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A variational analysis of dynamics of soliton solution of coupled nonlinear
Schrodinger equations with oscillating terms is made, considering a birefringent
fiber with a third-order nonlinearity in the anomalous dispersion frequency region.
This theoretical model predicts optical soliton oscillations in lossy fibers.
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1. Introduction. The propagation of bright solitons in birefringent optical
fibers has been the subject of intensive theoretical and experimental investiga-
tions during the past two decades. The solitons are nonlinear pulses in fibers
when the nonlinearity induced by the optical intensity balances the dispersion
of the fiber. Studies of bright soliton propagation in fibers are demanding with
reference to the development of soliton-based optical communication, gener-
ation of short pulses, and soliton lasers. The idea of exploiting these solitons
as natural bits to transmit optical data motivates important research efforts
towards the development of models [2, 3, 5, 6, 7, 8, 9] describing solitary wave
propagation in optical fibers under different conditions. In lossless, one would
not expect solitons to distort in either the time or frequency domains regard-
less of the distance over which they propagate. This supposition is, however,
not true in the case of lossy fibers. In this paper, we follow an adiabatic ap-
proach using a variational technique [1] to study dynamics of bright solitons
generated from semiconductor lasers in a lossy birefringent fiber.

2. Variational approach to coupled nonlinear Schrédinger (CNLS) equa-
tions. The birefringence in fibers arises from the geometric and material con-
tributions [4]. The geometric contribution comes from the ellipticity of the core
of the fiber which breaks the cylindrical symmetry. The material contribution
comes from the strain within the material forming the core and cladding of
the fiber. The birefringence in fibers gives rise to two orthogonal polarization
modes that need to be considered. The dynamics of optical solitons in a lossy
birefringent fiber is important from a theoretical point of view as well as for
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the applications, and it is governed by the following CNLS equations [5, 6, 7]:
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u and v are the normalized amplitudes of the fast and slow modes, respec-
tively; t is the time coordinate in a frame moving with the average group ve-
locity of the two modes measured in units of the modulational wavelength; z
is the distance along the propagation direction; ¢ is the normalized birefrin-
gence; € denotes the relative strength of the cross-phase modulation; R is the
wave vector mismatch due to modal birefringence of the fiber; and y denotes
the losses in the fiber. The oscillating terms in (2.1) arise from nonlinear po-
larization and cannot be taken off in the case of fibers with low birefringence
as it causes an instability in which the slow moving partial pulse transfers en-
ergy to the fast moving partial pulse [7]. Using the transformations (see [5, 6])
p =VB/2(uel® +ve~i*?) and g = B/2(ue'®? —ve~1?), we can write the CNLS
equations (2.1) as
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where « = (1/4)R6, f = (1/2B)(1+A+B+4D), f' = (1/2B)(1+ A+ B—-4D),
h=(1/B)(1-A),and g = (1/2B)(1+A-B).

Since losses in the fiber lead to exponential decrease of soliton amplitude,
we use the transformations p — p’e % and q — q’e~¥# to write (2.3) in the
form
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The spatiotemporal evolution of the wave amplitudes in the case of bright
solitons is governed by the Lagrangian density
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where p, =0p’/0z, p; = 0p’/0t, and so on.
The bright soliton solutions of (2.4) using a variational technique is based
upon assuming the trial function [6]
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xsech[2n, (t-C)],

(2.6)

that describes the temporal form of the soliton pulses. The evolution parame-
ters ny, Cr, Vir, D, (r = 1,2 correspond to p” and q’ solitons, respectively), and
C represent amplitude, central position, velocity of soliton’s central position
as it propagates along the fibre, phase, and initial frequency chirp of the soli-
ton, respectively. We substitute (2.6) into the Lagrangian density (2.5) and use
Euler-Lagrange equations to obtain the following system of coupled ordinary
differential equations (ODEs) for the evolution of soliton parameters:
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where
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We evaluate the above integrals for nearly equal pulse amplitudes n; = n» = n,
relative phase ¢p = D> — D1, relative distance between two polarization maxima
p =x»—Xx1,and V; = V2 = V. The relative parameters 12, V12, ¢, and p defined
for p’ and g’ solitons are obtained as follows. Writing n,2 = n; —n» and using
(2.9), we get
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Similarly, writing V1> = V] — V5 and using (2.7), we get
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The two solitons with opposite phases form a bound state provided that
Vv
Ep+q5=<l>=irr. (2.16)

Thus, we write (2.15) as
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Equation (2.18) can also be written as
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where o = (Ja/y)e ¥=.
Equation (2.19) is a Bessel equation. Its general solution is given by

p(U)=X1g(U)+YJ*g(G). (2.20)

Considering y to be small, we use asymptotic expansion of Bessel function to
write (2.20) as

1/2
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and the frequency w of relative oscillations of soliton positions is given by
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3. Conclusion. In this paper, we have considered CNLS equations with os-
cillating terms to develop a theoretical model of a birefringent optical fiber.
This theoretical model demonstrates polarized bright soliton dynamics in a
lossy birefringent fiber. We used a variational approach to obtain frequency of
relative oscillations of soliton positions by taking into account the interaction
between different polarizations in a lossy birefringent optical fiber.

REFERENCES

[1] D. Anderson, M. Lisak, and T. Reichel, Approximate analytical approaches to non-
linear pulse propagation in optical fibers: a comparison, Phys. Rev. A 38
(1988), 1618-1622.

[2] K. ]J. Blow, N. J. Doran, and D. Wood, Polarization instabilities for solitons in bire-
fringent fibers, Opt. Lett. 12 (1987), no. 3, 202-204.



3148 M. F. MAHMOOD AND S. BROOKS

[3] M. N. Islam, C. D. Poole, and J. P. Gordon, Soliton trapping in birefringent optical
fibers, Opt. Lett. 14 (1989), no. 18, 1011-1013.

[4] L P.Kaminow, Polarization in optical fibers, IEEE J. Quant. Electron. 17 (1981),no. 1,
15-22.

[5] M. F. Mahmood, W. W. Zachary, and T. L. Gill, Chirped solitary pulses in low bire-
fringent optical fibers: a theoretical model, Opt. Quant. Electron. 28 (1996),
1007-1012.

[6] ___, Nonlinear pulse propagation in elliptically birefringent optical fibers, Phys.
D 90 (1996), no. 3, 271-279.

[7]  C.R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium, IEEE
J. Quant. Electron. 25 (1989), no. 12, 2674-2682.

[8] J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, Soliton propagation in optical
devices with two-component fields: a comparative study, J. Opt. Soc. Amer.
B Opt. Phys. 12 (1995), no. 6, 1100-1109.

[9] S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and
R. H. Stolen, Observation of ultrafast nonlinear polarization switching in-
duced by polarization instability in a birefringent fiber rocking filter, IEEE J.
Quant. Electron. 25 (1989), no. 1, 104-112.

M. F. Mahmood: Department of Mathematics, Howard University, Washington, DC
20059, USA
E-mail address: mmahmood@howard. edu

S. Brooks: Department of Mathematics, Howard University, Washington, DC 20059,
USA


mailto:mmahmood@howard.edu

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for

Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009

Manuscript Due

First Round of Reviews

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

