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1. Introduction. The study of oscillatory Stokes flows has a key role in the
understanding of the biomechanics of blood flow, the Brownian motion, the
motion of swimming microorganisms, and other biological or chemical phe-
nomena. The oscillatory Stokes flows have some important characteristics. For
example, at low frequencies, they reduce to steady (more exactly quasi-steady)
Stokes flows with diffusion of vorticity. At high frequencies, oscillatory Stokes
flows reduce to potential flows, located outside of viscous boundary layers.
Such a boundary layer, called the Stokes layer, appears in the vicinity of a solid
boundary and has the thickness equal to (v/Q)!/2, where v is the kinematic
viscosity of the fluid and Q is the angular frequency of oscillations.

There are several papers devoted to oscillatory Stokes flows. The first paper
which refers to an oscillatory Stokes flow problem is that of Stokes (see [15]).
The author treated the flow due to the longitudinal oscillations of a sphere
or a cylinder in a viscous incompressible fluid. Lawrence and Weinbaum (see
[6]) proved that when nonspherical particles are oscillating in a viscous incom-
pressible fluid, then an additional term in the expression of the total force
on the particles, which is not given by Basset (see [1]), appears. This term is
provided by the oscillations and the form of the particles.

Further, Kim and Russel (see [4]) used the methods of reflection and of multi-
pole expansions to the problem of the interaction of two spheres in a Brinkman
medium. We note that the equations which describe the Brinkman medium are
equivalent with the equations of unsteady Stokes flow. Also, the motion of a
sphere near planar confining boundaries in a Brinkman medium was studied
by Feng et al. (see [2]). The authors used a similar method to that of Pozrikidis
(see [12]). Pozrikidis used the singularity method in order to treat unsteady
Stokes flows past solid obstacles (see [9]). The same author reported an indirect
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boundary integral method for the oscillatory Stokes flow past solid particles
and gave a numerical procedure in order to solve the resulting boundary inte-
gral equation in the case of axisymmetric flow (see [10]). In his paper, Pozrikidis
described the process of separation from the body together with the develop-
ment and decay of eddies in the fluid. The results of Pozrikidis concerning the
kinematic effects of unsteady Stokes flow were extended by Smith (see [14]).

The purpose of this paper is to present an indirect boundary integral method
for the oscillatory Stokes flow due to the translational oscillations of two solid
spheres in a viscous incompressible fluid.

2. Mathematical formulation of the problem. We consider an oscillatory
Stokes flow due to the oscillations of two solid spheres with the radii R, and
R» and the velocity Uexp(—iQt) in a quiescent incompressible Newtonian fluid
of infinite expanse. Here Q) is the angular frequency of oscillations. The velocity
and pressure fields v and p have to satisfy the following equations:

p%:pf—Vp+uv2v in D, V.-v=0 inD, (2.1)

where p and u are the density and the dynamic viscosity of the fluid, pf is the
body force, and D is the domain of the flow, outside of two spheres. Assuming
that the body force is constant, we consider the modified pressure P given by

P=p-p(f-x). (2.2)

Now, using the fact that the flow is an oscillatory flow, the velocity field v
and the modified pressure P can be written as

v(x,t) =u(x)exp(—iQt), P(x,t) = q(x)exp(—iQt). (2.3)

From (2.1) and (2.3), we obtain the following equations which describe the
oscillatory Stokes flow:

—-ipQu=-Vg+uAu inD, V-u=0 inD. (2.4)
We now consider the nondimensional variables

- 2.
q qu, (2.5)

where U = |U| is the modulus of the amplitude of oscillations of the spheres,
and R is one of the two radii R; and R». Then (2.4) become

(A2-A)W +V'g =0, V.-u=0 inD, (2.6)
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where A2 = —iQR?/v is the frequency parameter and v = u/p is the kinematic
viscosity of the fluid.

Let 3, and X be the boundaries of the solid particles. The nondimensional
velocity field u’ have to satisfy the following boundary conditions on these
surfaces:

u=e onl,i=1,2, 2.7)

where e is the unit vector of the direction of the particle displacement. Hence
U="Ue.

