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of the range of an elementary operator and its kernel.
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1. Introduction. Let H be a separable infinite-dimensional complex Hilbert
space and let B(H) denote the algebra of all bounded operators on H into itself.
Given A,B € B(H), we define the generalized derivation 645 : B(H) — B(H) by
04,8(X) = AX — XB and the elementary operator derivation Ay p : B(H) — B(H)
by AA,B(X) = AXB - X. Denote 6A,A =04, Apa = Aa.

In [1, Theorem 1.7], Anderson shows that if A is normal and commutes with
T, then, for all X € B(H),

[|T+6A(X)| =TI (1.1)

It is shown in [9] that if the pair (A,B) has the Fuglede-Putnam property
(in particular, if A and B are normal operators) and AT = TB, then, for all
X €B(H),

T +6a5X)| =TIl (1.2)

Duggal [3] showed that the above inequality (1.2) is also true when 643 is
replaced by A4 p. The related inequality (1.1) was obtained by the author [10],
showing that if the pair (A, B) has the Fuglede-Putnam property (FP)c,, then

T+ 648X, = T, (1.3)

for all X € B(H), where Cp, is the von Neumann-Schatten class, 1 < p < 0, and
Il - [l is its norm for all X € B(H) and for all T € C, nkerd . In all of the
above results, A was not arbitrary. In fact, certain normality-like assumptions
have been imposed on A. A characterization of T € C, for 1 < p < o, which
is orthogonal to R(54|C,) (the range of 641C,) for a general operator A, has
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been carried out by Kittaneh [6], showing that if T has the polar decomposition
T =U|T|, then

T +04a(X)[, = ITllp (1.4)

for all X € C, (1 < p < ) if and only if |[T|P~1U* € ker § 4. By a simple modifi-
cation in the proof of the above inequality, we can prove that this inequality is
also true in the general case, that is, if T has the polar decomposition T = U|T]|,
then

1T +68a80], = ITll, (1.5)

forall X € C, (1 <p < ) if and only if IT|P~'U* € ker &3 4. In Sections 1, 2,
3, and 4, we prove these results in the case where we consider E, g instead of
0,8, which leads us to prove thatif '€ C, and kerEsp < kerEj’B, then

IT+EasX)|l, = Tl (1.6)

forall X € Cp (1 < p < ) if and only if T € kerE4 3. In Sections 5, 6, and 7,
we minimize the map ||S + E4z(X)| |p and we classify its critical points.

2. Preliminaries. Let T € B(H) be compact and let 57 (X) > s2(X) > --->0
denote the singular values of T, that is, the eigenvalues of |T| = (T*T)/?2
arranged in their decreasing order. The operator T is said to belong to the
Schatten p-class C, if

. /p
ITl, = {Zsj(:r)v] = [w(T)P]"?, 1<p <, (2.1)
i=1

where tr denotes the trace functional. Hence, C; is the trace class, C; is the
Hilbert-Schmidt class, and Cs is the class of compact operators with

1Tl =51(T) = sup [ITSI| (2.2)
Ilfl=1
denoting the usual operator norm. For the general theory of the Schatten p-
classes, the reader is referred to [7, 11].
Recall that the norm || - || of the B-space V is said to be Gateaux differentiable
at nonzero elements x € V if

i Xty lix]

m ; =RDx(y) (2.3)

for all y € V. Here R denotes the set of reals, & denotes the real part, and D,
is the unique support functional (in the dual space V*) such that ||[Dy || = 1 and
D, (x) = ||x|l. The Gateaux differentiability of the norm at x implies that x is
a smooth point of the sphere of radius [/x].
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It is well known (see [7] and the references therein) that, for 1 < p < o, Cp is
auniformly convex Banach space. Therefore, every nonzero T € Cp, is a smooth
point and, in this case, the support functional of T is given by

(2.4)

-1 *
Dr(X) = tr [M}

g
for all X € Cp, where T = U|T]| is the polar decomposition of T.

DEFINITION 2.1. Let E be a complex Banach space. We define the orthogo-
nality in E. We say that b € E is orthogonal to a € E if, for all complex A, there
holds

lla+Abll = [lall. (2.5)

This definition has a natural geometric interpretation, namely, b La if and
only if the complexline {a+Ab | A € C} is disjoint with the open ball K (0, ||all),
that is, if and only if this complex line is a tangent one. Note that if b is or-
thogonal to a, then a needs not be orthogonal to b. If E is a Hilbert space, then
from (2.5), it follows that (a,b) = 0, that is, orthogonality in the usual sense.

