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We study the compactness of bounded subsets in a Wiener amalgam whose local
and global components are solid Banach function (BF) spaces on a locally compact
group. Our main theorem provides a generalization of the corresponding results
of Feichtinger. This paper paves the way for the study of compact multiplier op-
erators on general Wiener amalgams on the lines of Feichtinger.
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1. Introduction. The concept of Wiener amalgams on a locally compact
group was introduced by Feichtinger [4] in 1977. In a series of brilliant papers
[4,5, 7, 8], Feichtinger has explored the vital role of Wiener amalgams in general
harmonic analysis and its various applications. These spaces, in fact, describe
the global and local behaviours of functions or distributions independently
and provide very convenient generalizations of the classical function and se-
quence spaces. Initially, in 1926, Wiener [21] studied a special case of amal-
gam spaces on the real line in the form of mixed normed spaces. Feichtinger,
therefore, in the above-mentioned papers, named them “Wiener-type spaces.”
But in subsequent papers (cf. [11, 12]) he has used the nomenclature “Wiener
Amalgams” and made a distinction from ordinary amalgam spaces (cf. [10,
page 395]). Fournier and Stewart [16], in a survey article, have given in detail
the construction of ordinary amalgams using L”-spaces as local and L9-spaces
as global components and pointed out a number of applications in classical
analysis.

In order to define Wiener amalgams W (B,Y)(R™) over m-dimensional Eu-
clidean spaces, Feichtinger has used the spaces S(R™) of tempered distribu-
tions as a reservoir to define the Bj,.(R™) space. Since the notion of deriva-
tion is not defined on locally compact groups, we cannot use the direct gen-
eralization of the space of tempered distributions S(R™). On the other hand
the concept of Schwartz-Bruhat spaces (cf. [1]) of rapidly decreasing smooth
functions imposes too stringent conditions on test functions, while their topo-
logical dual spaces of tempered distributions, involving Frechet-type spaces,
are too general for use in the real situations. Therefore, we follow the well-
known Feichtinger algebra track (cf. [6]) to develop a Banach space %%, (%)
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of test functions and the space of its antifunctionals ¢5, (%9), with ¢ being a
locally compact group and 1 < p < oo, on the lines of Feichtinger and Gréchenig
[15]. Moreover, by virtue of the inclusion relations

eh < 9L, < (L) < 9 (9), (1.1)

our reservoir spaces %%, (9) are larger than that of Feichtinger and Grochenig
[15]. We define the Wiener amalgam W (B,Y)(%) on the lines of Feichtinger
using the space %ff (9) in place of S(R™).

The problem of compactness in L”-spaces on locally compact groups was
studied by Weil [20]. The corresponding results for Orlicz spaces have been
discussed by Bund [2]. More general results on compactness in Kothe spaces
have been obtained by Goes and Welland [17]. The compactness problems for
various spaces of differentiable functions on the Euclidean spaces have been
studied by Nikol’skil [18].

Feichtinger [9] has studied in detail the problem of compactness in trans-
lation-invariant Banach spaces of distributions on locally compact groups. His
theorems are more general than earlier results in this line of work and hold
true even for the space of ultra distributions on locally compact groups. He
has pointed out that compactness criteria hold for a family of much more
general Banach spaces of distributions defined by decomposition methods,
including the usual Besov spaces (cf. [13]). Feichtinger has also discussed in
[13] the applications of his results for the study of compact multipliers on
translation-invariant Banach spaces of functions or distributions on locally
compact groups.

The purpose of this paper is to study the compactness of bounded subsets
of a general Wiener amalgam W (B,Y) (%), where the local and global compo-
nents B and Y are both solid Banach function (BF) spaces and satisfy some
other suitable conditions. In Section 2, we give the necessary definitions and
concepts for use in Section 3 which deals with the weighted Banach spaces, and
in Section 4, we describe the partition of unity on %. In Section 5, we define the
Wiener amalgams W (B,Y) (%) and in Proposition 5.2, we mention some useful
properties of these spaces. In Section 6, we define spline quasi-interpolation
operators and state two useful lemmas. Section 7 is devoted to the study of
tightness and equicontinuity of a bounded subset in a Wiener amalgam space.
Theorem 8.1 is the main result of this paper, which provide a generalization of
the corresponding results of Feichtinger (cf. [9, Theorem 2.2] and [12, Propo-
sition 5, page 131]).