Also, because the fluid is in rest at great distances, we add the following
far-field conditions:

ux)—0, gx)—0 as|x|— o. (2.8)

In order to simplify the notations, we will omit the symbol prime from (2.6)
and conditions (2.7) and (2.8).

3. Uniqueness result of solution. With the help of the flux divergence for-
mula, the following result can be easily obtained.

THEOREM 3.1. Let % C R3 be a bounded domain with the boundary 0% of
class CL. Ifti,u* € C2(9) N C1 (@) are two vectorial functions such that V - i =
V-u*=0,and §,q* € C1(D) N CY(D) are two scalar functions, then

j w - [(A2 = A)ii+ Vi ]du
]

=I u*-(T[ﬁ])ndU+?\2J ﬁ-u*dwzj (DI{]) : (D[u*])dv,

where D[] denotes the deformation tensor, that is,

D[] = = (Vi +(Vi)T), (3.2)

N | —

(V)T is the transposed matrix of VU = (01;/0xk)ik=1,..3) T[U] is the stress

tensor associated to the fieldsu and q, that is,

T[#i] = — 41+ 2D[i], (3.3)

(I is the 3 x 3 identity matrix), and n is the inner (with respect to the bounded
domain %) unit surface normal vector to 09%.
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Note that for two 3 x 3 matrices A(A;;) and B(B;;), we set

3
A:B= Z AijBiJ'. (3.4)
i,j=1

Using the above result and a straightforward computation, we can prove the
uniqueness of the classical solution (u,q) of the oscillatory Stokes problem
(2.6), (2.7), and (2.8) (i.e,u € C2(D)NnC'(D) and g € C' (D) n CO(D)).

THEOREM 3.2. The oscillatory Stokes system (2.6), together with the bound-
ary conditions (2.7) and the following conditions at infinity:

[ux)| |Vux)| =o(xI72), |ux)||lax)]| =0(Ix|"?) as|x| — o, (3.5)

has at most one solution.

4. The Green function of the oscillatory Stokes flow. Consider the oscilla-
tory free-space Green function (or oscillating Stokeslet) G** = (Gi‘;)i! j-13 and
the pressure vector IT" = (IT), 11)°, 11)°) of the oscillatory Stokes flow due to
a point force located in the point y of R3. These functions satisfy the following

equations:

o (%) IGN (R)
——— =5;6(%), —l " =

2_AVGN (R
(A2-2)GY &) + .

ox; 0, (4.1)

where §;; is the Kronecker’ symbol, §(X) is the three-dimensional delta func-
tion, and X = x-.
The components G{‘jz of the Green function G** are given by [8, 10]:

1) ®

A2 oy _ _J
Gij (X) = A2 aXi ’

(4.2)

L ar| 2 4 ) — XK gy
41T r r3

where = |X|, A € C means the particular square root of A2 which has a positive
real part (ReA > 0), and

1 1 3 3
A(l)—1+7+l—2, B(l)_1+7+l_2 (43)
The components H?Z of the pressure vector " are given by
&) - X 103 (4.4)
t T4y’ T 0T :
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Next we consider the stress tensor S"Z, associated to the oscillating Stokeslet
and having the following components [11]:

0GY,  9G},;
oXi  oXxi

She =T 8+ 4.5)

From (4.2), (4.3), and (4.4), we obtain
SN (x—)

1 (1, . N (. 3 3 6
:—E{F(éij)ck+5ijl')|:e ()\1"+1)+2€ <1+E+W>—W:|

1. . A 3 3 6
- 1’_35ikxj[l+2e r<1+ ar /\272> N ;\272]

)?fifj)ACk |:7 7)\7,( i 3 ) 30 o —Ar ]
+ 5 10e 1+ r + 322 + 322 eV (Ar+1) | ¢.
(4.6)

On the other hand, using the symmetry property of the Green function GV’
d.e., G?j (x-y) = Gj‘lz (y —x)) and the formulas (4.4), (4.5), we can write the
components of the stress tensor S* as follows:

2

A A2
A2 1 Vyi—x; aGﬁ (y—x) ank(Y_X)
Six(x=y) = 41T { 73 Oik+ Xk * 0xi :

4.7)