3. The elementary operators AXB—CXD

LEMMA 3.1. Let A,B € B(H). The following statements are equivalent:
(1) the pair (A,B) has the property (FP)c,, 1 <p < o;

(2) if AT = TB, where T € Cp, then R(T) reduces A, ker(T)* reduces B, and
Algry and Blyer(r)+ are normal operators.

PROOF. (1)=(2). Since C, is a bilateral ideal and T € C,, then AT € C,.
Hence as AT = TB and (A,B) satisfies (FP)c,, A*T = TB*, and so, R(T)
and ker(T)* are reducing subspaces for A and B, respectively. Since A(AT) =
(AT)B implies that A*(AT) = (AT)B* by (FP)c, and the equality A*T = TB*
implies that A*AT = AA*T, thus we see that A7y is normal. Clearly, (B*, A*)
satisfies (FP)c, and B*T* = T*A*. Therefore, it follows from the above argu-
ment that B* |zrr#y = Blker(r)+ is normal.

(2)=(1). Let T € Cp such that AT = T'B. Taking the two decompositions of
H,H,=H=R(T)®R(T) and H» = H = ker(T)* @kerT, then we can write A
and B on H; into H», respectively:

[a o0 B0
ac[h 0] wfm o] o

where A; and B; are normal operators. Also we can write T and X on H; into

Hll
Tn O X1 Xo
I ] o
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It follows from AT = TB that A;T; = T B;. Since A; and B; are normal oper-
ators, then, by applying the Fuglede-Putnam theorem, we obtain A} T; = T; B,
thatis, A*T = TB*. O

THEOREM 3.2. Let A,B € B(H). If A and B are normal operators, then
||Sf(AX7XB)||p =[S, (3.3)

forall X € Cp and for all S e kerdapnCp (1 <p < ).
PROOF. Let S =U|S| be the polar decomposition of S, where U is an isom-
etry such that ker U = ker|S|. Since

U*SIl, < 1U*[1,1S 1, = 1S, (3.4)

Il

for all S € Cp, then
IS — (AX - XB)||5 = [[U*[S — (AX - XB)]|| = |[IS|-U*(AX-XB)[|}, (3.5)
and we have

[ISI-U*(AX = XB)||}, = > | ([IS|-U*(AX = XB) |@n, ®n) |” (3.6)

for any orthonormal basis {@, },>1 of H. Since AS = SB, and A and B are nor-
mal operators, it follows from the Fuglede-Putnam theorem that S*A = BS*.
Consequently, S*AS = BS*S or S*SB = BS*S, that is, B|S| = |S|B. Since |S| is
a compact normal operator and commutes with B, there exists an orthonormal
basis {fx} U {gm} of H such that {fi} consists of common eigenvectors of B
and |S|, and {g,} is an orthonormal basis of ker |S]|. Since { fx} is an orthonor-
mal basis of the normal operator B, then there exists a scalar «; such that
B fi = & fx and B* f}, = & fx. Consequently,

(U*(AX = XB) fx, S| fk) = (S*(AX — XB) fi, fi)

(B X) -~ (S X)) fefi) =0, T
thatis, (U* (AX — XB) fx, fx) =0.
In (3.6) take {@,} = {fx} U{gm} as an orthonormal basis of H, then
2. {181 = U (AX = XB)|@n, @} |
= % [ (IS fies fic) |”+% [{(U*(AX = XB)gm,gm) |" (3.8)

> SIS fis fi) |7 = 1ISIIL.

k
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LEMMA 3.3. Let A,B € B(H) satisfying (FP)c,. Then
IS+AX-XBIb = ISI5 (3.9)

for every operator S € kerd,3NCy (1 <p <) and for all X € Cp.

