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We derived added mass and damping coefficients of a vertical floating circular
cylinder due to surge motion in calm water of finite depth. This is done by de-
riving the velocity potential for the cylinder by considering two regions, namely,
interior region and exterior region. The velocity potentials for these two regions are
obtained by the method of separation of variables. The continuity of the solutions
has been maintained at the imaginary interface of these regions by matching the
functions and gradients of each solution. The complex matrix equation is numer-
ically solved to determine the unknown coefficients. Some computational results
are presented for different depth-to-radius and draft-to-radius ratios.

2000 Mathematics Subject Classification: 76B15, 35Q35, 35J05.

1. Introduction. Offshore technology has experienced a remarkable growth
during the last forty years. At present, a wide variety of offshore structures is
being used. Some of the uses of these structures are oil and gas recovery and
ocean energy extraction. It is very important to develop methods of design
and construction which will help to produce structures which are safe, func-
tional, economical, and capable of resisting the forces induced by man and
environment over a required period of time. In recent years, there has been a
great interest in the hydrodynamic interactions between the structures due to
the presence of wave motions. The rapid development of offshore structures
has led to this interest. Prediction of the pressure distribution and resulting
hydrodynamic forces on rigid structures immersed in water in the presence
of a free surface is one of the most important research areas of many ap-
plied scientists and engineers. The forces exerted by surface waves on offshore
structures such as offshore drilling rigs or submerged oil storage tanks are of
important considerations in the design of large submerged or semisubmerged
structures. The forces induced by surface waves as well as the forces induced
by the dynamic response of a mooring vessel at sea are important factors in
the determination of the resulting motion. The former quantities are generally
referred to simply as wave forces or excitation forces while the latter are of-
ten characterized by radiation forces. Some other examples of such structures
requiring motion analysis are articulated towers, guyed tower, and tension leg
platform.
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A rigid floating structure may undergo six degrees of freedom: three trans-
lational and three rotational. Assuming a suitable coordinate system OXY Z,
the translational motions in the X, v, and z directions are referred to as surge,
sway, and heave, respectively; and the rotational motions about the x, y, and z
axes are referred to as roll, pitch, and yaw, respectively. Here the z axis is con-
sidered to be vertically upwards from its still water level. Often the structure
is restrained to have fewer degrees of freedom due to the type of mechanical
connection used to fasten it to the seafloor.

Numerical results for the added mass and damping coefficients of semisub-
merged two-dimensional heaving cylinders in water of finite depth were pre-
sented by Bai [1]. He showed that the added mass is bounded for all frequencies
in water of finite depth. He studied the limits of the added mass and damping
coefficients for high and low frequencies. Yeung [5] presented a set of theo-
retical added masses and damping coefficients for a floating circular cylinder
in finite-depth water. Sabuncu and Calisal [3] obtained hydrodynamic coeffi-
cients for vertical cylinders at finite water depth. Williams and Abul-Azm [4]
investigated the hydrodynamic interactions between the members of an array
of floating circular cylinders which occur when one member undergoes pre-
scribed forced oscillations. They presented numerical results for array config-
urations consisting of 2-6 cylinders. Numerical results for the added mass of
bodies heaving at low frequency in water of finite depth were also presented
by Mclver and Linton [2].

We assume that the fluid is incompressible, the fluid motion is irrotational,
and the waves are of small amplitude. Here we consider the coefficients re-
lated to the motion with one degree of freedom, namely, translational motion
in the x direction, that is, surge. In this paper, we present a systematic math-
ematical formulation and solution for the boundary value problem to obtain
the added mass and damping coefficients for a circular cylinder with surge
motion in water of finite depth. Computational results are obtained using Java
programming language. These results are presented in graphical forms for
various depth-to-radius and draft-to-radius ratios.