2. Preliminaries. We suppose that % is a locally compact group and T its
dual group consisting of all continuous characters on 4. We denote by dx and
dy the normalized Haar measures on % and I, respectively. We also assume
that % is a o-compact group so that all sums, coverings, and index sets on ¢
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are countable. We define the left- and right- translation operators on % by

Lif(y)=f(y—-x) Vx,y€%

Ref(y) = f(xy h)a" (y), =D
and the involution functions f and fV by
Fe=f=x),  fx)=f=x), (2.2)
where V denotes the Haar modular function on <§;
We denote the Fourier transform of f on % by f such that
Fo =[xy fax. (2.3)

We denote by C%(%) the space of all continuous functions on % vanishing
at infinity and by C.(%) the topological vector space of all continuous func-
tions on % with compact support. The space C. (%) is endowed with its natural
inductive limit topology and its topological dual can be identified with R (%),
the space of all Radon measures on 4. Also, the closure of C.(%) in L* (%) is
identified with C°(%9). The space L}, (%) of all locally integrable functions on 4
is considered as a closed subspace of R(%), that is, two measurable functions
which coincide locally almost everywhere (l.a.e) are identical as usual. This im-
plies that the topology on LllOC (9) is generated by the system of seminorms
{sk} given by

sk(f) = L | f(x)|dx, (2.4)
where K varies over the family of all compact subsets of 4.

3. Weighted Banach spaces on 4. We assume that m:% — R, is a submul-
tiplicative weight function on %. It is well known that every submultiplicative
weight function is locally bounded.

A locally integrable function w : % — R, is called a right moderate weight
function provided that there exists a submultiplicative weight function m on
% such that

wx+y)<w(x)ym(y) Vx,ye%. 3.1)

We also assume that all weight functions are symmetric and satisfy the non-
quasianalyticity Beurling-Domer condition (BD condition) (cf. [19, Chapter VI,
Section 3]). It can easily be seen that every moderate weight function is locally
bounded.
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We denote by L}, (%), 1 < p < o, the Banach space of functions on % with
respect to the norm

1/p
1 llpo = |1 1 L5]| = (L £ (x) |"w”<x)dx) < oo, (3.2)

In case p = co, we denote by L (%) the Banach space of all measurable
functions f on % under the norm

[|F LY =esssup{| f(x)|w(x):x €9} <o, (3.3)

The conjugate space of L%, (%) is the space qu', (%), where w’ = w?/(1-P) and
1/p+1/p’ = 1.1t can easily be seen that Lh(9),1< p < oo, is areflexive Banach
space and L}, (%) is a Banach algebra under convolution, which is known as
Beurling algebra,

Ly xLL, <L},

(3.4)
1@* ) 1Lull <llg | Ly [[[1f | Lu]l

forall g € L (%) and f € L}, (9).

Also, it can be verified that the space L}, (%) is invariant under left- and right-
translation operators Ly and Ry, respectively, and the operator norms satisfy
the condition

m(x) = {|[| L | Lo [l Il Rx | LE 1]} 3.5

Let (B, | - ||g) be a Banach space of measurable function on %. The space B
is called a BF space provided that it is continuously embedded into Llloc(cg).
The space B is known as a solid BF space if it satisfies the following solidity
condition: f €B, g € LIIOC(%) with [g(x)] < |f(x)| lae.=> g€ B, lgllg < IIfllp.

The L?-spaces are simple examples of solid BF spaces.

We write

u(x) =|||Lx | B,
v(x) = A(x"|[[Re1 | B[,
w(x) = cmax{u(x),u(x1),vx),vixHA(xH}, 1<w(x) <o,

wx)=w(xHA(x).

(3.6)

By virtue of the closed graph theorem, the operators L, and R, are bounded
on B for each x in 9. Thus the maps w :x — |||Ly | Bl|| and w : x — |||Rx | Bl||
are well defined and submultiplicative on %.

4. Partition of unity on 4. It is well known that the partition of unity pro-
vides a very useful tool for discrete descriptions on a locally compact group.
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We suppose that U is a compact neighbourhood of the identity e in 4. A
family X = (x;)ic; € 9 is called U-dense provided that (x;U);cr covers %, that
18, UierxiU = 4.

The family X is called separated if the sets (x;U);c; are pairwise disjoint,
thatis, x;Unx;U = ¢ for i # j.

