-radius

ratios are presented in various figures. It can be concluded from the numerical

results that nondimensional added mass and damping coefficients decrease

with the decrease in draft at a fixed water depth for the same cylinder. Also,
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for a fixed draft with the same cylinder, these coefficients decrease with the

increase in water depth.
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