Thus the tensor SV’ is determined by a point force (the first term of the right-
hand side of (4.7)) and by two point force dipoles (the second and third terms
of the right-hand side of (4.7)). Using again the formula (4.4) and the remark
that the pressure field %,2, due to a point source located at an arbitrary point
X, is P52 (X) = A?/r, we deduce that the pressure tensor A‘\Z, associated to the
stress tensor SAZ, has the following components [13]:

oY (y —x) . )’ (y—x) }

oo o LY o s
A x-y) = { Pr2(X—y)ix + ax ax,

81
(4.8)

i{%()\%z—z) + 6’1‘}5"}, ik=1,23.

:417

5. Properties of the unsteady hydrodynamic potentials. Let I be a closed
surface of class C? and h = (h,h»,h3) a vectorial continuous function on I.

For x € R?\T, we define the unsteady single-layer potential °V§\2 h as follows:

(Ve 1), 00 = | G -y hity)do (), j=1,2,3, (5.1)
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and the unsteady double-layer potential szh as

(1), 0 = | Sh(y=xmmhi(y)do ), (5.2)

where n(y) is the exterior unit normal vector to I" at the point y.
Additionally, we consider the functions PS hand P;\z rh as follows:
( eah) 00 = [ 1 -y o),
(5.3)
P h) () = [ AX x-ym i do ),

forx € R3\T.

The functions (°VA2 0, Py, rh) and (°VA2 rh P)‘fz r
each of the domains [R3 \Dg and Dy, respectively, where Dy is the inner domain
with the boundary T'. Also these functions satisfy the following equations of
oscillatory Stokes flow:

h) are smooth functions in

(A*=A) (V3 h) ) + V(P h) (x) =0, V- (V3 h)(x) =

(5.4)
(A*=A) (Y, ;h) () +V(PL h) (%) =0, V- (T, h)(x) =

for x € R3\T.

For our purpose, we also need the surface force Hy: rh, associated to the
unsteady single-layer potential ¥, -h and defined in a neighborhood ¥ ¢ R?
of T as follows [5, 16]:

A2 T

(Hye ), 0 = mi®) | SN x-y)hi(y)dor(y), (5.5)

where X €T is the unique determined projection of x € ¥ onto T.

Let % be the free-space Green function (or the Oseen-Burgers tensor) of the
steady Stokes flow and let ¥ be the associated stress tensor. These tensors
have the following components [5, 11]:

~ 1 61'] Qi-’%j ~ 3 XXJXk
(gij(x)=8_ﬂ_{7+7 o FipX) = - (5.6)

Using again the formulas (4.2), (4.3), and (4.6), we obtain the following de-
compositions:

GN R =GR +GY ®),  SN® =R +8N, ®), (5.7)

where G} and §%,

are continuous functions. Thus, we have
GY () ~%;;(%) —0 asr —0 (or A —0),

le(X) Fijk(X) — 0 asr — 0 (or A — 0),
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and thus the potentials (5.1) and (5.2) have the same behaviour as in the case
A = 0. With this argument, we obtain the continuity property of the unsteady
single-layer potential in the whole space R3 and the well-known jump formulas
for the unsteady double-layer potential and respectively the surface force of
the unsteady single-layer potential across the boundary I

We introduce the notations

wh(xo) = lim w(x), w(x0) = lim w(x), (5.9)
x—-xoel x—-xoel
xeR3\Dg xeDy

for the limiting values of a function w on the two sides of the surface I'. Addi-
tionally, the notation

" PV
(7erh), (0) = | Sije(y =x0)m(¥)hi(y)dor(y) (5.10)

means the principal value of the unsteady double-layer potential in a point
xo of T (i.e., the value of the improper but convergent unsteady double-layer
potential when x( € I'). Similarly,

PV
(Hyzrh)} (x0) = ny (xo) . Sjik (X0 —y)hi(y)do (y) (5.11)

means the principal value of the surface force of the unsteady single-layer
potential in the point xy €T.

Now, using the above properties as well as the notations (5.9), (5.10), and
(5.11), we obtain the following result.