The family X is called relatively separated provided that it is a finite union
of separated sets.

A family ¥ = (i) in C°(9) is called a bounded uniform partition of unity
subordinate to U or of size U (U-BUPU) provided that the following conditions
hold:

(i) X = (x4)ies is a relatively separated family in %;
(i) O<yi(x)<lforalliel, x €%;

(iii) suppy; € x;U for all i € I;

(iv) 2ierwi(x) =1.

As a consequence of condition (iv), we have

UierxiU =94, (4.1)

which implies that the family X = (x;);c; is U-dense.

5. Wiener amalgams on 4. Let (11,%) be an irreducible continuous unitary
representation of a locally compact group % on a Hilbert space . If f,g € %,
the wavelet transform of f with respect to g is given by

Vof 1x — (m(x)g,f). (5.1)

The representation 7 is called integrable provided that V,g € L' (%) for all
g et

On the lines of Feichtinger and Grochenig [15], we define the set of analyzing
vectors hf, (4) by

hio(9) ={g:ge#, VageLlh(9)}, 1<p<o. (5.2)
Now, for a fixed g € hf, (), we define
W (9) = {f:fe¥, Vof €L (9} (5.3)
and equip it with the norm
W19l = IVef I Lill, 1<p <oo. (5.4)

Following Feichtinger and Grochenig (cf. [14, Lemma 4.2]), it can be verified
that 9¢%, (%) is a Banach space of distributions which are dense in %, and the
embeddings

¥ (9) — H — Kb (9) (5.5)
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are continuous, where %1, (%) is the space of all continuous conjugate-linear
functionals on %%, (4). Also, the definitions of %, (4) and %”,,~ () are inde-
pendent of the choice of g in h¥, (9). Since the inner product on % x % extends
to a sesquilinear form on %, < 9", the extended wavelet transforms

Vof(x) =(m(x)g,f) (5.6)

are well defined for all g € %}, (%) and 9}, (4).
Now, on the lines of Feichtinger [12, page 124], we introduce the concept of
uniformly localizable Banach space on %.

DEFINITION 5.1. A Banach space (B,|| - ||z) on % is said to be uniformly
localizable if the following conditions hold:
(i) the embeddings %% (4) — B — %5, () are continuous;
(ii) for every g € %%, (4),
(@ g-feBforall f B,
() ILxg - fllg < Cllflp for all x € % and f € B, where C is a positive
constant depending on g.
The Banach space (B, | - ||g) is also assumed to be isometrically left trans-
lation invariant and L}, (%)-module in the algebraic sense, that is,

L fllz=Iflls VfeB,
L, *xBcB, (5.7)

lg* flls <lg | Ly [lILfll5-

The space (B, || - ||z) is called a local component.

Next, a global component (Y, || -|ly) on % is defined such that
(i) Y is a solid BF space;
(ii) Y is left and right translation invariant in the sense of

IILxflly = C-wllflly (5.8)

and a similar inequality for the right translation;

(iii) Y is a Banach convolution module with respect to the Beurling algebra
Ll (9).

Using B and Y as above,

W(B,Y)(G) ={f : f € Boc(9), K(¢, f) €Y} (5.9)

is said to be a Wiener amalgam space, where
Bioc(9) = {f 1 f €% (9), .f €B, YV € %0 (9)} (5.10)

and the control function K (¢, f) is given by

K($,f)(x) =||Lep- fllp- (5.11)
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The space W(B,Y) (%) is endowed with the norm
ILF 1w B =IK(p,]ly- (5.12)

Since B and Y are solid Banach spaces, it can easily be seen that the space
W(B,Y) is solid.

The following proposition gives some useful properties of Wiener amalgam
spaces.

PROPOSITION 5.2. (i) The space W(B,Y)(%) is continuously embedded in
Bloc ((g) .

(ii) The space W (B,Y)(%) is a Banach space under the norm (5.12).

(iii) The space W (B,Y) (%) is a Banach convolution module with respect to the
Beurling algebra L), ().

The proof follows on the lines of Feichtinger [7] (see also [3, Section 5]).