PROOF. If the pair (A,B) satisfies the (FP)¢, property, then R(S) reduces
A, ker* S reduces B, and Algzsy and Blyer: ¢ are normal operators. Letting Sp :
ker*S — R(S) be the quasiaffinity defined by setting Sox = Sx for each x €
kert S, it results that 04,8 (So) = 6AT13T (So) =0.Let A=A, & Ay, with respect
to H=R(S)®R(S)", A = B; ® B, with respect to H = ker(S)* @ kerS, and
X:R(S)®R(S)" — ker(S)* @kerS have the matrix representation

(X1 X
X = X3 X4]' (3.10)
Then we have
[S1 - (A1 X1 -X1B1) %
IS = (AX - XB)||, = H 1= (A X1— X1By) ] (3.11)
* *
L p
The result of Gohberg and Krein [4] guarantees that
||S—(AX—XB)HP > ||Sl—(A1X1—XlBl)Hp. (3.12)

Since A; and B; are two normal operators, then it results from Theorem 3.5
that

[[S1 - (A1 X1 = X1B1)|[, = [[S1][, = ISl - (3.13)
O

LEMMA 3.4 [6]. Letu and v be two elements of a Banach space V with norm
I - 1I. If u is a smooth point, then D, (v) = 0 if and only if

lu+zvll = [Jull (3.14)

for all z € C (the complex numbers).

THEOREM 3.5. Let A, B B(H) andT € C, (1 <p < ). Then
1T +845(X)], = ITIl, (3.15)
forall X € B(H) with Az 3(X) € Cp if and only if
tr (IT1P ' U*S,5(X)) =0 (3.16)

for all such X.
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PROOF. The theorem is an immediate consequence of equality (2.4) and
Lemma 3.4. O

THEOREM 3.6. Let A, B B(H) andT € C, (1 <p < ). Then
T+ 648Xl = T, (3.17)

for all X € C, if and only if T = |T|P~'U* € kerp 4.

PROOF. By virtue of Theorem 3.5, it is sufficient to show that tr(T'§ 48(X)) =
0 for all X € C, if and only if T € ker §p 4.

Choose X to be the rank-one operator f ® g for some arbitrary elements f
and g in H. Then tr(T(AX - XB)) = tr(BT —TA) X = 0 implies that (5 4(T) f,g)
=0 Te kercSB,A.

Conversely, assume that T € kerdp 4, that is, BT = T A. Since TX and T6p 4
are trace classes, then for all X € C,,, we get

tr(T(AX-XB)) = tr (TAX - TXB) = tr (XBT - XTA)
. (3.18)
:U‘(X(SB,A<T)) =0. O

LEMMA 3.7. Let A,B € B(H) and S € Cp, such that §,3(T) =0 =6} 3(T).

IfA|S|P-1U* = |S|P~1U*B, where p > 1 and S = U|S| is the polar decompo-
sition of S, then A|S|U* = |S|U*B.

PROOF. If T =|S|P~!, then

ATU* = TU*B. (3.19)
We prove that

AT"U* =T"U*B (3.20)

forallm>1.1f S = U|S]|, then

kerU =ker|S| =ker|S|P~' =kerT,
(3.21)
(kerU)* = (kerT)* = R(T).

This shows that the projection U*U onto (kerT)* satisfies U*UT = T and
TU*UT = TZ2. By taking the adjoints of (3.19) and since A and B are normal
operators applying Fuglede-Putnam theorem, we get BUT = UTA and AT? =
ATU*UT = TU*BUT = TU*UTA = T?A.

Since A commutes with the positive operator T2, A commutes with its square
roots, that is,

AT =TA. (3.22)

By (3.19) and (3.22) we obtain (3.20). Let f(t) be the map defined on o (T) C
R* by f(t) = t"®»-D (1 < p < ). Since f is the uniform limit of a sequence
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(P;) of polynomials without constant term (since f(0) = 0), it follows from
(3.20) that AP;(T)U* = P;(T)U*B. Therefore, ATY/(P-Vy* = y*Tl/P-DB. O

THEOREM 3.8. Let A and B be operators in B(H) such that 6,3(T) =0 =
04 p(T). Then T € ker Ay N Cp if and only if

IS +648XOl, = IS, (3.23)
forall X € Cp.
PROOF. If § € kerAyp, then it follows from Lemma 3.3 that
IS +648XOl, = IS, (3.24)
for all X € Cp. Conversely, if
1S+ 848X, = IS, (3.25)
for all X € Cp, then, from Theorem 3.6,
AlS|P-IU* = |S|PTU*B. (3.26)
Since 645(S) =0=0343%(S),
A*[SIPTIU* = (S|PTU*B*. (3.27)
By taking adjoints, we get
AU|SIP~t =UIS|P'B. (3.28)
From Lemma 3.7, it follows that AU|S| = U|S|B, thatis, S € kerA, . O

REMARK 3.9. (1) It is well known that the Hilbert-Schmidt class > is a
Hilbert space under the inner product (Y,Z) =trZ*Y.

