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A GENERALIZATION OF MULHOLLAND’S INEQUALITY

YANG BICHENG and LOKENATH DEBNATH

Received 6 March 2002

By introducing three parameters 7, s, and A, we give a generalization of Mulhol-
land’s inequality with a best constant factor involving the § function. As its appli-
cations, we also consider its equivalent form and some particular results.
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Ifp>1,1/p+1/q =1,and {a,} and {b,} are nonnegative sequences of real
numbers such that 0 < 3_,(1/n)ah < o and 0 < >5_, (1/n)b}k < oo, then the
Mulholland’s inequality is (cf. [4])
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Inequality (1) is similar to the well-known Hardy-Hilbert’s inequality as (cf. [3])
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In this paper, we introduce three parameters v, s, and A to generalize Mulhol-
land’s inequality and then derive several equivalent forms of our generalized
results with special cases.

THEOREM 1. Ifp > 1, 1/p+1/q =1, {an} and {b,} are nonnegative se-
quences of real numbers, 2 —min{p,q} < A < 2 and v,s € R, such that 0 <
S o((nn) 2/ n)y(n'"a,)? < o and 0 < 35, ((Inn)' =2 /n)(n'—bhy)1 < o,
then
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where the constant factor B((p +A—2)/p,(q@+A—2)/q) is the best possible. In

particular,
(i) forr=1/qands=1/p,
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PROOF. By Holder’s inequality, we find
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where the weight coefficient wj,(y,n) is defined by
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ForO0<2-y<A<2(y=p,q),setting u =Int/Inn in (8), we have
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Since for the g function B(p,q), we have (cf. [5])
© 1
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then by (9) and (10), we obtain
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In view of (7), (8), and (11), we have (3).
For € > 0, such that (2—A+¢)/p < 1, setting
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then we have
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Putting u = Inx/Iny in the following, we find
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If the constant factor B((p + A —2)/p,(@+ A —2)/q) in (3) is not the best
possible, then there exists a positive number K (where K < B((p +A-2)/p,
(g+A-2)/q)), such that (3) is valid if we change B((p +A—2)/p,(@+A—-2)/q)
to K. In particular, we have
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In virtue of (13), (14), and (15), we have
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Setting € — 0", it follows that B((p +A—-2)/p,(g+A—2)/q) < K, which con-
tradicts the fact that K < B((p+A—-2)/p,(@+A—2/q)). Hence the constant
factor B((p+A—-2)/p,(@+A—-2)/q) in (3) is the best possible. This proves the
theorem. |

REMARK 2. (i) For A = v = s = 1, (3) changes to (1), it follows that (3) is a
generalization of (1) with three parameters and (4), (5), and (6) are its some
particular results with the best constant factors.
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(ii) For A = 2, (6) changes to
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which is a new inequality with a best constant factor 1.
(iii) For p = g = 2, (5) and (6) change, respectively, to
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THEOREM 3. Ifp>1,1/p+1/q =1, {a,} is a nonnegative sequence of real
numbers, 2 —min{p,q} <A <2 and r € R, such that
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where the constant factor [B((p +A—2)/p,(q+A—2)/q)]? is the best possible.
Equation (21) is equivalent to (3). In particular,
(i) forr=1/q,
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(i) forA=1,
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(iii) forr =0,
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PROOF. Setting

, M 1/P(1nmn)7\

b, = (ll’l?’l)(p_l)(A 1) |: Z :| (n=2,3,...), (25)
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Hence, we have
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In view of (3), neither (26) nor (27) keeps the form of equality. Hence, (21) is
valid.
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On the other hand, if (21) is valid, by Holder’s inequality, we have
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In view of (21), we have (3). Hence (21) is equivalent to (3). If the constant
factor in (21) is not the best possible, then by (28), we can get a contradiction
that the constant factor in (3) is not the best possible. This proves the theorem.
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REMARK 4. For r =1, (23) changes to
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which is equivalent to (1). Both constant factors in (1) and (29) are the best
possible.
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