2. Mathematical formulation. We consider the radiation due to surge mo-
tion by a floating circular cylinder of radius a in water of finite depth h. The
geometry of the situation is depicted in Figure 2.1. The cylinder is assumed
to be floating with a draft b in water. Cylindrical coordinate system (7,0, z) is
assumed with z-axis vertically upwards, » measured radially from the z-axis,
and 6 measured from the positive x-axis. Then, for an incompressible and in-
viscid fluid and for small-amplitude wave, we can introduce a velocity potential
®(7,0,z,t) such that

V2P = 0. (2.1)
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FIGURE 2.1. Definition sketch.

Free-surface boundary condition is

‘e 99
W+g$—0 atz=0.

Boundary condition at the sea bottom is

D

6_2_0 atz = —h.

Body surface boundary condition at the bottom of the body is

a—q)=0 onr<a,z=-b.
0z

Body surface boundary condition at the side of the body is

0 dg o
ar—dtCOSQ atr=a, -b<z<0,

where & is the surge displacement.
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(2.3)

(2.4)

(2.5)
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The velocity potential ® and the surge displacement & can be written as

®(r,0,z,t) =Re[EP(r,0,2z)e 17!,

. (2.6)
E =Re [Ee—m't],

where o is the angular frequency and é is the complex surge amplitude. Thus
the boundary value problem reduces to

Vi =0,
b oy _
gaz o°p=0 atz=0,
o¢p
a—z=0 atz=—h, (2.7)
o

— =0 onr<a,z=-b,
0z

Q:fiacose atr=a, -b<z<0,
or

and the radiation condition

;ﬁﬁ(%ﬁ—i@) _o, 2.8)

where A is an eigenvalue. We assume that ¢ takes the form

b(r,0,z) = Y (r,z)cosmo. (2.9)

0

?Ms

Now we obtain the interior solution and exterior solution. Superscripts i and
e are used to denote the interior and exterior, respectively.

3. Interior solution. To obtain the interior solution for ¢, we write ¢! =
S oWk, (r,z) cosm0. Then we have

2
. m )
Vzw;n_ Ww;n = 0!

i
Wi =0 atz=-h, (3.1)
0z
i
Wi =0 onz=-bh.
0z

Now, putting Z "7 = k%, we can write some possible solutions as (Acoshkyz +
Bsinhkyz)Jm(kov), (Az + B)r™, and (A, cosk,z + B, sink,z)I,, (k,v). Here
Jm (kor) is the Bessel function of the first kind of order m and I,,, (k,,v) is the
modified Bessel function of the first kind of order m.
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Out of these solutions, the first one gives a trivial solution. From the second
one, we get Z = Br™, and the third one gives

cosk,(z+h) _nm 3
coskih I (knv), where k,, = b’ n=12,.... (3.2)
So, finally we have
i _ Xmo <Z)m - O‘mnlm(knr)
W =55 +n§ e lkna) cosky(z+h), (3.3)
where ,,,’s are constants.
At v = a, we have
Wh(a,z) = %Jr > Cmn cOSkn(z+h). (3.4)
n=1

Multiplying both sides of this equation by (2/(h—b))cosk, (z+ h) and then
integrating both sides from —h to —b (and using the orthogonal property of
the functions cosk, (z + h)), we get an expression for &, in the following
form:

-b
oy, = 2 J Wi (a,z)cosky(z+h)dz. (3.5)
h-b )
4. Exterior solution. In this case, the boundary value problem is

mZ
VAW (r2) = 5 Wi (r,2) = 0,

e
ga(’u—m—ozwfn=0 atz=0,

0z
S 4.1)
Wm:O atz = —h,

0z

e
aw’”:—i(f atr=a, -b<z<0.

or

Now, putting Z" /Z = A3, we can write some possible solutions as (AcoshAoz +
B sinhAoz)Hy(,P (Ao7), (Az+B)r ™, and (A cosA;z+B;sinA;jz) Ky, (A;r). Here
Hr(&) (Ag7) is the Hankel function of the first kind of order m and K, (A7) is
the modified Bessel function of the second kind of order m. If x is large in HY
and K (x), HiY and K satisfy the radiation condition. Applying boundary
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conditions, we arrive at an expression