We remark here that for the Hilbert-Schmidt norm || - ||, the orthogonality
result in Theorem 3.8 is to be understood in the usual Hilbert-space sense.
Note in the case where I = C; that

1T+ 6455 = 16485+ T3 (3.29)

for all X € C; if and only if AT* = T*B. This can be seen as an immediate
consequence of the fact that

R(8431C2)" =ker (5ap/C2)" =Kker (8p« a%|C2). (3.30)

(2) It is known [2] that if A and B are contractions and S € Cp, then 6 4+ p= (S)
=043(S) =0. Hence

1S+ 845X, = ISl (3.31)

holds for all X € C,, if and only if S € ker(d4,31Cp).
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(3) If A = B, then the following counterexample shows that Theorem 3.8
does not hold if p < 1. Take p = 1/2 and

1 0 1 0 0 -«
PO O R O e

where « is real such that 0 < & < 1. We have

S—(AX—XA) = [; ‘i‘] (3.33)

and, for eigenvectors f; =1—«, B2 = 1+ . Then
1S~ (AX = XA)||; o = [(1 -0+ (1 +0"?]* <4 =|S]l1 2. (3.34)
COROLLARY 3.10. Let A,B € L(H). Then
IS+AX—XBll, = lISl, (3.35)

if and only if S € ker6 4,3 N Cp and for all X € C,, in each of the following cases:
(1) if A,B € L(H) such that ||Ax|| = ||x|| = ||Bx]|| for all x € H,
(2) if A is invertible and B is such that |A~1||||B|| < 1.

PROOF. The result of Tong [13, Lemma 1] guarantees that the above con-
dition implies that, for all T € ker(643/K(H)), R(T) reduces A, ker(T)* re-
duces B, and Alz¢7y and Blker(r)+ are unitary operators. Hence it results from
Lemma 3.1 that the pair (A, B) has the property (FP)k ) and the results hold
by Theorem 3.8. Here K (H) is the ideal of compact operators.

The above inequality holds in particular if A = B is isometric; in other words,
|[Ax|| = || x]|| for all x € H.

(2) In this case, it suffices to take A; = ||B||"*A, B; = ||B||"!B.

Then [[A; x|l = || x]|| = [|[By x| and the result holds by (1) for all x € H. O

4. Orthogonality and the elementary operators AXB — CXD. Let H be a
separable infinite-dimensional complex Hilbert space and let B(H) denote the
algebra of all bounded operators on H into itself. Given A, B, C, and D normal
operators in B(H) such that AC = CA, BD = DB, we define the elementary
operator ¥ : B(H) — B(H) by ¥Y(X) = AXB - CXD. We prove that if T € Cp
(1<p <o), then [[T+P(X)|l, =Tl if and only if T € ker® for all X € C,.

By the same argument used in the proofs of Theorems 3.5 and 3.6, we prove
the following theorems.

THEOREM 4.1. Let A,B,C,D € B(H) andT € C, (1 <p < ). Then

NT+Y X, = 1T, (4.1)
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forall X € B(H) with¥(X) € Cp if and only if
r(|TIP7'U*Y (X)) =0 (4.2)
for all such X.
THEOREM 4.2. Let A,B,C,D € B(H) and T € C, (1 <p < ). Then
T +¥X)l, = Tl (4.3)
forall X € C, if and only if T = |T|P~'U* € kerY.

LEMMA 4.3. Let A,B € B(H) be normal operators and AB = BA. Suppose that
ASB=BSA,S€Cy (1<p <o) If

AUI|S|P~'B = BUIS|?7'A, 4.4)
then
AU|S|B = BU|S|A. 4.5)

PROOF. Assume that B~! € B(H). Then, from ASB = BSA and AB = BA, we
get AB1S = SB~1 A. Hence, applying the above lemma to the operators AB~1,
B7'A, and S, we get

AB'U|S|IP-t = U|S|P7'B 1A, (4.6)
which implies that
AB'U|S| = U|S|B'A. 4.7)