THEOREM 5.1. Let Dy C R?® be a bounded domain with the boundary T of
class C? and leth € C°(T') be a given vectorial function. Then on the surface T

( iz,rh>+ = (V3rh) =73, (5.12)
(¥4, ;h)" — (v4, h)" = %h = (v, h)" — (v4 b)), (5.13)
(Hyrh)* - (Hyzrh)* = f%h = (Hye;h)" - (HY, (h) (5.14)

Next, we determine the asymptotic behaviour of the unsteady potentials at
infinity. First, from (4.2), (4.3), and (4.4), it follows that (see [17])

(v

/) (0 =0(1x173)  as x| — oo,

) (5.15)
(P2/h) (0 =0(1xI72)  as |x| — o.
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Additionally, from (4.6), we conclude that the components Sf‘;knk of S¥°n
can be written in the following manner [17]:

SM Y =Xk (y) = 1 {(Xinj(y} Xir (y)

_E 73 + 73 61'])611()\7’)
R ] (5.16)
x;ni(y) XiXjXgne(y)

73 612(7\7’)+Ta3(7\7’)},

where
ai1(Ar) = e M[3+6(Ar) ' +6(Ar) 2+ Ar] —6(Ar) 2,
ax(Ar) =1+2e M [1+3(Ar) ' +3(Ar) 2] - 6(Ar) 2, (5.17)
az(Ar) =2e N[ —6-Ar —15(Ar) "' = 15(Ar) 2] +30(Ar) 2.

Hence, we have

a1(Ar) =0(r?) as v — oo,
a(Ar) =1+0(r72) asvr — oo, (5.18)
az(Ar) =0(r7?) as ¥ — oo,

and thus the unsteady double-layer potential has the following behaviour at
infinity [17]:

(V4. h) (x) =0(1xI72) as |x| — o, (5.19)
Finally, formula (4.8) yields (see [17])
(PLh)(x) = 0(1x|™") as x| — . (5.20)

6. The boundary integral formulation of the problem. In this section, we
give a boundary integral formulation in order to solve the oscillatory Stokes
problem (2.6), (2.7), and (2.8). More exactly, we have the following theorem.

THEOREM 6.1. The following boundary integral equation:

Eh(x0)+(%/AZ’ZIUZZh) (x0)+<°1/§\2’21U22h) (x0) =e, XoEZ, Uy, (6.1)

has exactly one continuous solution h on 3, U 2, and the boundary integral
representations

ux) = (Vs 05, h) 0 + (Vs 05,h) %), x€D, (6.2)
ax) = (P, s, h) %)+ (P, o5,h) %), x€D, (6.3)

give the unique solution (u,q) of the oscillatory Stokes system (2.6), which satis-
fies the boundary condition (2.7) and the asymptotic conditions (3.5) at infinity.
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REMARK 6.2. The unknown density h of (6.1) has the following form:

hl on Zl,
h= (6.4)
h2 on 3o,
and the unsteady double-layer and single-layer potentials, °V/\2 08, and
VAZ‘ZleZ, are written as follows:
v, sus,= 14 5, +OVAZ s, D2, (6.5)
OVAZ,ZIUZZh OI/AZZ h1 +OVAZZ h2.

PROOF OF THEOREM 6.1. Using the decomposition formula (5.7), we de-
duce that the single-layer and double-layer operators, °V)\2 s 1CO(Z)) - COZp)

and V)\Z,Zi 1CY(Z;) - CY(Z;), where

(1325,8)(x0) = L_ GY (x0—-y)gi(y)do(y), Xo €5,

(Vi 5 8);(x0) = (V5 5.8) (x0) (6.6)
PV 2
=, SM Y —X0) i () gi (y)do (y), %o €3,

i

g € C%(;), have weakly singular kernels and hence they are compact operators
on the Banach space C°(Z;) of continuous functions on %;, i = 1, 2.
Furthermore, we write (6.1) in the following form:

%hj(x()) +J Mji(xo,y)hi(y)do(y) =ej, Xo€3Zx, k=1,2, (6.7)

U
where
M;i(Xo,y)
- Suk( X0) g (y) +Gj.‘l:Z (xo-y), forye3;, xpeIiu, (6.8)
Suk( )nk(y)+G§‘f(xofy), fory e 3, xo € 21 UZ.

