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We investigate p-adic completions of clopen (i.e., closed and open at the same
time) subgroups W of loop groups and diffeomorphism groups G of compact man-
ifolds over non-Archimedean fields. We outline two different compactifications of
loop groups and one compactification of diffeomorphism groups, describe asso-
ciated finite groups in projective limits, and discuss relations with the represen-
tation theory.
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1. Introduction. The importance of such groups in the non-Archimedean
functional analysis, representation theory, and mathematical physics is clear
(see [1, 8, 10, 11, 14, 18, 19]). This paper is devoted to one aspect of such
groups: their structure from the point of view of the p-adic compactification
(see also about Banaschewski compactification in [18]). The p-adic compactifi-
cations are constructed below such that they are also groups. This also opens
new possibilities for studying their representations as restrictions of represen-
tations of p-adic compactifications.

First, we recall basic facts and notation, which are given in detail in [10, 11,
13, 17, 18]. For a diffeomorphism group Diff (M) of a Banach manifold over a
local field K, there are clopen (i.e., closed and open at the same time) subgroups
W such that they contain a sequence of profinite subgroups G, with G,, C Gy 41
for each n € N and J,, G, is dense in W, where N is the set of natural numbers.
A loop group L;(M,N) is defined as a quotient space of a family of mappings
f:M — N of class C! of one Banach manifold M into another N over the
same local field K such that lim,_(®V f)(z;h1,...,hu;C1,...,C,) = 0 for each
0 <v < t,where M and N are embedded into the corresponding Banach spaces
Xand Y, cl(M) = MU {s}, cI(M) and N are clopen in X and Y, respectively,
0 €N, (®Vf)(z;hy,...,hn;C4,...,Cy) are continuous extensions of difference
quotients, z € M, h,,...,h, are nonzero vectors in X, C1,...,C, € K such that
z+Chi+---+Chhy € M,n =[v]+sign{v}. Asusual, [v] denotes the integral
part of v such that [v]<v and {v} := v —[v] denotes the fractional part of v.

The p-adic completions of clopen subgroups W of loop groups G and diffeo-
morphism groups G are considered. In the case of the diffeomorphism group,
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the p-adic completion produces weakened topology on W relatively to which
it remains a topological group. In the case of the loop group, the p-adic com-
pletion produces a new topological group V in which the initial group W is
embedded as a dense subgroup such that V = W. The topology on W inherited
from V is weaker than the initial one. For the compact manifold M in the case
of the diffeomorphism group, the p-adic completion of W produces the profi-
nite group. For the locally compact manifolds M and N in the case of the loop
group L; (M, N), the p-adic completion of W produces its embedding into Q,'}‘,
where Q, denotes the field of p-adic numbers. When W is bounded relatively
to the corresponding metric in L; (M,N), then W is embedded into ZY, where
Z, denotes the ring of p-adic integers. The group Diff (M) is perfect and sim-
ple, on the other hand, the group L;(M,N) is commutative. The notation given
below and the corresponding definitions are given in detail in [10, 13].

2. p-adic completion of diffeomorphism groups

2.1. Notation and remarks. Let N be a compact manifold over a local field
K, thatis, K is a finite algebraic extension of the field of p-adic numbers Q, [20].
Let also N be embedded into B(K%,0,1) as a clopen subset [2, 9], where £ € N,
B(X,y,r):={z:z€ X;dx(y,z) <r} denotes a clopen ball in a space X with an
ultrametric dy. The ball B(K%,0,1) has the ring structure with coordinatewise
addition and multiplication, in particular, B(Q,0,1) = Z,, is the ring of entire
p-adic numbers. The ring B(K%,0,1) is homeomorphic with the projective limit
B(K%,0,1) = pr-limy S\Enrk' where S -« is a finite ring consisting of ||~k
elements such that S, -« is equal to the quotient ring B(K,0,1)/B(K,0, |7r]%),
S“’fn‘,k is a product of & copies of S|, ¢ is a dimension dimg, K of K over Qy
as a Qp-linear space, 1t is an element of K such that p~! < || < 1 and || is
the generator of the valuation group of K (see also about local fields in [20]). In
particular, B(Qp,0,1)/B(Qp,0,p %) = Z,/p*Z, = F x is a finite ring consisting
of p* elements, aB := {x : x = ab,b € B} for a multiplicative group F and its
element a € E and a subset B C E, k € N [18, 20]. For each m > k there are the
following quotient mappings (ring homomorphisms): 7t,, : B(K,0,1) — Sjx|-m
and 71" : Sjrj-m — S;;;-«. This induces the quotient mappings 7, : N — Ny, and
7" : Ny — Nk, where Ny C Sprrj-m, 7 o Fry = T, T (B(KE,0,1)) = S5 - for
each & e N.