Multiply (4.6) and (4.7) at right and left by B to obtain

BAB'U|S|P"'B=BU|S|P 'B'AB (4.8)
or
ABB7'U|S|P~'B = BU|S|P"'B 1BA, (4.9)
that is,
AU|S|P71B = BU|S|P A, (4.10)
which implies that
AU|S|B = BUIS|A. (4.11)

Consider now the case when B is injective, that is, ker B = {0}. Let
An:{Ae(C:IAls%} (4.12)

and let Ez(A;,) be the corresponding spectral projector.
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Putting
P, =1—-E(Ay), (4.13)

the subspace P, H reduces both operators A and B (since they commute and
are normal). Hence, with respect to the decomposition

H=(I-P,)HeP,H,

B Ain) 0 B in) 0
A= [ 0 Agm}’ B= [ 0 BM’ (4.14)
_ [511(11) 512(")] _ [Xu(n) Xlz(n)]
Soi(n)  Soo(n) |’ Xo1(n) Xoo(m) |’

it is easy to see that Bé") acting on P, H is invertible. Then, from ASB = BSA,

it follows that
ASY S0 (n)BYY = BV S0 () ALYV, (4.15)
and, from AB = BA, we get A»B» = B> A». Since
AU|S|P~'B=BUIS|P'A, (4.16)
according to the first part of the proof, it follows that
AU [Sa0(n) [P B = BV U | S22 (n) | P AYY, 4.17)
which implies that
AU S22 (n) |BYY = BYVU | S22 (m) | ASY, (4.18)
so we have AU|S|B = BU|S|A. Assume now kerAnkerB = {0}.

Then kerB reduces A and PyergAPyerp is injective. Let H = kerBo H; (H; =
H ekerB). Then we have

A1 O 0 0 St S
A= B= = 4.1
|: 0 A2:| ’ |:0 BZ:| ’ S |:521 522:| ’ ( 9)
where A1, B, are injective and their ranges are dense in subspaces they act on.
We have

(4.20)

ASB—BSA=[ 0 ArSi2Be }

—B2S21A1 A2S22B2 — B2S22 A



SOME VERSIONS OF ANDERSON AND MAHER’S INEQUALITIES 1I 3365

Now, if ASB = BSA, then A»>S22B> = B»S20A», B»S>1 A1 =0, and A1S12B2 =0,
that is, S»1 = S12 = 0. It follows that

S 0
S= [ 0 522]' (4.21)

Since A»By = ByAp, A»S22B> = B2S»2A», and By is injective, and we have
already proved that

AU |Sa2|P "By = BoU| S0 |77 A (4.22)

implies
AU | S22 | B2 = B2U | S22 | Az, (4.23)
so we have AU|S|B = BU|S|A. O

Let ®(X) = AXB—BXA. We prove the following theorem.

THEOREM 4.4. Let A,B € B(H) be normal operators, AB = BA, and S € C,
(1 <p < o). Then S € ker® if and only if

[|S - (AXB—BXA)HV > [ISl, (4.24)
forall X € Cp.

PROOF. If S € ker®, then, from [13, Theorem 3.4], it follows that
IS +@ )], = IS, (4.25)
for all X € Cp. Conversely, if
IS+ X[, = 1S, (4.26)
for all X € Cp, then, from Theorem 4.2,
AlS|PTIU*B = B|S|PTIU*A. (4.27)

Since A and B are normal operators applying Fuglede-Putnam theorem, we
get A*|S|P-1U*B* = B*|S|P~1U*A*. By taking adjoints, we get AU|S|P~'B =
BUI|S|P1A.

From Lemma 4.3, it follows that AU|S|B = BU|S|A, thatis, S € ker®. O

Let ¥(X) = AXB—-CXD.

THEOREM 4.5. Let A,B,C,D € B(H) be normal operators, AC = CA, BD =
DB,and S € Cp, (1 <p < ). Then S € kerY¥ if and only if

IS~ (AXB~CXD)||,, = ISIl, (4.28)

forall X € Cp.



3366 SALAH MECHERI

PROOF. It suffices to take the Hilbert space H @ H and the operators

|

S

and apply Theorem 4.4. |

(4.29)

REMARK 4.6. The results of the above theorems can be obtained when the
normality of A and B is replaced by some other condition, in particular, if
|A| = |B|, |A*| = |B*|. In this case, it suffices to take

_ [o ax _ _[o B*
S

B

and apply Lemma 4.3 and Theorem 4.4.