The integral operator generated by the kernel matrix (Mj;)j =123, with Z; U
>, as the domain of integration, is compact on the space of continuous func-
tions on £; Uy, due to the compactness of the integral operators ¥5, ;. and

sz s, 1 = 1,2 (generated separately by the kernels G" and $*n and with
> ’élll’ld Y,, resp., as domains of integration). Therefore, the boundary inte-
gral equation (6.1) is a Fredholm integral equation of the second kind for
which Fredholm alternative [5] can be applied. Thus this equation has a unique
continuous solution h for a given constant vector function e if and only if
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the following homogeneous adjoint equation admits only the trivial solution in
the space of continuous functions on X; U 3;:

1 *
ShO (o) + (Hp o o 1O0) (x0)+ (V3o B°)(%0) =0, Xp€XUZ. (6.9)

Xz , 21U

Let hO be a continuous solution of the homogeneous adjoint equation (6.9).
Consider the following functions:

(0) _ qps 0 0) _ ps 0
u O‘/Xz,zluzzh , q PXZ,zluzzh . (6.10)

These functions satisfy the equations

=2
(A" -4) (OV%Z,ZlLJZzhO) (x)+vq? (x) =0,
6.11)
S 0 _
V. (%fleuzzh )(x) -0

in each of the domains D, D;, and D;, where D; is the inner domain with the
boundary X, i =1, 2.

Furthermore, from (5.14) and (6.9), we deduce that the surface force
sz,zluzzho’ associated to the fields (6.10), has the following limiting value
on the inner side of X;:

— 1 *
) 0 _ 110 ) 0
(HXZ,zluzzh ) (x0) = 2h (o) + (HXZ,ZluZZh ) (x0) 6.12)
_ 0 .
= _(OV%Z,ZIUZZh )(XO), Xo € %
or
) 0y _ _ 0 i
(HXZ‘ZIUZZh ) = Yoy b0 onEi=12. (6.13)

Theorem 3.1 withti=u®, § =g, u* =u©®, and % = D;, i = 1,2, yields

32 [47(0) |2 (0) (0) _ | s/ 0. 0\~
JDi [z\ [u®| +2ejkejk]dv_Livﬁluzzh (Hpy , 0°) do,  (6.14)

where the unit normal vector n points outside of ¥; and

u® 5y ©
o_1 J Uy
ejp = 2( axi +—ava . (6.15)

Substituting (6.13) into (6.14), we obtain the identity

32 [4,(0) |2 0 50) _ s ol? _
J [2\ [u® % +2e5 ejk]dv— Liwxz,zluzzh ‘ do, i=1,2, (6.16)

i
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which implies that
u®=0 onD; i=1,2. (6.17)
From (6.13) and (6.17), we find that

(He, ,,0°) =0 onz;,i=1.2. (6.18)

Returning to (6.11) and using the properties (5.12), (5.15), and (6.17), we
conclude that the functions u” and q‘© determine an oscillatory Stokes flow
in the unbounded domain D, with zero velocity field on the surfaces 3; and
3, and at infinity. Thus from the uniqueness result (Theorem 3.2), we obtain

u® =0, ¢»=0 inD (6.19)
and consequently

0\* _ o
(HXZ‘ZWZZh) -0 onX;, i=1,2. (6.20)

Now, using the jump formula (5.14) for the surface force due to an unsteady
single-layer potential across its domain of integration, as well as the properties
(6.18) and (6.20), we deduce that

0_ 0\~ 0" _ i
h! ‘<sz,zluzzh> —(HXZ,ZIUZZh) =0 on3;, i=1,2. (6.21)

Hence the adjoint homogeneous equation (6.9) has only the trivial solution in
the space of continuous functions on X; U X,. From Fredholm alternative, we
conclude that the Fredholm integral equation of the second kind (6.1) has a
unique continuous solution h. With this function, we determine the boundary
integral representations u and g as in (6.2) and (6.3). Using the properties (5.4),
(5.15), (5.19), and (5.20), we find that the functions u and g satisfy (2.6) and
the asymptotic conditions (3.5) at infinity. Also from (5.12), (5.13), and (6.1),
it follows that conditions (2.7) are also satisfied. This completes the proof.