6. Spline quasi-interpolation operators. If X = (x;);cs is a countable dis-
crete set of sampling points in 4 and U is a compact neighbourhood of the
identity e in %, then the U-oscillation of a function f € B is defined by

fﬁ(x):su5|f(x+u)—f(x)|, (6.1)

where f#(x) denotes the local maximal of a function f such that

fH(x) = sup | )] (6.2)

If f € B, then it is obvious that f# and f}; both belong to B and we have
(f*x9)" <Ifl*g" (%), (6.3)
(f*9)) <1f1%gh(x). (6.4)

Now, on the lines of Feichtinger [12, page 127], we define a spline quasi-
interpolant for any continuous function f on % with respect to a U-BUPU family
Y = (@i(x))ies in the form

Spy f =D f(xi)wi(x), (6.5)

iel
which may be regarded as an irregular spline approximation of f. Since
|Spy f| =< 7, (6.6)

we have

[[Spy f | Bl < [|f* | B]|. (6.7)
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We also define a discretization operator mapping locally integrable func-
tions into discrete measures by

Dyf =2 {f,wi)ox; Vf €L (D). (6.8)
iel
We give the following two results on the properties of spline quasi-inter-
polant corresponding to those of Feichtinger [12] on any n-dimensional Eu-
clidean space.

LEMMA 6.1. If C°(%9) is the space of all continuous functions vanishing at
infinity, then

ISPy f I W(COY)|| < Cull £ IW(C Y] 6.9)

with Cy being a constant depending on U.

LEMMA 6.2. If f € W(C°,Y)(9), then fi; € W(C°,Y) and
[[(Spy f=F) IW(COLY)|| —0 asU —e, (6.10)

provided that C.(%9) is a dense subspace of Y.

The proof of these lemmas follows on the lines of Feichtinger [12].

7. Tightness and equicontinuity in Wiener amalgam spaces on 4. On the
lines of Feichtinger (cf. [12, page 129]), we say that a bounded set M in a Banach
space (B, | - |/g) is (uniformly) tight with respect to %%, (4) provided that, for
any given € > 0, there exists h € %%, () satisfying the following conditions:

(@ [lh-f Bl <CIfI|B| forall f € B;

(b) l|h-f—f Bl <ellf|B]| forall feM.

A bounded subset M in B is called equicontinuous if, for any given € > 0,
there exists a compact neighbourhood U of the identity e in % such that

|ILyf-f|B|l<e VfeM, xeU. (7.1)

Now, in order to characterize equicontinuity in the Wiener amalgam space
W(CP,Y), we prove a result which corresponds to that of Feichtinger [12, page
129] over Euclidean spaces.

Precisely, we prove the following theorem.

THEOREM 7.1. If M is a bounded subset of W(C°,Y) (%), then the following
statements are equivalent:
(i) M is left equicontinuous in W (C°,Y);
(i) for any given € > 0, there exists ¢ € ¥4, (6) such that

lpxf—fIW(CY)||<e VfeM; (7.2)
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(iii) for every € > 0, there exists a neighbourhood Uy of e such that
Ifi1Yll<e YfeM,Uc Uy (7.3)
(iv) for any given € > 0, there exists a neighbourhood U, of e such that
I Iw(CoY)||<e VfeM,UcU; (7.4)

(v) the family of spline quasi-interpolants {Spy f} is uniformly convergent
to f in the norm topology of W(C°,Y).

PROOF. (i)=(ii). Let M be an equicontinuous subset of W(C% Y)(%). We
choose a neighbourhood U of the identity e in % such that

ILxf-FIW(COY)||<e VfeM, xeU. (7.5)
We assume that ¢ is a nonnegative function in C. (%) such that
qu(x)dx= 1, suppPpcU= ¢pe¥h(9). (7.6)
Then we have

|(#xr-r- [ o0ay) 1w D)|| < [ s~ £ 1W(CV)$()dy
= |lpxf-fIW(C’,Y)|[[<e VfeM (by(75)).

(7.7)
(ii)=(iii). We assume that (ii) holds. Then, by (6.4), we obtain
(P * NG < dp* £, (7.8)
which implies that
fi) < (* /I x) +(f = f ) (x)
= [l 1Y < [[(px O Y+ = f*d)f Y]]
(7.9)

€
<l I Lulllf 1Y I+

€
<§+§ Vfem,UcU,.

