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We obtain exact inequalities which connect moments of some functions of sums
of independent random variables taking values in a measurable Abelian group
and those for the accompanying infinitely divisible laws. Some applications to
empirical processes are studied.
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1. Statement of the main results. Let X1, X>,... be independent random
variables taking values in a measurable Abelian group (%, ) with respective
distributions Py, P»,.... Moreover, if these random variables are identically dis-
tributed (the i.i.d. case), then we denote by P their common distribution. We
suppose that {0} € « and the group operation “+” is measurable. In other
words, a sum of arbitrary random variables in (%, #) is a random variable too.

Denote by Pois(u) the generalized Poisson distribution with the Lévy mea-
sure u

© xk
i M9 H
Pois(u) :=e go R (1.1)

where p*¥ is the k-fold convolution of a finite measure p with itself; u*© is the
unit mass concentrated at zero. Under the measurability conditions above the
convolution is well defined because we can define the convolution of probabil-
ity (i.e., normed finite) measures.

Put S, := >;.,, Xi. Generalized Poisson distribution with the Lévy measure
U= >,.,P;iis called the accompanying Poisson law for S, (see, e.g., Araujo
and Giné [1]). We will denote by T, a random variable having this distribution.

The main goal of this paper is to obtain sharp moment inequalities for some
measurable functions of S, via the analogous moments of the accompanying
Poisson law. Results of such kind are connected with the Kolmogorov problem
of approximation of the sum distributions by infinitely divisible laws as well
as with an improvement of the classical probability inequalities for the sums.
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For an arbitrary measurable function f satisfying the condition E| f(1,)| <
oo, introduce the following notations:

P (k) :=Ef(Sk),  Pmz(k):=Ef (Smk+2), (1.2)

where Sy = X<k Xmii,» Smo = So = 0, and {X,; : i = 1} are independent
copies of the random variable X;,. We assume that all the sequences {X;},
1X1,i},{X2,i},... areindependent. Note that, under the moment condition above,
the functions ¢ (k) exist and the functions ¢, - (k) are well defined at least for
almost all z with respect to the distribution of S for each j # m and integer
k > 0 (for details, see Section 3).

We say that a function g(k) is convex if the difference Ag(k) := g(k+1) —
g (k) is nondecreasing.

THEOREM 1.1. Let one of the following two conditions be fulfilled:
(a) the random variables {X;} are identically distributed and ¢ (k) is a con-
vex function;
(b) for all z and m, all the functions ¢, (k) are convex.
Then, for each n,

Ef(Syn) < Ef(Tu)- (1.3)

For the initial random variables which are nondegenerate at zero, let {X?}
be independent random variables with respective distributions

PY:=%(X; | Xi #£0). (1.4)

For this sequence, we introduce the notations S,?, an’k, ¢°(k), and ¢0m’z(k) as
above.

PROPOSITION 1.2. Convexity of the functions ¢°(k) or ¢, , (k) implies con-
vexity of the functions ¢ (k) or ¢pm - (k), respectively. The converse implication
is false.

REMARK 1.3. If the functions in the conditions of the above two assertions
are concave, then inequality (1.3) is changed to the opposite. This follows from
the well-known connection between convex and concave functions.

A simple sufficient condition for the functions ¢ (k) and ¢, - (k) as well
as ¢ (k) and ¢9, , (k) to be convex is as follows: for all x € % and all z,h €
Ui<n SUpp Xj, the function f satisfies the inequality

fix+h) -f(x)<f(x+h+z)-f(x+2), (1.5)

where supp X; denotes a measurable subset such that X; € supp X; with prob-
ability 1.
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For example, in the i.i.d. case, the convexity (say, of ¢ (k)) follows easily from
(1.5):

P(k+1) =P (k) <E(f(Sks2) = f(Sk+Xks2)) = pk+2) —p(k+1).  (1.6)

For the Banach-space-valued summands, the following result is valid.