Let now M and N be two analytic compact manifolds embedded into B(KY¥,
0,1) and B(K%,0,1), respectively, as clopen subsets and f € Ct(M,N), where
C!(M,N) denotes the space of functions f: M — N of class C!, t = 0. For an
integer t it is the space of t-times continuously differentiable functions in the
sense of partial difference quotients (see [10, 13, 17]). Then f = pr-limy f,
where fi := 7ty o f. We introduce the notation C!(M,Ny) := 7ty o C!(M,N) =
{fr:f€C(M,N)}, hence C'(M,N) = pr-limy Ct(M,Ny) algebraically without
taking into account topologies (or the limit of the inverse sequence, see [5,
Section 2.5] and [15, Sections 3.3, 12.202]. Each function f € C!*(M,N) has a
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C'(B(K%,0,1),K%)-extension by zero on B(K%,0,1), hence it has the decom-
position f = >, fl,Qme; in the Amice polynomial basis Q,,, where ¢; is
the standard orthonormal basis in K% such that e¢; = (0,...,0,1,0,...) with 1
in the lth place, Z > m; = 0 for each [, m = (my,...,mg), f}n e K are ex-
pansion coefficients such that lim; |- | f}nIKJ (t,m) =0, Q,, are polynomi-
als on B(KY,0,1) with values in K, J(t,m) := IIQmIIC:(B(Kw,OJ),K). The space
CY(M,N) is supplied with the uniformity inherited from the Banach space
CH(K¥,K¥%).

Let Mg denote 7rg (M) and N denote frg (N). For two sets E and F, as usual
EF is the set of all mappings f: F — E.

LEMMA 2.1. Each f € Ct(M,N) is a projective limit f = pr-limy fix of polyno-
mials fi = > [l Qmier on rings Sﬁ'ﬂ,k with values in S"gm,k, where f}, €

Sii- and Qumx are polynomials onS/" _, with values in Sy .

PROOF. In view of Section 2.1,

fe=Ttof, o f(x) =D (f(fh) x (fQm(x))er, (2.1)

Lm

since 71y is a ring homomorphism and 7tk (e;) = e;. Then 7y (ax™) = arx™ (k)
for each a € K and x € B(K%,0,1), where x™ := x{"l,...,xf,,""’, X1,...,Xy €
B(K,0,1); m := (my,...,my), Z>m; =0 for each [ =1,...,¢, x = (x1,...,Xy),
x (k) := Tp (x), ax = Tig(a) with ag € S -« and x™ (k) = 7rx (x™) with x (k) €
S“’;ﬂ,k, consequently, 7ix (Qm (x)) = Qmi(x(k)). The series for fy is finite since
ix(a) = 0 for each a € K with |a| < [7/* and limy |- | fL [k J (E,m) =0. O

COROLLARY 2.2. The uniform space Ct (M,Ny) is isomorphic with the space

W
N,iw" of all mappings from My into Ny. Moreover, (S%ﬂl,k)(slﬂ\*k) is a finite-

dimensional module over the ring S -«.

PROOF. From the proof of Lemma 2.1, there is only a finite number of S;|-«-
linearly independent polynomials Q x(x(k)) (i.e., in the module of the ring
S||-k), since the rings Sﬁr‘,k and S« are finite, also z* = z¥ for each natural
numbers a and b such thata =b (mod (p¥)) and each z € S;;|-«. The space
CY(M,Ny) is discrete and isomorphic with N,i"", since My and Ny are discrete.