(4.30)

5. On minimizing [|AX — XB — TH,’Z,. Maher [8, Theorem 3.2] shows that if
A is normal and S € ker6, N Cp (1 < p < ), then the map F, defined by
Fp(X) = IS - (AX — XA) ||, has a global minimizer at V if, and for 1 < p < o
only if, AV-VA =0.

In this section, we prove that if the pair (A,B) has the property (FP)c, (i.e.,
AT = TB, where T € Cp, implies A*T = TB*), 1 < p < co,and S € kerd, 3N Cp,
then the map F, defined by F, (X) = IS — (AX - XB) |I§ has a global minimizer
at V if, and for 1 < p < o only if, AV — VB = 0. In other words, we have

I|S—(AX-XB)||L = IITIIh (5.1)

if, and for 1 < p < o only if, AV — VB = 0. Thus in Halmos’ terminology [5], the
zero commutator is the commutator approximant in C,, of T. Additionally, we
show that if the pair (A, B) has the property (FP)Cn and S €ekerdapnCy (1<
p < o), then the map F, has a critical point at W if and only if AW —WB = 0,
thatis, if @y F, is the Frechet derivative at W of F,, the set {W € B(H) : 9y F, =
0} coincides with ker 64 5 (the kernel of d4p).

THEOREM 5.1 [9]. If1 < p < oo, then the map F, : C, — R" defined by X —
| XI5 is differentiable at every X € C,, with derivative DxF, given by GxF,(T) =
pRetr(|X|?~1U*T), where tr denotes trace, Rez is the real part of a complex
number z, and X = U|X| is the polar decomposition of X. If dimH < oo, then
the same result holds for O < p <1 at every invertible X.

THEOREM 5.2 [9]. If U is a convex set of Cp, 1 < p < oo, then the map X ~
IIXHg, where X € AU, has at most a global minimizer.
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DEFINITION 5.3. Let W(A,B) = {X € B(H):AX-XBec(Cp} andlet F, : U —
R* be the map defined by F, (X) = |T - (AX—XB)II?, where T € ker64,3NCp,
l<p<oo.

6. Main results. By simple modifications in the proof of Lemma 3.7, we can
prove the following lemma.

LEMMA 6.1. Let A,B € B(H) and C € B(H) such that the pair (A,B) has the
property (FP)gu. If AIS|P~1U* = |S|P~'U*B, where p > 1 and S = U|S| is the
polar decomposition of S, then A|S|U* = |S|U*B.

THEOREM 6.2. Let A,B € $(H). If the pair (A,B) has the property (FP)c,
and S € Cp, such that AS = SB, then

(1) for1 < p < oo, the map F, has a global minimizer at W if, and for 1 <
p < o only if, AW -WB = 0;

(2) for1 < p < o, the map F, has a critical point at W if and only if AW —
WB =0;

(3) forO<p <1dim¥ < o and S — (AW —WB) is invertible, then F,, has a
critical point at W if AW —WB = 0.

PROOF. Since the pair (A, B) has the property (FP )cp it follows from Lemma
3.3 that

IIS—(AX - XB)||" = ISIIb, (6.1)

that is, F, (X) = F,(W).
Conversely, if F, has a minimum, then

IS — (AW -wB)[|; = ISIp. (6.2)

Since AU is convex, the set V' = {§ — (AX — XB); X € AU} is also convex. Thus
Theorem 5.2 implies that

S—-(AW-WB) =S. (6.3)

(2) Let W,S € U and let ¢ and @ be two maps defined, respectively, by
¢:X—~S—(AX—-XB)and @: X — || X]}.
Since the Frechet derivative of F, is given by

Fp(W+hT)—F,(W)
h y

DwF,(T) =lim (6.4)
h—0
it follows that

gwap(T) = [@57(AW7WB)](TB—AT). (65)
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If W is a critical point of Fj, then @y F,(T) = 0 for all T € U. By applying
Theorem 5.1, we get

By F,(T) = pRetr[|S— (AW —WB) |"~'W*(TB - AT)]

(6.6)
= pRetr[Y(TB-AT)] =0,

where S — (AW —WB) = W|S — (AW — WB)]| is the polar decomposition of the
operator S — (AW —WB) and Y = |S — (AW —WB)|P~'W*. An easy calculation
shows that BY — YA = 0, that is,

A|S—(AW-WB)|"'W* = |S— (AW -WB)|"'W*B. (6.7)
It follows from Lemma 6.1 that
A|S—(AW—WB)|W* = |S— (AW —WB) | W*B. (6.8)

By taking adjoints and since the pair (A, B) has the property (FP)c,, we get
A(T — (AW —WB)) = (T — (AW —WB))B. Then A(AW —WB) = (AW — WB)B.
Hence

AW—WBER(&A,B)mker&;,B. (69)
By the same argument used in the proof of Lemma 6.1 we can prove that
[|S—(AX-XB)|| = IS (6.10)

for all X € B(H) and for all T € B(H) and it results that AW —WB = 0.