THEOREM 1.4. Let G be a separable Banach space. Suppose that at least one
of the following two conditions is fulfilled:

(1) the function f is continuously differentiable in Fréchet sense (i.e., f’ (x)[h]

is continuous in x for each fixed h), and, for each x € 4 and every z,h €

Ui<nSupp X;,
F (x)[h] < f (x+2)[h]; (1.7)

(2) EXy =0 for all k, f is twice continuously differentiable in Fréchet sense,
and f" (x)[h,h] is convex in x for each fixed h € |J;,, supp X;.
Then all the functions in the conditions of Theorem 1.1 and in Proposition 1.2
are convex.

COROLLARY 1.5. If X; > 0 a.s. and f is an arbitrary convex function on
[0,00), then inequality (1.5) is true. Moreover, if X; are random vectors in RX,
k = 2, (as well as in the Hilbert space l,) with nonnegative coordinates, then
the function f(x) := ||x||>*%, where || - || is the corresponding Euclidean norm
and « > 0, satisfies inequalities (1.5) and (1.7). For the mean zero Hilbert-space-
valued summands, the function f(x) := || x||#, where B = 2,4 or B = 6, satisfies
Theorem 1.4(2). Therefore, in these cases, inequality (1.3) holds under the addi-
tional necessary restriction E| f (T,)| < .

REMARK 1.6. In the multivariate case, conditions (1.5) and (1.7) are slightly
stronger than convexity. In particular, in general, the Euclidean norm does not
satisfy these conditions.

REMARK 1.7. There exist functions f(x) which do not satisfy the condi-
tions of Theorem 1.4, but the corresponding functions in Theorem 1.1 and
Proposition 1.2 are convex. For example, in the i.i.d. one-dimensional case, we
consider the function f(x) := x° and the centered summands {X;}. It is clear
that the conditions of Theorem 1.4 are not fulfilled. In this case we have

k 5
b (k) :E(in) = kEX} + 10k (k — 1)EXSEX?. (1.8)
i=1

Thus, if EXl3 > 0, then the function ¢ (k) (as well as the function ¢°(k)) is
convex, otherwise it is concave.In other words, in this case we have various
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inequality signs in (1.3) depending on positivity or negativity of the third mo-
ment of the summands.

Given a finite measure y on (%9, ) satisfying the condition u({0}) = 0, we
denote by ¢, (k) the function ¢ (k) in (1.2) computed in the ii.d. case for the
summand distribution u(-)/u(%). Exactness of inequality (1.3) is characterized
by the following result.

THEOREM 1.8. In the i.id. case, let the function ¢, (k) be convex. Then
Su}PEf(Sn) = Ef(Tu) (1.9)
n,

whenever the expectation on the right-hand side of (1.9) is well defined, where
$(1y) =Pois(u) and the supremum is taken over all n and P such that nP(A\
{0}) =u(A) forall A € A.

REMARK 1.9. Taking inequality (1.3) into account, we can easily reformu-
late Theorem 1.8 for the non-i.i.d. case. Perhaps, for the first time, the idea of
employing generalized Poisson distributions for constructing upper bounds
for moments of the sums was proposed by Prokhorov [25, 26]. In particu-
lar, relations (1.3) and (1.9) were obtained by Prokhorov [26] for the functions
f(x) := x2™ (m is an arbitrary natural number) and f(x) := ch(tx), t € R, and
for one-dimensional symmetric {X;}. Moreover, in the case of mean zero one-
dimensional summands, these relations for the functions f(x) := exp(hx),
h = 0, can be easily deduced from Prokhorov [25] (see also Pinelis and Utev
[24]).

The most general result in this direction was obtained by Utev [28] who, in
fact, rediscovered and essentially employed some results of Cox and Kemper-
man [11] regarding lower bounds for moments of sums of independent cen-
tered random variables. Under Theorem 1.4(2), he proved extremal equality
(1.9) for nonnegative functions f(x) having an exponential majorant. More-
over, he required some additional unnecessary restrictions on the sample Ba-
nach space. In our opinion, the corresponding proofs of the present paper are
simpler than that of Utev and need no additional restrictions on f(x) and the
sample space.

