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By introducing three parameters r , s, and λ, we give a generalization of Mulhol-
land’s inequality with a best constant factor involving the β function. As its appli-
cations, we also consider its equivalent form and some particular results.
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If p > 1, 1/p+1/q = 1, and {an} and {bn} are nonnegative sequences of real

numbers such that 0<
∑∞
n=2(1/n)a

p
n <∞ and 0<

∑∞
n=1(1/n)b

q
n <∞, then the

Mulholland’s inequality is (cf. [4])
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Inequality (1) is similar to the well-known Hardy-Hilbert’s inequality as (cf. [3])
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In this paper, we introduce three parameters r , s, and λ to generalize Mulhol-

land’s inequality and then derive several equivalent forms of our generalized

results with special cases.

Theorem 1. If p > 1, 1/p+ 1/q = 1, {an} and {bn} are nonnegative se-

quences of real numbers, 2−min{p,q} < λ ≤ 2 and r ,s ∈ R, such that 0 <∑∞
n=2((lnn)1−λ/n)(n1−ran)p < ∞ and 0 <

∑∞
n=2((lnn)1−λ/n)(n1−sbn)q < ∞,

then
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where the constant factor B((p+λ−2)/p,(q+λ−2)/q) is the best possible. In

particular,

(i) for r = 1/q and s = 1/p,
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(4)

(ii) for λ= 1,
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(5)

(iii) for r = s = 0,
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(6)

Proof. By Hölder’s inequality, we find
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where the weight coefficient ωλ(y,n) is defined by

ωλ(y,n)=
∞∑
m=2

1
m(lnmn)λ

(
lnn
lnm

)(2−λ)/y (
y = p,q, n∈N\{1}). (8)

For 0≤ 2−y < λ≤ 2 (y = p,q), setting u= lnt/ lnn in (8), we have
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(9)

Since for the β function B(p,q), we have (cf. [5])
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then by (9) and (10), we obtain
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In view of (7), (8), and (11), we have (3).
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then we have

ε


∞∑
n=2

np(1−r)−1(lnn)1−λãpn
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Putting u= lnx/ lny in the following, we find
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If the constant factor B((p+λ−2)/p,(q+λ−2)/q) in (3) is not the best

possible, then there exists a positive number K (where K < B((p+λ−2)/p,
(q+λ−2)/q)), such that (3) is valid if we change B((p+λ−2)/p,(q+λ−2)/q)
to K. In particular, we have
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In virtue of (13), (14), and (15), we have
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Setting ε → 0+, it follows that B((p+λ−2)/p,(q+λ−2)/q) ≤ K, which con-

tradicts the fact that K < B((p+λ−2)/p,(q+λ−2/q)). Hence the constant

factor B((p+λ−2)/p,(q+λ−2)/q) in (3) is the best possible. This proves the

theorem.

Remark 2. (i) For λ = r = s = 1, (3) changes to (1), it follows that (3) is a

generalization of (1) with three parameters and (4), (5), and (6) are its some

particular results with the best constant factors.
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(ii) For λ= 2, (6) changes to
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which is a new inequality with a best constant factor 1.

(iii) For p = q = 2, (5) and (6) change, respectively, to
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which are new inequalities similar to (cf. [1, 2])

∞∑
n=1

∞∑
m=1

ambn
mrns lne3/4mn

<π


∞∑
n=1

n1−2ra2
n

∞∑
n=1

n1−2sb2
n


1/2

;

∞∑
n=1

∞∑
m=1

ambn
(m+n)λ < B

(
λ
2
,
λ
2

)
∞∑
n=1

n1−λa2
n

∞∑
n=1

n1−λb2
n


1/2

(0< λ≤ 2).

(19)

Theorem 3. If p > 1, 1/p+1/q = 1, {an} is a nonnegative sequence of real

numbers, 2−min{p,q}< λ≤ 2 and r ∈R, such that
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where the constant factor [B((p+λ−2)/p,(q+λ−2)/q)]p is the best possible.

Equation (21) is equivalent to (3). In particular,
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(ii) for λ= 1,
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(iii) for r = 0,

∞∑
n=2

(lnn)(p−1)(λ−1)

n

 ∞∑
m=2

am
(lnmn)λ

p

<
[
B
(
p+λ−2

p
,
q+λ−2

q

)]p ∞∑
n=2

(lnn)1−λ

n
(
nan

)p.
(24)
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Hence, we have
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In view of (3), neither (26) nor (27) keeps the form of equality. Hence, (21) is

valid.
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On the other hand, if (21) is valid, by Hölder’s inequality, we have
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In view of (21), we have (3). Hence (21) is equivalent to (3). If the constant

factor in (21) is not the best possible, then by (28), we can get a contradiction

that the constant factor in (3) is not the best possible. This proves the theorem.

Remark 4. For r = 1, (23) changes to

∞∑
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which is equivalent to (1). Both constant factors in (1) and (29) are the best

possible.
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