O

COROLLARY 2.3. The quotient group Tty o Diff' (M) is isomorphic with the
symmetric group Sg,, where & is the cardinality of M.

PROOF. If h € Diff' (M), then hy(My) = My since h(M) = M. In view of
Corollary 2.2, 77y o Diff' (M) is isomorphic with the following group Hom(M;)
of all homeomorphisms hy of My, that is, bijective surjective mappings hy :
My, — M. Using an enumeration of elements of My, we get an isomorphism of
Hom (M) with Sgk. O
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2.2. Let Cy(M,N) := pr-limkN,iw" be a uniform space of continuous map-
pings f : M — N supplied with a uniformity inherited from products of uni-
form spaces [y, N,iw" (see also [5, Section 8.2]). The uniform spaces C*(M,N)
and Cy, (M,N) are subsets of K-linear spaces Ct(M,K?%) and C°(M,K?), respec-
tively. We consider algebraic structures of subsets of the latter K-linear spaces
as inherited from them.

COROLLARY 2.4. The space C'(M,N) is not algebraically isomorphic with
Cw(M,N), when t > 0. The uniform space C,, (M,N) is uniformly isomorphic
with C°(M,N), when the latter space is supplied with a weak uniformity inher-
ited from C°%(M,K%). The space C,, (M,N) is compact.

PROOF. In view of [5, Section 2.5], C°(M,N) and C, (M,N) coincide alge-
braically since the connecting mappings 7t;* are uniformly continuous for each
m = n. The space C°(M,K?) is K-linear and its uniformity is completely de-
fined by a neighbourhood base of zero. The set of all evaluation mappings
in points of M produces the base of the topology of C°(M,K¥%). In its weak
topology, the latter space is isomorphic with the product [, K& = Kerd(),
since card(M) = card(R) = Y, where card(M) denotes the cardinality of M.
Then C°(M,N) and Cy, (M,N) have embeddings into B(K,0,1)d™) a5 closed
bounded subspaces. The latter space is uniformly homeomorphic with pr-
Limy (S -« YMk which is compact by the Tychonoff theorem [5, Theorem 3.2.4].
Since CY(M,N) = Ct(M,N) for t > 0, then C,, (M,N) and C!(M,N) are different
algebraically. O

2.3. Let Diff,, (M) := pr-limy Hom(My) be supplied with the uniformity in-
herited from C,, (M,M). The group Diff,, (M) is called the p-adic compacti-
fication of Diff" (M). The following theorem shows that this terminology is
justified.

THEOREM 2.5. The group Diff,, (M) is a compact topological group and it is
the compactification of Diff' (M) in the weak topology. If t > 0, then Diff' (M)
does not coincide with Diff,, (M).

PROOF. Since Diff' (M) c Ct(M,M), then Diff' (M) has the corresponding
embedding into Cy, (M, M). Since C,, (M, M) is compact and Hom(M) is a closed
subsetin C,, (M, M), then due to Corollary 2.4, Hom(M)nC,, (M, M) =Diff,, (M)
is compact. The space Ct(M,M) is dense in C°(M, M), consequently, Difff (M)
is dense in Diff,, (M). If t > 0, then Diff' (M) = Hom(M), hence the two groups
Diff! (M) and Diff,, (M) do not coincide algebraically. It remains to verify that
Diff,, (M) is the topological group in its weak topology.If f,g € C!*(M,N), then
M (Qm(9(x))) = Qmi(gr(x(k))), consequently,

Tk (fog) = > T (flh) Qi (gr(x(K)))ey (2.2)