BmoHi' (Ao7) S BnjKm (A7)
¢ (r,z) = Iy (2) + . Z)(2), 4.2
Wi (1,2) Taea) 0@ ‘g; Knlya) Zn@h @2
where
Zp(2) = Ny, PcoshAo(z+h),  Zy(2) =Ny PP cosdj(z +h), (4.3)
with
B l Sil’]hZth) B l( Sil’l22\jh>
N =5 (1+ 2on ) MW T o) 9
j=1,2,.... Now, at ¥ = a, we have
Win(@a,2) = 3 BmjZa;(2). (4.5)

Jj=0

Multiplying both sides of this equation by Z); (z)/h and then integrating both
sides from —h to 0 (and using the orthogonal property of the functions Z, ; (2)),
we get an expression for f,,; in the following form:

1 0
Bui =3 | winla, 212, (2)dz, (4.6)
j=0,1,2,....
5. Matching of the interior and exterior solutions at v = a. To preserve

the continuity of the two solutions ¢! and ¢°¢ at the imaginary interface v = a,
it is required to satisfy

i a¢i ad)e
i _ e _
¢'(a,0,z) = ¢p%(a,b,z), or |y or | (5.1)
for —h < z < —b. Thus we have
Yh(a,z) =ys(a,z), (5.2)
W | v
07 |ly=a - or rea (5.3)
for —h < z < —b. Also, body surface condition, namely,
e
op = —iocoso, (5.4)
or lr=a
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that is,

oY,
or

=—i0 (5.5)

r=a

is to be satisfied. From (3.5) and condition (5.2),

N
o = 7 J—h Wl (a,z) coskn(z +h)dz

2 b .
“h-p Lh Yo (a,z)cosky(z+h)dz
(5.6)

2 (b
“n_p J—h %ijZ;\j coskn(z+h)dz
i
= 2 Z ijLnAjy
=0

where

1 b
LO/\,‘ = —J Z/\dzl
P T b )., N
" (5.7)

1 -b
Ln/\j = m J:h Z/\j COSkn(Z-‘rh)dZ.

Thus

-b
Lpag = ﬁ J—h Zy,co8ky(z+h)dz
_ 0
h-b
(=1)"N; " (h = b)AgsinhAg (h - b)
- (h—b)2A +n2m2 '

N2 rheb
J coshAgucosk,udu

0

. O (5.8)
Lpa; = b th Zy;coskn(z+h)dz

NA_/'I/Z h-b
h-b Jo
- (=1)"Ny "*(h=Db)A;sind; (h—b)

(h—l/))z)\f—nz'rr2 ’

cosAjucoskyudu

n=0,1,2,...,5=1,2,....
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Now, from the gradient condition (5.3) and body surface condition (5.5), we
have
Y CmnGmn COSkn(Z+R) + > B j%miZa,;(2)
n=1 j=0
=@ for ~h<z=<-b, (5.9)
> Bmj%mjZy;(z) = —ica for —b <z <0,
j=0
where
c knal,, (kna) AoaHy (Aoa)
mn = """ 1 /1. _\ mO0 = — __ 1), .
Im(kna) y(yp (?\oa) (5.10)

6 Anak,, (Ana)
mn K (Ana)

Now, multiplying (5.9) by Z),(z) /h,1=0,1,2,..., and integrating in the regions
of validity and adding them, we get

(o] 00 h
Z mnGmnLna, + z mﬁmj(gmjéx\j)\l
n=l j=0 (5.11)
Mmoo h .
= 2m LOAl—h_hwaM;\l,
where
0 Zn(2)
My =| —L—dz. 12
A J—b h dz (5.12)
Thus
N2
M), = = [sinhAgh —sinhAg(h - b)],
Aol (5.13)
N2 .

My = Afh [sinAjh—sinA;(h—b)],

J .
J

j=1,2,.... Now, substituting the values of &, from (5.6) in (5.11), we get a

system of equations

> Eiyms = Xmi, (5.14)
j=0
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where
h
Ejj= —mLQ)\lLO/\J o b(ng(S)\J/\l +2 Z Gann/\an?\Ja
n=1 (5.15)

h Bmj
X —M. =T
A R L P

1=0,1,2,....