Relations like (1.3) and (1.9) can also be applied for obtaining sharp moment
and tail probability inequalities for sums of independent random variables
(for details, see Kemperman [17], Pinelis and Utev [23, 24], Utev [27, 28], and
Ibragimov and Sharakhmetov [15, 16]).

The above results deal with some type of convexity. However, we can obtain
moment inequalities close to those mentioned above without any convexity
conditions.
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THEOREM 1.10. In the i.i.d. case, for every nonnegative measurable function
f, the following inequality holds:

Ef(Sn) <

1_pEf(Ty), (1.10)
where p :=Pr(X; £0).

In the non-iid. case, the factor (1 —p)~! in (1.10) should be replaced by
exp(X i<, i), where p; :=Pr(X; #0).

It is clear that inequality (1.10) provides a sufficiently good upper bound
under the so-called Poissonian setting when the summand distributions have
large atoms at zero (i.e., the probabilities p; are small enough). Some particular
cases of inequality (1.10) are contained in Araujo and Giné [1] and in Giné et
al. [14].

2. Applications to empirical processes. In this section, we formulate some
consequences of the above theorems as well as some new analogous results
for empirical processes. For the sake of simplicity, we study the empirical pro-
cesses with one-dimensional time parameter although the results below can
be reformulated for empirical processes indexed by subsets of an arbitrary
measurable space (moreover, for abstract empirical processes indexed by a
family of measurable functions). These results are a basis for the so-called Pois-
sonization method for empirical processes. Sometimes it is more convenient
to replace an empirical process under study by the corresponding accompa-
nying Poisson point process having a simpler structure for analysis (e.g., in-
dependent “increments”). Some versions of this sufficiently popular and very
effective method can be found in many papers. In particular, some probabil-
ity inequalities connecting the distributions of empirical processes (in various
settings) and those of the corresponding Poisson processes are contained in
Borisov [3, 4, 5], Einmahl [13], Deheuvels and Mason [12], Giné et al. [14], and
others.

Introduce the so-called tail (or local) empirical process on the interval [0, 7]

Vi (t) = nFn<%), @.1)

where F, (-) is the empirical distribution function (right-continuous version)
based on a sample of size n from the (0, 1)-uniform distribution. We consider
vy, as a random variable in the space LS([0,n]) which is defined as the linear
span of the set of all piecewise constant right-continuous functions on [0,7]
with finitely many jumps, endowed with the cylinder o-field. It is easy to verify
that the standard Poisson process 1 (t) on [0, 1] (with right-continuous paths)
has the accompanying Poisson distribution for v,, in this space.

THEOREM 2.1. Let ®(-) be a convex nonnegative functional on LS([0,n])
which is nondecreasing on the subset of all nonnegative functions with respect
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to the standard partial order in function spaces. Suppose that, for each func-
tion x(+) € LS([0,n]), the following relation holds: lim, .. ®(x™)) = ®(x),
where x™) (t) = x([mt]/m), with [ -] the integer part of a number. Moreover,
if E®(11) < o0, then

Ed(v,) <E® (). (2.2)

REMARK 2.2. Itis well known that if a convex functional defined on a topo-
logical linear space (say, on a Banach space) is bounded in a neighborhood
of some point, then it is continuous (see, e.g., Kutateladze [20]). Thus, if the
functional in Theorem 2.1 is defined, say, on L, ([0,11],A), where A is a finite
measure, and satisfies the local boundedness condition, then the continuity
condition connected with the step functions x ™ (¢) can be omitted.