(iii)=(iv). We have

LA I wW (O < (b x HTEW(CO)+](f = x /T IW(C,Y)]. (7.10)
But we see that

1+ )5 I W(C V)l < sup [ &F )| -[LF TW(C V)|

(7.11)

< % by (6.4).
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Also, we have
I(F—d*f) I W(C,Y)|| <2|[K(1—, f) | W(COY)|| < % (7.12)

Thus we infer that (7.4) holds.
(iv)=(v). By (6.1) and Lemma 6.2, we have |Spy f — f| < fé‘ for any U-BUPU
family ¥, which implies that

D fx)wix) = fOWi(x)) | =D fl-wilx) Vxe, (7.13)
iel iel
that is,
[Spy f=f IW(COY)||—0 asU —e. (7.14)

(v)=(@). We assume that ¥ is U-BUPU such that (x;U);c; is a covering of 4 and
the functions (;);c; form an equicontinuous subfamily in C°(%).
Now, we choose a nonnegative function ¢ such that

supp¢p € U3, ¢(t) =1on Uy, (7.15)

where U; Cc U, C U3 (U, i = 1,2,3) are compact neighbourhoods of the identity
ee.
Thus we see that

Yilx—y) =wi(x—y)Ly,$p(x) for supp (L, ;) < Us. (7.16)
Hence we obtain
(Spy )1 (x) = Sp | Spy f (x =) = Spy.f (x) |
ye

<> [ f(xi)] sup | Wi(x =) =wi(x)] - |Lx,Pp(x) ]| (7.17)
ye

i€l

< STFCe) (Wi il - Ly ().

iel

Since the family (y;);ecs is equicontinuous, for any given n > 0, there exists
a neighbourhood U of the identity e € G such that

(W) plle <. (7.18)

Next, since the discrete measure > ;c; dx; belongs to W(M,L*)(%), we have

1(Spy £ | W(CO,Y)]|

< sup[(Wo) [l - | F(x0) | 8, % b |W(CO,Y)|
i€l (719)

D 8w, | W(M,L™)

iel

<n-C AF I, )l T w(c, LY.
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Finally, since M is bounded in W (CY,Y), we may choose n such that
1(Spe )y | W(COY) [ <e=|Iff IW(CO,Y)|[<e VfeM, (7.20)

which implies that M is equicontinuous in W (C°,Y).
This completes the proof of the theorem. |

8. Compactness in Wiener amalgams. Feichtinger [12, page 131] has ob-
tained some suitable conditions which ensure the compactness of M < W (B,
Y) when B and Y are defined over m-dimensional Euclidean spaces. In this
section, we study the compactness of a subset of the Wiener amalgam space
W(B,Y)(%) defined on a locally compact group %. Our theorem provides a
generalization of the corresponding result of Feichtinger [12, page 131].

Precisely, we prove the following theorem.

THEOREM 8.1. If %1, () is dense in both B and Y, then a closed bounded set
M < W(B,Y)(%9) is compact if and only if it is uniformly tight and equicontinuous
under the W (B,Y)-norm.

We will use the following lemma in the proof of our theorem.

LEMMA 8.2. If C.(9) is dense inY and the map y — L, f is continuous in B
forall f € B, then y — L, f is continuous in W(B,Y)(%) for all f € W(B,Y).

PROOF. The proof follows on the lines of Feichtinger [7, pages 514-515]. As
our parameters are different, it is necessary to give a proof.
Since C. (%) is dense in Y, there exists a compact set Ky € % such that

1(1=xK,) - K(b,f) | Y] <€, (8.1)

where xi, is the characteristic function of K.
Next, since the left translation L, is continuous, and so locally bounded, and
since U is relatively compact, we have

Ly g -[H Ly [[ly =€ VY eU, 8.2)

with C being a positive constant. Thus, for all y € U, we have

111~ xuxo) - K (b, Ly £) @)y = || (1= xuko) | (L2b) - (Lo )],

< C[[Ly Iy - [[(1=Xko) - K (b, O)lly  (8.3)
<Ce

because Ko € ¥y UK, for all ¥ € U and so (1 = Xy-1uky) = (1= Xkq)-
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Hence we infer that, for any given € > 0 and any open neighbourhood U < %
with compact closure, we can find K < % such that

I[(1-xx)-K(p,Lyf)lly<e VyeU, (8.4)

which implies that || (1 —xk) - K(¢, f)lly <€.
We now choose h in %%, (%) such that h = 1 on U 'K (supp ¢»). Thus we see
that

Lop-(Lyf—f)=L.p[Ly(hf) - (hf)]. (8.5)
Next, we choose Uy € U such that
[ILy (hf)—(hf)|lz <€ Yy € Up. (8.6)

Hence, on account of the above relations, we obtain

IK(b,Lyf = O)lly <[1(1=xx) - K(b,Lyf)lly
+(A=xx)K (P, Hlly+[(1=xk)-K (P, Ly f =)y (8.7)
<2e+|Ixklly - |ILy (h- f)=(h- f)]l; — 0 ase— 0.