6. Added mass and damping coefficients. The radiated force F can be writ-
ten as the real part of fe~it where f is given by

2 0 .
f= —ipoajozoj . EPe(a,0,z)cos0dzdo. (6.1)

This radiated force F can be decomposed into components in phase with the
acceleration and the velocity of the cylinder in the following way:

(6.2)

where p and v are the added mass and damping coefficients due to surge,
respectively. Hence the added mass y and damping coefficients v are given by

y+1—= lpaj J $°(a,0,z)cos0dzdo
imrpa (°
.3 | Bz, 20dz
J=0 -
12y, (6.3)
=Trpa2h[ A0 {sinhAgh —sinhAq(h—b)}
o N2y,
+> u{sm?\ h—sindj(h- b)}}
= Ak

7. Numerical results. The complex matrix equation (5.14) is to be solved
in order to determine the unknown coefficients. This infinite-order system is
made finite to solve it numerically by rearranging as

Np

Z%UYU = %11, (7.1)
j=0
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FIGURE 7.1. Nondimensional surge added mass for different h/a
and b/a.

where €;; and %, are given by

h A
€15 = —Loa;Loa, + . h%ﬁ/\ N2 GinLnaLnaj, (7.2)
n=1
h
Ly =—5—5My, (7.3)

l=0,1,...,Np, j = 0,1,...,Np. Thus € is a square matrix of order (N, + 1)
and ¥ is a vector of length (N, + 1). Equation (7.1) is solved by using com-
puter programs written in Java programming language. Once these y;;’s are
known, we can easily compute the nondimensional added mass and damping
coefficients from the following:

{sinhAgh —sinhAg(h—b)}

ptitvio) [Ny "y
B Aoh

(7.4)
+> T{sm)\ ih— sm?\j(hh)}],

where S = rpa?h.
Since the series appearing in (7.2) and (7.4) have an excellent truncation
property, we have taken N, = 10 and N,, = 15. Figures 7.1 and 7.2 show the
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FIGURE 7.2. Nondimensional surge damping coefficients for differ-

ent h/a and b/a.
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FIGURE 7.3. Nondimensional surge added mass for different h/a

and b/a.
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FIGURE 7.4. Nondimensional surge damping coefficients for differ-
ent h/a and b/a.
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FIGURE 7.5. Nondimensional surge added mass for different h/a
and b/a.
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FIGURE 7.6. Nondimensional surge damping coefficients for differ-
ent h/a and b/a.

nondimensional added mass and damping coefficients for various b/a when
h/a = 2.00, respectively. The nondimensional added mass and damping co-
efficients for various b/a when h/a = 3.00 are shown in Figures 7.3 and 7.4,
respectively. Figures 7.5 and 7.6 show the nondimensional added mass and
damping coefficients for various h/a when b/a = 1.00, respectively. From
these numerical results, it is clear that nondimensional added mass and damp-
ing coefficients decrease with the decrease in draft at a fixed water depth for
the same cylinder. Also for a fixed draft with the same cylinder, these coeffi-
cients decrease with the increase in water depth.

8. Conclusions. A mathematical treatment has been presented in this pa-
per to derive the expressions for the velocity potential function by considering
a floating circular cylindrical structure oscillating with surge motion in calm
water of finite depth. Mathematical solutions for the boundary value problem
are obtained in two physical regions, namely, interior region and exterior re-
gion, and matched at an imaginary interface to preserve the continuity of these
two solutions. The added mass and damping coefficients are then computed
using this potential. Results for different depth-to-radius and draft-to-radius
ratios are presented in various figures. It can be concluded from the numerical
results that nondimensional added mass and damping coefficients decrease
with the decrease in draft at a fixed water depth for the same cylinder. Also,
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for a fixed draft with the same cylinder, these coefficients decrease with the
increase in water depth.
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