O

Finally, using (4.1), we may prove that the nondimensional amplitude F )
of the force R, exerted by the oscillatory Stokes flow on the surface %, (i.e.,
R(m) = UURF 4y exp(—iQt)), has the following components:

F(m)j:—JZ h(m)j(X)dO'
+2\2J h(m)l(y)J G (®)xjni(x)do (x)do (y) (6.22)
Sm Zm

+A? L homy (Y)ni(y) ID Sk y-xdv(x)do(y),

where hm = (I’l(m)l,h(m)z,h(m)3) on 3, m= 1,2.
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7. Asymptotic solution for small-frequency oscillations. As an applica-
tion of the above boundary integral method, we consider the case of small
values of the frequency parameter A2. With this aim, we expand the density
h, the oscillating Stokeslet G"z, and its associated stress tensor SV in Taylor
series with respect to A as follows:

h=h©@ +Ah® +A%h? +...  asA —0,
GVY =GO +AGM +A26GP 1. asA —0, (7.1)
SM =8 1 ASH 4 A28 4. as A — oo,

where (see [10])

1 (6ij XiX;
GO =g = _{i+4},

8w r 73
1
Gj = ~ o i (7.2)
1 Oii  XiXi
c®- L 2(3i_71 1).
L 327TT r r3

Substituting (7.1) into the boundary integral equations (6.1) and collecting
terms of zeroth and first order with respect to A, we deduce the following
equations:

PV
Lho +J [SOn]h® do +J GOhOdo = e, (7.3)
2 51U 51U
1 PV
S +J (SOnhVdo +J GORD o
U3 31U (74)
_ _J [SUn]h®do — GVhOdg,
3 US) Ijuxp
onx;,i=1,2.
Because GV = —(1/6m)I, it follows that S = 0 and thus
J [SYnhPdo =0 onZ;u3,. (7.5)
U

The boundary integral equation (7.3) corresponds to a steady Stokes flow
due to the translational motion of the solid spheres with the constant velocity
e. We may prove that the force F(z?), acting of the solid sphere X; in this steady
Stokes flow, is determined only by the single-layer potential with the density
hEO) and has the form (for more details, see [5, 11])

Fy) = —I hdo, (7.6)
3

where h{”) =h @5, i=1,2.



AN INDIRECT BOUNDARY INTEGRAL METHOD ... 2973

Hence from (7.3), (7.4), (7.5), and (7.6), we obtain the following boundary
integral equations for the unknown densities h® and h»:

PV
h(0 J [SOn]hPdo +J GOM9gdo =e, (7.7)
31U

31U

(FY+FY)),  (7.8)

h“ JV [S<0>n]h<1>da+J GORVdo - — L
51U 5 US) 61T

on X; UZ,. Consequently, the zeroth-order problem (7.7) describes the steady
Stokes flow generated by the translational motions of two solid spheres with
the velocity e, while the first-order problem (7.8) describes the steady Stokes
flow due to the steady motion of the solid spheres with the velocities le> /(671T)
and F )/(677) respectively. Hence the solution of the first-order problem
(7.8) may be computed using only the forces F(O) and F s actmg on the spheres
>, and X, in the steady Stokes flow.

Next using the relation (6.22) and the Taylor series (7.1), we obtain the fol-
lowing asymptotic development for the nondimensional amplitude F,,) of the
force Ry exerted on the sphere X, (m = 1,2):

F(m)J = J h m)J (x)do — )\J h(l) (X)do'

+/\2{L <o> l(y)J le X)xjnrx)do (x)do (y) 7.9)

j hmmownuyqﬂsbuy x)dv(x)do(y) |

0(A%) asA — 0.