Lm

and inevitably (f o g)x = fx © gk- On the other hand, 77 (x) = x(k) hence
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i (id(x)) = idg (x (k)), where id(x) = x for each x € M. Therefore, for f = g~!
we have (fog)x = frxo gk = idy, hence g (g~!) = g,;l. The associativity of the
composition (fx o gk) o hg = firo (gk o hy) of all functions fi, gk, hx € Hom(My),
together with other properties given above, means that Diff,, (M) is the alge-
braic group, since f = pr-limy f%, g = pr-limy gi, and h = pr-limy hy also satisfy
the associativity axiom, each f has the inverse element f~!(f(x)) = id, and
e = id is the unit element. By the definition of the weak topology in Diff,, (M),
for each neighbourhood of e = id in Diff,, (M) there exist k € N and a subset
Wi € Hom(My) such that ey € Wy and e € frk’l(Wk) C W. But Hom(My) is dis-
crete, hence there are neighbourhoods V;, ¢ Hom(My) and Uy € Hom(Mjy) of
ey such that VU, C Wy, for example, Vi = {ex} and Uy = {ex}, since ey € Wy,
hence there are neighbourhoods e € V c Diff,, (M) and e € U c Diff,, (M) such
that VU ¢ W, where V = 71, ' (V), U = i, "(U), and VU = {h: h = fog, f €
V, g € U}.If W’ is a neighbourhood of f~!, then V := W’ f~! is the neighbour-
hood of e and there exists k € N such that 71, ' (ex) =: U C V™! since e;! = ex
and 7ty is the homomorphism. Therefore, fU := W is the neighbourhood of
f such that W—! ¢ W’, which demonstrates the continuity of the inversion
operation f — f~L. |

2.4. Notes. Each projection 7ty : B(Ct(M,K%),0,1) — (anl,k)Mk produces the

quotient metric py in the S, -x-module (S‘gm,k)Mk such that

ox (fi, gr) ~ir(lf):OIIf—g+ZHcr<M,K§), (2.3)

. z,Try (z
where S, -« := B(K,0,1)/B(K,0, |7r|¥) is the quotient ring and 7ty is induced by
such quotient mapping from B(K,0,1) onto S, |-«. If B(CY(M,K%),0,1) embeds
into [, 7t (B(Ct(M,K¥%),0,1)) and supplies the latter space with the box topol-
ogy given by the following norm || f —gll’ := supy px (fx,9gk), then it produces
the uniformity in B(C!(M,K?),0,1) equivalent with the initial one.

Theorem 2.5 means that the p-adic completion Diff,, (M) is a profinite group.
It is the projective limit of the finite groups Hom(My). If the compact mani-
fold M is decomposed into the disjoint union M = |J; B(KY¥,x;,7;) of clopen
balls, then orders of the latter groups are divisible by (|7r|~4)!, where a = >’; l;,
li = k—max;{L: ||~} <7}, x; € B(K¥,0,1), 0 < r; < 1, since card(My) is di-
visible by |1r|~%. Then the representations of symmetric groups known from
the classical works of Littlewood and Weyl [7, 21] with the help of the projec-
tive limit decompositions produce finite-dimensional representations of the
diffeomorphism groups.

3. p-adic completion of loop groups. At first, we recall shortly the main
details of definitions from [13].

3.1. Definitions and notes. Let X be a Banach space over K. Suppose that M
is an analytic manifold modeled on X with an atlas At(M) consisting of disjoint
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clopen charts (Uj,¢), j € Am, Ay C N. That is, Uj and ¢ ;(U;) are clopen in
M and X, respectively, ¢ : U; — ¢;(U;j) are homeomorphisms, ¢ ;(U;) are
bounded in X.

Then C!(M,Y) for M with a finite atlas At(M), card(Ay) < Ko, denotes a
Banach space of functions f : M — Y with an ultranorm

Iflle = sup Hf‘Uj”Ct(Uj,Y) < o, (3.1)
JEAM

where Y is the Banach space over K, 0 < t € R, their restrictions fluj are in
CY(Uj,Y) for each j.