In the sequel, in the case of Banach-space-valued random variables, we con-
sider only continuous convex functionals. For example, the functional ®(x)
= |x||4 = (jgl [x(£)|™A(dx))4’™ with arbitrary parameters m > 1 and q > 1,
where A is an arbitrary finite measure on [0,n], satisfies the conditions of
Theorem 2.1.

Note that the accompanying Poisson process for the centered empirical pro-
cess VI(t) := vy (t)—t,say,in Ly, ([0,n],A), differs from the corresponding cen-
tered Poisson process. This process can be defined as 0 (t) := 7t (¢t) —r(n)t/n
and, by analogy with the definition of a Brownian bridge, can be called a Poisso-
nian bridge on [0,n]. For such processes, Theorem 1.4(2) can be reformulated
as follows.

COROLLARY 2.3. Let ®(x) be a functional on Ly, ([0,n],A) having convex
second Fréchet derivative. Then

E® (V) <E® (1) (2.3)

whenever the expectation on the right-hand side of (2.5) exists.

As an example of such a functional we can consider ®(x) := ||x|m" for any
m=2andg=>3orq=1,2.

If we consider the processes v, and 1 as random elements in LS([0,dn]),
where 6 < 1, then the following direct consequence of Theorems 1.10 and 2.1
above and Lemma 3.1 and Corollary 3.4 below holds.

COROLLARY 2.4. For every measurable functional ® on LS([0,0n]) under
the minimal restriction E|® (17)| < oo, the following inequality holds:

E|®(va)| < %Emnn. (2.4)



MOMENT INEQUALITIES CONNECTED WITH ACCOMPANYING ... 2777

Moreover, if § = N/n, N does not depend on n, and the functional ® satisfies
the conditions of Theorem 2.1, then

SupE® (vy,) :}LEQOE‘I’(W) =E® (7). (2.5)

Finally, we formulate some useful moment inequalities which deal with one-
dimensional projections of the processes v, (-) and 7t (). A direct consequence
of Corollary 1.5 is as follows.

COROLLARY 2.5. For every natural m and m and every t > 0, the following
inequality holds:

E(va(t) +x)™ <E(m(t) +x)™, (2.6)

where x is arbitrary for even m and x > 0 for odd m.

In the following assertion which complements this inequality, the above-
mentioned convexity conditions need not be fulfilled.

THEOREM 2.6. For every natural n and m and every t > 0, the following
inequality holds:

|E(va () +x)°™ | <E(r(t) +x)°™ 7, (2.7)

where x € [—t,0) is arbitrary.

COROLLARY 2.7. Let f(x) be an entire function on [0, «), that is, an analytic
function which admits Taylor expansion at all points with a converging power
series on the whole positive half-line. Assume that, for a point xo > 0, the kth
derivative of this function at x, is nonnegative for each k > 2. Then, for every
t > xo,

Ef (va(t)) <Ef(m (D). (2.8)
3. Proof of the results. First we formulate two important lemmas which
play a key role in proving the above results.

LEMMA 3.1. In the iid. case, under the above notations, the following rela-
tions hold:

Pois (n£(X1)) = £(Srm)), (3.1)
where the standard Poisson process 1t () is independent of {X;},

F(Sn) = L(S%np ). Pois(nE(X1)) = £(85,,,)): (3.2)

where p :=Pr(X; + 0), £(v(n,p)) = By, is the binomial distribution with pa-
rameters n and p; the pair (v(n,p),m(np)) does not depend on the sequence
{x}.
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The relation (3.1) is well known. It immediately follows from the above-
mentioned definition of a generalized Poisson distribution: the probability law
Pois(u) may be interpreted as the distribution of Zism’ Yi, where {Y;} areii.d.
random variables with the common distribution u(-)/u(%) and T, is a Pois-
sonian random variable with parameter u (%), which is independent of the se-
quence {Y;}.

The equalities in (3.2), which are more convenient in studying accuracy of
Poisson approximation of the sums, are contained in various forms in many
papers (see, e.g., Khintchine [18, 19], Le Cam [21, 22], Borovkov [9], Borisov
[6, 7], and others). Actually, these relations also represent versions of the total
probability formula and are easily proven.