Hence the map y — L, f is continuous from % into the norm topology of
W(B,Y)(9).
Thus the lemma holds true. O

PROOF OF THEOREM 8.1. We suppose that M is uniformly tight and equi-
continuous under the W (B,Y)-norm. Hence, by virtue of Lemma 8.2, the left
translation is continuous in W (B,Y) ().

At first we will show that M is relatively compact in 9¢5, ~ (9). Since the em-
beddings

o (9) = W(B,Y)(9) = %l (9) (8.8)
are continuous (the proof follows on the lines of Feichtinger [7, Theorem 1]),
hence, for any compact set K < %, there exist positive constants Cx and Cg
such that
Ihllwy) < Cklihllye (8.9)
and, by closed graph theorem,

[(h, )] < Cill fllwes,y) - [ ] 30| (8.10)

for all h € %%, (%) with supph = K and f € W(B,Y).
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Now let ko be a function in %%, (%) such that suppko < K and € > 0 are given.
Then, there exists a set V such that

V= {k:ke 9 (9), suppk <K, [[k— kol <€(Ck-C) '] (8.11)
Thus we see that
|[(k—ko,f)| <€ VkeV,VfeM. (8.12)
This implies that M is relatively compact in %%, () with respect to the weak
topology o (%4, ,9¢5) (cf. [9, pages 301-302)).

Hence, for any given net in M, we can find a subnet (fy)xe; in M and o €
%", " (%) such that

limJ Ja(xX)h(x)dx = J o(x)h(x)dx Yhe¥hs. (8.13)
X— 00 @ @

We now claim that {fy}«es is @ Cauchy net under the norm of W(B,Y)(%).
Let € > 0 be given. Then there exists k € %P, (%) such that

lkxf—fllwey <€ VfeM. (8.14)
Hence we can find h € %%, (%) such that
lhf-fllwey <€ VfeM. (8.15)

Combining (8.14) and (8.15), we get

lkxhf—fllwey) <lkxhf—k* fllwey) +11k*xf—fllway

8.16
<2 VfeM. ( )

Since %1, () "W (B,Y) is dense in %1, (%), which in turn is dense in L., (%),
we can find k; € 9% (49) nW(B,Y) such that

|[ki*xk—k|[,, <e€. (8.17)
Thus, on account of the relation
IR fllwey) < Ifllwey) +€ <2C, (8.18)
we see that

|f —kikk*hfllypy, <4€ VfeM. (8.19)
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Now, since {hfu}qer is a convergent net of function with compact support,
we can find &g in I such that

€
[k R fo— K hfpll) o <
|13}

Yo,B = o, (8.20)
||W(B,Y)

because (k * hfy) is uniformly convergent on compact sets.
Thus we see that

[[k1xk*hfo—kixkxhfgllygy <€ V&,B= . (8.21)
Hence, using (8.19), we obtain

| fo=follwmy) =Ce Va,B = o, (8.22)

where C is a suitably chosen positive constant.
Conversely, let M be compact in W (B,Y) (%) and € > 0 be given. Since %%, (4)
is dense in W(B,Y), there exists a finite sequence (f;)}, in %", (%) such that

ILf = fillwes,y) < Ce. (8.23)

Hence we can find & and k in 95 (%) such that

lkllpw < Cuw,
Ihfllwey) < Coll fllwey), 8.24)
||h*fi_fiHW(B,Y) <€, ’
lk* fi— fillyy <€ V1l<si<n.
Thus we see that
Ik f=fllway) = llk* f=k* fillwey +1k*fi—fil ey (8.25)

+|fi=fllwey) =Ce VfeM.

Hence we infer that M is uniformly tight and equicontinuous in the norm
topology of W(B,Y)(%). Thus the conditions are necessary.
This completes the proof of the theorem. |
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