By C{(M,Y) we denote a completion of a subspace of cylindrical functions
restrictions of which on each chart f|y, are finite K-linear combinations of
functions {Qm(xm)qilul 11 € B,m} relatively to the following norm:

1f et ar,yy = sup la(m, fy) | Jit,m), (3.2)

where multipliers J;(t,m) are defined as follows:

Jut,m) = [|Qu |y, ll et @y e x, (3.3)
m = (m; : i) with components m; € Ny, nonzero components of m are m;,,...,
m;, with n € N, 1 := (my,,...,m;,) for each m # 0, x5 := (x",...,xn) €

K"~ X, Qq:=1.
Let N be an analytic manifold modeled on Y with an atlas:

At(N) = {(Vi,pr) 1k € An}, (3.4)
such that @y : Vi — i (Vi) C Y are homeomorphisms, card(Ay) < Ko, and
0:M— Nisa Ct'-mapping, also card(Apy) < Rg, where Vi are clopen in N,

t’ > max(1,t) is the index of a class of smoothness, that is, for each admissible
(i,7)

0:, € CY (Ui, Y), (3.5)
with * either empty or taking the value 0, respectively,
Qi,j = Lpl'°9|UiJ'y (3-6)

where U; j:=[U;n 0~ (V;)]are nonvoid clopen subsets. We denote by Cf’g(M,N),
for 0 < & < 0, a space of mappings f: M — N such that

fi,j—9i,j€C§(Ui,j.Y)- (3.7)
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In view of formulas (3.4), (3.5), (3.6), and (3.7), we supply it with an ultrametric
3

2(f,9) = i i—3ii , 3.8

p*(f g) Sll’l]prl,J gl’JHCE(UJ“Y) ( )

for each 0 < € < 0.

3.2. For infinite atlases we use the traditional procedure of inductive limits
of spaces. For M with the infinite atlas, card(Ay) = 8o, and Y is the Banach
space over K; we denote by Ci’E(M, Y), for 0 < & < =, alocally K-convex space,
which is the strict inductive limit

CLF(M,Y) = str-ind { €25 (UE, Y), ] =}, (3.9)

where E € 3, 3 is the family of all finite subsets of Ay, directed by the inclusion
E<Fif ECF, Uf:=U;ep Uj.

For mappings from one manifold into another f : M — N we therefore get
the corresponding uniform spaces denoted by C f’E(M ,N).

We introduce the notation

G(E,M): = CY%(M,M) nHom(M),

(3.10)
Diffé (M) = C®¢(M,M) nHom(M),
which are called groups of diffeomorphisms (and homeomorphisms for 0 <
€ <1),0=id,id(x) = x for each x € M,whereHom(M) := {f: f € CO(M,M), f
is bijective, f(M) = M, f and f~! € C°(M,M)} denotes the usual homomor-
phism group.

3.3. Notes. Henceforth, ultrametrizable separable complete manifolds M
and N are considered. Since a large inductive dimension Ind(M) = 0 (see [5,
Theorem 7.3.3]), M does not have boundaries in the usual sense. Therefore,

AUM) = {(Tj, ;) : j €Ay} (3.11)

has a refinement At' (M), which is countable, and its charts (UJ'., d_);) are clopen,
disjoint, and homeomorphic with the corresponding balls B(X, yj,fjf), where

¢, U;— B(X,¥},7]) VjeNy (3.12)

are homeomorphisms (see [5, 9]). For M we fix such At (M).

We define topologies of groups G (€, M) and locally K-convex spaces C;f (M,Y)
relatively to At (M), where Y is the Banach space over K. Therefore, we sup-
pose also that M and N are clopen subsets of the Banach spaces X and Y,
respectively. Up to the isomorphism of loop semigroups, we can suppose that
so=0&Mand yp=0€N.
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For M = M \ {0} let At(M) be consisted of charts (Uj, ¢,), j € Ay, while At' (M)
consists of charts (UJ'-, (]5;-), J € A}y, where due to formulas (3.11) and (3.12) we
define

Ur=0\{0}, ¢1=dily, Uj=0; ¢j=¢; Vi>1,

0eUy, Am=Ay, U =U\{0}, ¢|=d¢;

U{ y (3.1 3)
Ui=U;, ¢;=¢) Vi>1, jeNu=Ny, U;20.