Taking into account the representations in Lemma 3.1, we can reduce the
problem to the simplest one-dimensional case when we estimate the analogous
moments of the binomial distribution introduced in Remark 1.3. However, in
this case, we can obtain sufficiently exact inequalities for moments of arbitrary
functions using the following lemma.

LEMMA 3.2. Foreachp € (0,1),

Bup(i)  _ 1

< . 3.3
SR Emnp)) ) " 1-p 69
PROOF. For every nonnegative integer j < n, we have
P(v(n,p) = j)
P(m(np) = j)
_n(nfl)"'(n*j*‘l) o \N,Np
=T waopy AP
Jj-1 i
=exp{n(vﬂog(l—v))—jlog(l—p)+Zlog(l—)}
i-0 " (3.4)

< exp{—log(l—v) +n(p+log(l-p))
G-D/n
—(j—l)log(l—p)+nj 1og(1—x)dx}
0
j—1
< exp{—log(l—p) —an(JTﬂ»,

where H, (x) = —=p +x + (1 -x)log((1 —x)/(1—-p)). The following properties
of H, are obvious:

d d? 1
H,(1) =1-p, Hy,(p) =0, EHW(P)=0. WHp(X)=17,

(3.5)

which implies H, (x) = 0 if x < 1, that is, inequality (3.3) is proven. O
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REMARK 3.3. Inequality (3.3) is a part of a more general result in Borisov
and Ruzankin (see [8, Lemma 1, page 1663]). It is worth noting that this upper
bound is an estimate for the so-called Radon-Nikodym derivative of a binomial
distribution with respect to the accompanying Poisson law. This problem was
studied by a number of authors (Le Cam [21], Chen [10], Barbour et al. [2], and
others). In particular, under some additional restriction on n and p, a slightly
stronger estimate is contained in Le Cam [21]. However, in general, estimate
(3.3) cannot be essentially improved. Under some restrictions on n and p, a
lower bound for the left-hand side of (3.3) has the form (1-cp)~!, where ¢ is
an absolute positive constant.

COROLLARY 3.4. Let g be an arbitrary function satisfying the condition
Elg(mt(A))| < oo for some A. Then, for every n and p satisfying the condition
np < A, the following inequality holds:

ekfnp
Elg(vin,p))| = 1_pEIg(w(A))I. (3.6)
Moreover,
lim Eg(v(n,p)) =Eg(m(d)). (3.7)
n—oonp—-A-0

PROOF. Inequality (3.6) follows from Lemma 3.2 and the simple estimate

P('IT(TL}’]) =J) A-np
31J1_p 71)(”()\) =) <e . (3.8)

Relation (3.7) follows from the classical Poisson limit theorem and inequality
(3.6) which provides fulfillment of the uniform integrability condition. The
corollary is proven. O

REMARK 3.5. Inequality (1.10) in Theorem 1.10 immediately follows from
Corollary 3.4 and representations (3.2). In the case n = 1 in Lemma 3.2 there
exists a slightly stronger upper bound for the Radon-Nikodym derivative. It is
easy to see that, in this case, the right-hand side of (3.3) can be replaced by e”.In
the non-i.i.d. case, evaluation of the moment Ef (S,,) can be reduced to that for
anew function of n independent Bernoulli random variables v,(1, p),...,v,(1,p)
(for details, see the proof of Theorem 1.1 below). In this case, the approximat-
ing moment is calculated by independent Poisson random variables 1 (p),...,
1, (p) with the same parameter p. Thus, the corresponding upper bound for
the Radon-Nikodym derivative (as well as the corresponding factor on the right-
hand side of (1.10)) equals exp(>;., pi). However, in the special case when
Sn=2i<nVvi(1,p), there exist better upper bounds for this derivative. For ex-
ample, in this case we can replace the factor exp(>;.,, pi) by (1—p)~2, where
p =max{p;: i < n} (see Barbour et al. [2], Borisov and Ruzankin [8]).
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It is worth noting that, under the minimal moment condition above, we can-
not replace the one-sided double limit in (3.7) by the classical double limit as
well as the condition np < A in (3.6) cannot be omitted. For example, the func-
tion g (k) = (1v (k—2))!IA~¥ satisfies the above-mentioned moment condition;
however, it is easy to prove the relation