Conversely, if AW = WB, then W is a minimum, and since F,, is differentiable,
then W is a critical point.

(3) Suppose that dimH < co. If AW —WB = 0, then S is invertible by hypothe-
sis. Also | S| is invertible, hence |S|P~! exists for0 < p < 1 taking Y = [S|P~1U*,
where S = U|S| is the polar decomposition of S. Since AS = SB implies that
S*A = BS*, then S*AS = BS*S, and this implies that |S|2B = B|S|% and |S|B =
BI|S].

Since S*A = BS*, that is, |S|U*A = B|S|U*, then |S|(U*A-BU*) =0, and
since B|S|P~! = |S|P~1B, then

BY -YA =B|S|P7'U* - |S|P7IU*A = S|P (BU* - U*A) (6.11)
so that BY — YA =0 and tr[(BY —=YA)T] = 0 for every T € B(H). Since S =
S— (AW —WB), then

0=tr[YTB-YAT] =tr[Y(TB—-AT)]

=pRetr[Y(TB—AT)] = pRetr[|S|P1U*(TB-AT)] (6.12)

— (@r$)(TB—AT) = (G Fp) (T). .
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REMARK 6.3. In Theorem 6.2, the implication “W is a critical point implies
AW —WB = 0” does not hold in the case 0 < p < 1 because the functional
calculus argument involving the function t — t1/?=1 where 0 <t < o, is only
valid for 1 < p < 0.

7. On minimizing | T - (AXB — CXD)||,. In this section, we consider the
elementary operator ®(X) = AXB— CXD and we prove that if AC =CA, BD =
DB, and ASB = CSD, § € Cp, then, for 1 < p < oo, the map F;, defined by
Fy(X)=I|IT-(AXB-CXD) |I5 has a global minimizer at V if, and for 1 < p < o
only if, AVB—CVD = 0. In other words, we have || T — (AXB—CXD)l|l, > [ITIl},
if, and for 1 < p < o only if, AVB - CVD = 0. Additionally, we show that if
AC =CA,BD =DB,and T € kerAypNCy, 1 < p < oo, then the map F, has a
critical point at W if and only if AWB—-CWD = 0, thatis, if 9y F, is the Frechet
derivative at W of F,, the set {W € B(H) : 9wF, = 0} coincides with ker® (the
kernel of ®).

DEFINITION 7.1. Let U(A,B) = {X € B(H) : AXB—-CXD € Cp} and let F :
A —~ R* be the map defined by F,(X) = ||T — (AXB — CXD)||,, where T €
kerdnCp, 1 <p < co.

The proof of the following lemma is similar to the proof of Lemma 4.3.
LEMMA 7.2. Let A,B € B(H) be normal commuting operators. Suppose that
ASB=BSA,Se€Cp (1<p<o).If
A|S|PTLU*B = B|S|PTIU* A, (7.1
then

A|S|U*B = B|S|U*A. (7.2)

THEOREM 7.3. LetA,B,C,D € B(H) be normal operators such that AC = CA
and BD = DB. Assume that ASB=CSD,S € Cp (1 <p < o0). IfA|S|P-1U*B =
C|S|P-'U*D, then A|S|U*B = C|S|U*D.