3.4. Definitions and notes. Let the spaces be the same as in Section 3.2 (see
formulas (3.9) and (3.10)) with the atlas of M defined by conditions (3.13). Then
we consider their subspaces of mappings preserving marked points:

0,8
CO ((MsSO), (NaJ’O))

={fecl*(M,N): Lm_  ®'(f-0)(so;h1,....h;C1,...., Ck) =0
|11+ +[Ck -0

vve{0,1,...,[t],t}, k=[v]+sign{v}},
(3.14)

for each v € {[t] +ny,t+ny}, and the following subgroup:
Go(&,M) = {f € G(§,M): f(s0) = S0} (3.15)
of the diffeomorphism group.

With the help of them we define the following equivalence relations K :
fKgg if and only if the following sequences exist:

{wn € Go(§,M) :n e N}, (3.16)
{fn € CO¥(M,N) :n e N}, (3.17)
{gn € COF(M,N):n eN}, (3.18)

such that
fn(X) =gn(Yn(x)) VxeM, limf,=f,  limg,=g. (3.19)

Due to condition (3.19) these equivalence classes are closed, since (g(y@(x))" =
g (W)Y (x), g(so) = So, g’ (s0) = 0 for t +s = 1. We denote them by (f)x.
Then for g €(f)k s we write gK¢ f also. We denote the quotient space Cg '5((M ,50),
(N,>0))/Kg by Qg(M,N), where 0(M) = {yo}.

3.5. Letasusually AVB:= AX{bg}U{ag} xB C AXB be the wedge product
of pointed spaces (A, ap) and (B, by), where A and B are topological spaces with
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marked points ag € A and by € B. Then the composition g o f of two elements

f,.g€e Cg"f((M,so), (N,y0)) is defined on the domain M v M\ {soxso} =: MV M.
Let M = M\ {0} be as in Section 3.3. We fix an infinite atlas At'(M) :=

{(UJ'.,d)’j) :j € N} such that ¢’ : U} — B(X,y’;,7’j) are homeomorphisms,

’yjl;lor,j(k) = O, }lhlloloy’J(k) = 0, (320)
for an infinite sequence {j(k) € N: k € N} such that clz[Ur-; UJ’-(k)] is a clopen
neighbourhood of 0 in M, where cly; A denotes the closure of a subset A in M.

In M v M we choose the following atlas At'(M v M) = {(W,§) : 1 € N} such
that & : W; — B(X, z;,a;) are homeomorphisms,

’lim aj =0, ]ym Zik) =0, (3.21)

for an infinite sequence {l(k) € N : k € N} such that cly,z[Ur-; Wi ] is a
clopen neighbourhood of 0x0 in M v M and

card (N\ {l(k) : k € N}) = card (N\ {j(k) : k € N}). (3.22)
Then we fix a C(c0)-diffeomorphism x : M v M — M such that

XWiw)) = U}(k) Vk eN,

x(W) =Ur, V0ie (N\{l(k):keN}), (3:23)
where
ki (N\{L(k) :keN}) — (N\{j(k):k e N}) (3.24)
is a bijective mapping for which
Inls%slnl‘l, Il < <l (3.25)
This induces the continuous injective homomorphism
X*:COE((MVM,s0x50), (N,20)) — CTF((M,50), (N, ) (3.26)
such that
X*(@VvHx) =@vhHx'(x) VxeM, (3.27)

where (g Vv f)(y) = f(y) for y € M> and (g Vv f)(y) = g(») for y € My,
My VvM,=MvM, M; =M fori=1,2. Therefore,

gof=x"@v/f (3.28)
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may be considered as defined on M also, that is, to g o f there corresponds the
unique element in Co' (M, s0), (N, o).

3.6. The composition in Qg (M, N) is defined due to the following inclusion
gof e CIE((M,s0),(N,y0)) (see formulas (3.23), (3.24), (3.25), (3.26), (3.27),
and (3.28)) and then using the equivalence relations K¢ (see condition (3.19)).

It is shown below that Qg(M,N) is the monoid, which we call the loop
monoid.