lim sup Eg(v(n,p))= . (3.9)

n—oo,np—A

PROOF OF THEOREM 1.1. In the ii.d. case, inequality (1.3) is a simple con-
sequence of relation (3.1) and the classical Jensen inequality

Ef(ty) =E¢(mt(n)) = p(n) =Ef(Sn). (3.10)

In order to prove inequality (1.3) in the non-ii.d. case, we introduce the
sequence of i.i.d. random variables {7; : i > 1} having Poisson distribution with
parameter 1, which is independent of all the sequences of random variables
introduced in (1.2) (including the initial random variables). Then we can define
the random variable T, in the following way:

n
Tui= 2 Smtm (3.11)
m=1
where S, « are defined in (1.2). The further reasoning is quite analogous to the
above. Put z; := Z%zz Sm.mn - Using the above arguments, we have

Ef(Ty) =EEz, 1.z, (1) = EEz, 1z, (1) = Ef (X1 +21), (3.12)

where the symbol E;, denotes the conditional expectation given z;. Now we
put zp := X1+ >0 _s Sy - Then, repeating the same calculation, we obtain the
estimate

n
Ef(X1+2z1) =EE;, 2z, (12) = EE;, 2, (1) =Ef (Xl +Xo+ > Sm,rrm>-
m=3
(3.13)
Continuing the calculations in this way, we finally obtain inequality (1.3).
Theorem 1.1 is proven. |

PROOF OF PROPOSITION 1.2. The first assertion is easily verified. Indeed,
by Corollary 1.5 and Lemma 3.1 (see (3.2)) we have

Pk+1)—p(k) =E¢p°(v(k+1,p)) —E¢°(v(k,p))

(3.14)
<¢pk+2)—p(k+1).

The analogous inequality holds for the functions ¢, - (k).
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In order to prove the second assertion of this proposition, we consider the
subclass of random variables satisfying the conditions EX} < oo, P(X; = 0) # 0,
and EX; # 0. Put f(x) := x*. Then

P (k) = AF(EX))* + 6APEX2(EX,)” + 3A2 (EX?)” + 4A2EX,EX? + KEX?, (3.15)
where A" ;= k(k—1)---(k—m+1). The second derivative has the form
¢ (k) = Ak> + Bk +C, (3.16)
where A := 12(EX))*, B:= 36EX? (EX? - (EX;)?), and
C:=22(EX;)"* + 6(EX?)% + 8EX,EX} — 36EX2 (EX; ). (3.17)

Because of positivity of A and B, the function ¢ (k) in (3.15) is convex for C > 0.
If C <0 and at least ¢’ (2) < 0, then the function ¢ (k) replaces concavity with
convexity. The same representations with the above comments hold for the
function ¢°(k) (with the replacement of X; by X! and C by € in (3.15) and
(3.17)).

Consider the case in which the first moment of X! is positive and the third
moment equals zero. It is clear that we can choose the distribution of X{ so that
the constant C° will be negative with its absolute value large enough. In this
case the function ¢°(k) will be of the mixed type. For example, we can define
this distribution as follows: given a positive constant K, we put X? = K with
probability 8/9 and X? = —2K with probability 1/8. In this case, EX? = 6K /9,
E(X))? =4K/9, and C° < —K*.