PROOF. It suffices to take the Hilbert space H @ H and the operators

_[a o0 _[c o _[o s
e I I e BRCGE F 7.3

and apply Lemma 7.2. O

THEOREM 7.4. Let A,B,C,D € B(H) be normal operators, AC = CA, and
BD = DB. Suppose that ASB = CSD, S € Cp. Then, for 1 < p < o, the map F,
has a global minimizer at W if, and for 1 < p < « only if, AWB—-CWD = 0.
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PROOF. If AC =CA,BD =DB,and ASB=CSD, S € Cp, then, for1 <p < oo,
the result of Turnsek [14, Theorem 3.4] guarantees that

|IT—(AXB-CXD)||h = ITIl,, (7.4)
that is, F, (X) = F, (W). Conversely, if F,, has a minimum, then
IT—(AWB—CcwD)|, = IISI}p. (7.5)

Since AU is convex, then the set V' = {T — (AXB—-CXD); X € AU} is also convex.
Thus Theorem 5.2 implies that S — (AWB—-CWD) =S. O

THEOREM 7.5. Let A, B, C, and D be normal operators in B(H) such that
AC = CA and BD = DB. If § € ker® N Cp, then, for 1 < p < oo, the map F, has
a critical point at W if and only if AWB—CWD = 0.

PROOF. Let W,S €9 and let ¢p and @ be two maps defined, respectively, by
P: X—-S—(AXB-CXD)and p: X — ||X\|,’Z. Since the Frechet derivative of F,
is given by

Fyp(W +hT) —F, (W)

" (7.6)

G Fp (T) = lim

it follows that Dy F (T) = [Ds—aws-cwp) ] (BTA—-DTC).If W is a critical point
of Fp, then @y F,(T) =0 for all T € U. By applying Theorem 5.1, we get

By F,(T) = pRetr[|S— (AWB—CWD) |"'W*(BTA-DTC)]

(7.7)
=pRetr[Y(BTA-DTC)] =0,

where S — (AWB—-CWD) =W|S - (AWB—-CWD)| is the polar decomposition
of the operator S —(AWB—-CWD)and Y = |S—(AWB—-CWD)|P~'W*. An easy
calculation shows that BYA—-DYC = 0, that is,

A|S—(AWB—CWD)|"'W*B=C|S—(AWB-CWD)|"'W*D.  (7.8)
It follows from Theorem 7.3 that
A|S—(AWB-CWD)|W*B=C|S-(AWB—-CWD)|W*D. (7.9)

By taking adjoints and since A and B are normal operators, applying Fuglede-
Putnam theorem, we get A(T — (AWB—-CWD))B = C(T — (AWB—-CWD))D.
Then A(AW —WB)B = C(AWB—-CWD)D. Hence AWB—CWD € R(®) nker®.
By the same argument used in the proof of [13, Theorem 3.4], we can prove
that

IT = (AXB—CXD)|| = |IT|| (7.10)

forall T € B(H). Hence AWB—-CWD = 0.
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Conversely, if AWB = CWD, then W is a minimum, and since F, is differen-
tiable, then W is a critical point. O

THEOREM 7.6. Let A, B, C, and D be normal operators in B(H) such that
AC=CAandBD =DB.IfS eker®n(Cp,0<p <1,dimH < 0, and S - (AWB -
CWD) is invertible, then F, has a critical point at W if AWB—CWD = 0.

PROOF. Suppose that dimH < c. If AWB—CWD = 0, then S is invertible
by hypothesis. Also |S| is invertible, hence |S|?~! exists for 0 < p < 1. Taking
Y = |S|P~1U*, where S = U|S| is the polar decomposition of S, choose X to be
the rank-one operator f ® g for some arbitrary elements f and g in H@® H. Then
tr(Y(AXB—CXD)) =tr(AYB—CYD)X =0 implies that (¥(Y) f,g)=0<Y €
ker®, that is, AYB—CYD =0 and tr[(DYC - AYB)T] =0 for every T € B(H).
Since S =S - (AWB-CWD), then

0=tr[YDTC-YATB] =tr[Y(DTC—ATB)]
= pRetr[Y(DTC—ATB)] = pRetr[|S|P"'U*(DTC - ATB)] (7.11)

= (9rp)(DTC—ATB) = (GwF,)(T). .

REMARK 7.7. The set ¥ = {X : AXB—-CXD € Cp} contains Cp; if X € Cp,

then X € ¥ and, for example, I € ¥ but I ¢ C,. If A € Cp, the conclusions of
Theorems 7.3, 7.4, 7.5, and 7.6 hold for all X € B(H).

For n > 2 the generalization of the above results to the elementary operators
2?:1 A;iXBj is not possible. In [12], Shul’'man stated that there exists a normally
represented elementary operator of the form X" ; A;XB; with n > 2 such that
ascE > 1, that is, the range and kernel have no trivial intersection.
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