3.7. Note and definition. For a commutative monoid Qg(M,N) with the
unity and the cancellation property there exists a commutative group Lg (M,N)
equal to the Grothendieck group. This group is the quotient group F/%, where
F is a free abelian group generated by Qg (M,N) and % is a closed subgroup of
F generated by elements [ f+g]—-[f]1-[g], f and g € Qe (M,N), [ f] denotes
an element of F corresponding to f. The natural mapping

Yy :Qg(M,N) — Lg(M,N) (3.29)

is injective. We supply F with a topology inherited from the Tychonoff product
topology of Qg (M,N)Z, where each element z of F is

z=>ns1f], (3.30)
S

ny, € Z for each f € Qg (M,N),

> ngz| < . (3.31)
f

In particular [nf]—-n[f] € B, where 1f = f, nf = fo(n—1)f for each 1 <
neN, f+g:=fog. We call Lg(M,N) the loop group.

3.8. Let, as in Sections 2.1 and 3.3, M and N be two compact manifolds.

THEOREM 3.1. Let Qg (M,N) be the commutative loop monoids, then the quo-
tient mappings Tty induce the corresponding inverse sequence {Q(My,Ny) : k €
N} such that Q% (M,N) := pr-limy Q(My,Ny) is a commutative compact topo-
logical monoid, where Tty : Qg (M,N) — Q(My, N), ﬁ,ﬁ Q(M;,N;) — Q(My,Ny)
are surjective mappings for each 1 > k, Q(My,Ny) = {fx : fx € N,]yk,fk(so,k) =
Yok} /Kek, Kex is an equivalence relation induced by an equivalence relation
Kg. Moreover, Q% (M,N) is a compactification of Qg(M,N).

PROOF. In view of Corollary 2.2, frk(Cg (M,N)) is isomorphic with {f} :
fr € N,jy",fk(so,k) = Yok}, where the quotient mapping is denoted by 7rx for
both M and N, since it is induced by the same ring homomorphism 7ty :
B(K,0,1) — B(K,0,1)/B(K,0,|T|%), Sok i= Ttk(So) and yox := Ttk (>0). Then
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Ttk (Go (t,M)) is isomorphic with Homg (My) 1= {(k : Y € Hom(My), Yk (Sox) =
So,k) (see Section 3.4). All of this is also applicable with the corresponding
changes to classes of smoothness C% (or C(&) in the notation of [13], where
& = (t,s)). If f and g are two Kg-equivalent elements in Cg(M,N), that is,
there are sequences f, and g, in Cg(M,N) converging to f and g, respec-
tively, and also a sequence g, € Diffg(M ) such that f,,(x) = gn(Yn(x)) for
each x € M, then 7ty (fyn) =: fux and gnk := Tk (gn) converge to i (f) and
Ttk (g), respectively, and also Yy k = Ttk (@) € Homg(My). From the equality
Sk (x(k)) = gnx(Wni(x(k))) foreach n € Nand x (k) € My, it follows that the
equivalence relation K induces the corresponding equivalence relation Ky x in
frk(Cé(M,N)) such that the classes (7tx(f))kgx of Kgk-equivalent elements
are closed. Each element f} € frk(Cg(M ,N)) is characterized by the equality
Jr(Sox) = Yok Each Q (Mg, Ny) is the finite discrete set, since each N,iw" is the fi-
nite discrete set. This induces the quotient mapping 7ty : Q¢ (M,N) — Q(My,N)
and surjective mappings ﬁ,ﬁ :Q(M,N;) — Q(My,Ny) for each | > k. It produces
the inverse sequence of finite discrete spaces, hence the limit of the inverse se-
quence is compact and totally disconnected. It remains to verify that Q% (M,N)
is a commutative topological monoid with unit element and the cancellation
property.