Since EX¥ = pE(X))¥ for each integer k, given the above-mentioned distri-
bution of X? , we can consider p as a free parameter. Substituting this repre-
sentation into (3.17) we conclude that, for sufficiently small p (say, p < 0.1),
the constant C will be positive. Proposition 1.2 is proven. O

PROOF OF THEOREM 1.4. The first assertion is trivial because, under con-
dition (1), from Taylor’s formula we have

1
fx+h)-f(x)= JO f (x+th)[h]dt

1
< L F(x+z+th)[h]dt (3.18)

=f(x+z+h)-f(x+2z)

for every x € 4 and z,h € J;-,, supp X;, that is, inequality (1.5) is fulfilled.

To prove the second assertion we need only to prove this in the i.i.d. case
because, using the arguments in the proof of Theorem 1.1 above, we can reduce
the problem to the i.i.d. case. It remains to observe that, under condition (2)
and given z, the function f(x + z) has convex second derivative with respect to
x. So, we prove the assertion in the i.i.d. case. Taking into account continuity
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in x of the function f"'(x)[h,h] for any fixed h and using Taylor’s formula,
we have

1
S (Ske1) = f(Sk) = f" (Sk) [Xk+1] +L (1= f" (Sk + tXp1) [Xpr1, Xir ] dt.
(3.19)

First we average both sides of (3.19) with respect to the distribution of Xy
and use the fact that, for any centered (in Bochner sense) random variable X
and an arbitrary linear continuous functional I(-), the equality EL(X) = 0 holds.
Averaging both sides of this identity with respect to the other distributions, we
then obtain (with more convenient representation of the remainder in (3.19))
the equality

B k1) = b(k) = JEF (Sk+ CXeer) [Kicrr, X ], (3.20)

where C is a random variable with the density 2(1 — t) on the unit interval,
which is defined on the main probability space and independent of the se-
quence {Xi} (we may assume here that this space is rich enough). It is worth
noting that, because of integrability of the left-hand side of (3.19), the expecta-
tion on the right-hand side of (3.20) is well defined due to Fubini’s theorem. In
thei.i.d. case, by the classical Jensen inequality (for the conditional expectation
Eg x,,,) we finally obtain the inequality we need:

pk+1)—¢p(k)

1 rr
SEEc x o f (Sk+ CXpi2) [Xir2, Xis2 ]
3.21)

SEf” (Sk+1 + ng‘FZ) [Xk+2;Xk+2]

2
1
2
=¢pk+2)—p(k+1).

The proof of convexity of ¢°(k) and d)?n,z(k) is the same because, for the
centered initial summands, EX,? = 0. The theorem is proven. O

PROOF OF THEOREM 1.8. Put n > u(%) and consider the independent ran-
dom variables Xy = Xy (n) with the following common distribution:

&. (3.22)
n

P(AV{O}) ===, P({0})=1-

Then the corresponding random variables X? have the common distribution
PO(A) = u(A)/u(%). Therefore, for each n, by Proposition 1.2 we have the cor-
responding inequality for the moments under study. It is easy to see that, in
this case, the function ¢° (k) = ¢, (k) does not depend on n and we can apply
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Lemma 3.1 and relation (3.7). Thus, we have

lim Ef (Sn) = lim Ed (v(n,p)) = Edy (11(A)) = Ef (1), (3.23)
where p = u(%9)/n and A = u(%9). The theorem is proven. O

PROOF OF THEOREM 1.10. The claim follows immediately from Lemmas
3.1 and 3.2 and Remark 3.5. ]

PROOF OF THEOREM 2.1. Because of the monotonicity and continuity con-
ditions, it is sufficient to prove the assertion for any finite-dimensional pro-
jections vy(lm) and ™ of the processes under consideration. To this end, we
consider an arbitrary nonnegative function y(x,...,xx) which is convex and
increasing in every coordinate x;. We will study the moment Ey (v, (t1),...,
v (tx)), where t; € [0,n) are arbitrary points and t; < t;;; for every i < k. We
will also assume that the corresponding Poisson moment exists.