8. Asymptotic solution for high-frequency oscillations

8.1. The velocity potential of the flow. In the case of high-frequency limit
|Alr — oo, viscous terms in the singularity solutions (4.2) and (4.5) vanish ex-
ponentially and hence we obtain

~100i(%)
A2 0%

Gl (®) = SM ) = ~8Q; (%), (8.1)

where

A

~ 2 A 1 x; .
Q=0 ® =, "4, j=123. (8.2)

More exactly, if we expand the function G?f in an asymptotic series for large
|A|7r, then we obtain

GA?::[1(_5ij+)?i55j>+16—)\7(61'1_%)4_... (8.3)
po :

r r3
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and hence (8.1). Next using the boundary integral representation (6.2) and the
property (8.1), we obtain the velocity field u in the form

1 0Qi(X)
le U3y

A2 oX;

uj(x) = hi(y)do (y)

(8.4)
[ o@mmhmdom.
U
Thus, in the limit |A|7 — o, we have
u(x) = -Vo(x), (8.5)
for x in the flow field, where ¢ is the velocity potential given by
1 ~
Px) = 2 QiX)hi(y)do(y)
31U
1 1 (8.6)
* - ;ni(y)hi(y)do(y).
From the equations
V-u=0, OTix = A%u; 8.7)
axk

and equality (8.5), we obtain the following properties of the velocity potential

¢:
A¢ =0, Tix = —A°pdik, (8.8)

where Tj; are the components of the stress tensor associated to the fields u
and q.

The resulting irrotational velocity field vanishes at infinity and satisfies the
impenetrability condition on the surfaces X, and X, but it does not satisfy the
nonslip boundary condition on the same surfaces. This result appears from
the nonuniform limiting process |A|¥ — o, used to obtain (8.4) from (6.2). At
high frequencies, the flow is composed of an outer irrotational flow and two
Stokes boundary layers of thickness |A|~! that reside on each of the particle
surfaces. To compute the outer irrotational flow, we solve the following Fred-
holm integral equation of the second kind for the velocity potential ¢:

p0=2[  GEyamydoy)
ZuZp
PV (8.9)
+2 VG(x,y) -n(y)p(y)do(y), x€I U3,
Uy
where G (x,y) = 1/(41rr) is the fundamental solution of the three-dimensional
Laplace equation. Note that the boundary integral equation (8.9) has a unique

solution ¢ [13].
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For a point x away from the particle surfaces, equation (8.9) is replaced by
the following formula:

P(x) = J Gx,y)exni(y)do(y)
ZuZp

(8.10)
+J VG(x,y) -n(y)p(y)do(y).
31U

8.2. The boundary-layer solution. In the viscous boundary layer that re-
sides on the surface X;, the characteristic length for tangential flow field vari-
ations is the local radius of the mean curvature, denoted by b;(x). The char-
acteristic length for the flow field variations normal to the surface ¥; is |A| 1.
For |A|b;(x) > 1, the boundary-layer equations for the unsteady Stokes flow
field are [7]

200,
682\;'\2’1 */\Zwi _ AZVZi¢,
52 5 5 (8.11)
Vi 42, _94 e OV
0z2 ATvy oz’ VWit oz 0,

where w; is the tangential velocity field, v; is the normal velocity component, z
is thelocal normal coordinate, Vs, is the surface gradient operator, and ¢ is the
velocity potential (evaluated on the surface X;, i = 1, 2) for the outer irrotational
flow. The velocity field that satisfies the nonslip boundary condition on the
surface 3; and matches the potential flow solution (8.5) is [7]

wi:efAzWQ*Vzi(ﬁ, UiZ*%(lfei/\z)Vzi'W;*%, (8.12)
i _ gy, (8.13)
on !

where w' = e + V¢ is the associated tangential slip velocity (relative to the
surface ;) and Agq; = g — A%¢ is the excess pressure of the order O(|A|) that
appears from the boundary layer flow.

For the next arguments, we denote by Ag’ the excess pressure of the order
O(|A]) that appears from two boundary layer flows.

Now using property (8.13) and the fact that Ag’ = 0, we obtain the following
Fredholm integral equation of the second kind for the excess pressure g’ [3]:

7 __i g i 7 _ 7 a
a0 = Z]UZZ[Tvzluzz W (y) - 814 <y>Qk<x>nk<y>]da<y), (8.14)

X € 31 UZ,, where the velocity potential ¢ has been obtained from (8.9). Note
that (8.14) has a unique solution [13].
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