The following so-called Markov property of v, (-) is well known: given the
quantity v, (t) (the number of the sample points to the left of t/n), two new
samples constituted by the points to the left and to the right of t/n, respec-
tively, are independent and distributed as samples (of the corresponding sizes)
from the uniform distributions on [0,t/n] and [t/n,1], respectively. In other
words, given v, (t;), the increment v, (t2) — v, (t;) coincides in distribution
with v ((t; —t;)N/n), where N := n—v,(t1), and the process v} (-) is an in-
dependent copy of vy, (+). Thus, taking into account Corollary 1.5 and convexity
and monotonicity of the function g (x) := E@ (v, (t1),...,Vu(tk_1),Vn(tk_1) +
x), we have

E@(vn(t1),...,va(tx)) = EEny1 (Vi ((tk — tr-1)N/n))
<EEyy (T ((tx —tx-1)N/n)) (3.24)
<Eyq (mr(tx) =1 (tr-1)),

where 17(-) is a Poisson process independent of v, (-).

Therefore, we reduced the problem to evaluating the moment of a function
of the analogous (k —1)-dimensional projection vy, (t1),..., vy (tx_1). It remains
to observe that the function > (x1,...,Xx-1) :=E@(x1,...,Xk-1,Xk_1 + T (tg) —
1 (tx—1)) is convex and monotone too. In other words, to prove the assertion
we may use induction on k. The theorem is proven. |

PROOF OF THEOREM 2.6. Itis clear that, under the above notations, we deal
with the random variable v(n, p) having the binomial distribution B, ,. First
we consider the case n = 1.

LEMMA 3.6. For every natural m, the function g,,(t) := E(tt(t) —t)™ is a
polynomial on [0, o) with nonnegative coefficients and the following inequalities
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hold:

)Zm—l

E(v(l,p)+x <E(m(p)+x)*™! (3.25)

ifx>-1, and

2m-1

[E(v(1,p) +x)"™ | <E(mr(p) +x) (3.26)

ifx>=-p.

PROOF. The properties of the functions g, (t) immediately follow from the
relation

x k
am(t) =S (k=t)" (k- Lot
o k!

k

_+ym-1
R T

Il
[Me

et —tgm

=
Il

1 (3.27)

LE(m(t) —t+1)™ ' —tgm1
m-2
=t Z

k=0

(m-1)!
Kim —k— 119

where m = 2, go(t) =1, and g, (t) = 0.
In order to prove (3.25) we first study the case x = —1. We have

E(v(l,p)-1)*"" " =p-1,

© (k_l)Zm—l X

E(m(p)-1)"" ' =—e P+ T

o (k=2)! (3.28)

2
>p—1—p—+p—E(1+Tr(p)

2m-3
2 2 )

>p-1,

where m > 2 (in the case m = 1 the assertion is trivial). Inequality (3.25) follows
from (3.28) and the analogous inequality for the corresponding derivatives
with respect to x (see Corollary 2.5).

To prove (3.26) we need to deduce only the inequality
)Zm—l

E(p-v(1,p) <E(m(p)-p)*" . (3.29)
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First we assume that p < 1/2. Then we have

2m-1 _ p(1—p)(p?m=2—(1-p)>™m2) <0, (3.30)

and (3.29) holds because of nonnegativity of the functions g, (t).
In the case p > 1/2 we put v(1,p) :=1-v(1,p), where p :=1—p. By (3.29)
we then obtain

2m-1 _ )mel

E(p-v(l,p)) E(v(1,p)-p < gom-1(P) < gom-1(p)  (3.31)

due to monotonicity of the functions g (t). The lemma is proven. O

Since v(n,p) coincides in distribution with a sum of independent copies of
the random variables v(n —1,p) and v(1,p), the further proof of the theorem
can be continued by induction on n (using (3.26) and the binomial formula).
The theorem is proven. O
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