From the equality M = M\ {so}, it follows that My = My, since for each k € N
there exists x € M such that x + B(K%,0,|m|¥) 3 so. Moreover, My and Ni
are finite discrete spaces. Then 7ty (M vV M) = My v My (see Section 3.5). The
composition operation is defined on threads {{fi)x g« : k € N} of the inverse
sequence in the following way. There is a fixed C*-diffeomorphism x :MvM —
M. Let x € M, then i (x) € My and x~'(U) € M v M, where U := 'Frk‘l(x+
B(K,0,|7r|¥) n M. On the other hand, x1(U) is a disjoint union of balls of
radius |7|%* in B(K?™,0,1), hence there is defined a surjective mapping xx :
My V Mo — My induced by x, 7y, and 7o, such that xi(x ' (U)) = frx(x). If
fand g € C5(M,N), then fvg e CE(MvM),N)and x(fVvg) € C5(M,N) as
in [13, Section 2.6]. Hence xi (fox V g2x) € CE (Mg, Ny) and inevitably xx ({fox v
921)Kg2k) = Xk ({fardk g2k V{G2k) kg 2k) € Q(My, Ny).

There exists one-to-one correspondence between the elements f € C,, (M,N)
and {fx:k} € {N,](Wk 1 k}. Therefore, pr-limy Q(My, Ny ) algebraically is the com-
mutative monoid with the cancellation property. Let U be a neighbourhood
of e in Q¥ (M,N), then there exists Uy = frk‘l(Vk) such that Vi is open in
Q(Mg,Ny), e € Uy, and Uy C U. On the other hand, there exists Uy = frz’kl(VZk)
such that Vy is open in Q(Mog, Noy), e € Uak, and Uy + Usg C Uy. Therefore,
(f+Us)+(g+Ux) C f+g+Ux C f+g+U for each f,g € Q¥ (M,N), conse-
quently, the composition in Q% (M,N) is continuous. Since Cg (M,N) is dense
in Co.w (M, N), then Qg (M,N) is dense in Q¥ (M, N). O

3.9. Note. The compactification of Qg (M,N) given above is not unique. An-
other compactification is given below. The second is larger than the first one.
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Using the Grothendieck construction, we get a compactification L¥ (M,N) =
F/B of aloop group Lg(M,N), where F is a closure in (Q¥(M,N))Z of a free
commutative group F generated by Q% (M,N) and B is a closure of a subgroup
B generated by all elements [a + b] —[a] — [b], since the product of compact
spaces is compact by the Tychonoff theorem [5].

3.10. Let now sp = 0 and y, = 0 be two marked points in the compact man-
ifolds M and N embedded into K% and K&, respectively. Define the follow-
ing C*-diffeomorphism inv: (K¥)" — (K¥)’ for (K¥)" := K¥ \ {x : there exists
J with x; = 0} such that inv(xi,...,xy) = (xl‘l,...,xlj,l), where x; €K, j =
1,...,p.Let M = Mn(K¥)’, where M = M\ {so} as in Section 3.3. Then inv(M")
is locally compact, noncompact, and unbounded in K%, since M’ is locally com-
pact and noncompact. Let K* = K\ {0} then evidently (K¥)" is equal to (K*)¥.
Let the disjoint union of x; + S“’;ﬂ_k be chosen equal to 7 ((K¥)") := (K¥)"y
for each k € N, where {B(KY,x;,1) : j} is the disjoint covering of (K%)" and
x;=xj+B(,0, || %) = 7, (x;). Therefore, 71 (inv(M")) = (inv(M’) )k is a dis-
crete infinite subset in 71, ((K%)") for each k € N. Analogously, 7t (inv(M’ v
M’)) = (inv(M’' v M"))x C [T ((K¥)")]?. There exists a C*-diffeomorphism
X :MvVvM — M such that invoy oinv is the C*-diffeomorphism of inv(M’ v M")
with inv(M’) and it induces bijective mappings xx of inv((inv(M’ v M'))x)
with inv((inv(M"))x) for each k € N such that fr,i ox; = Xk for each | > k,
where 7} := invo7t} o inv. This produces inverse sequences of discrete spaces
nv((inv(M’))g) =: My, inv((inv(M’ v M"))g) = My Vv M} and their bijections xx
such that pr-limy My is homeomorphic with M’ and pr-limy xx is equal to x up
to the homomorphism, since pr-limy Sﬁr\*k = B(KY%,0,1) (see also about admis-
sible modifications and polyhedral expansions in [12]). If ¢ € G¢(&,M), then
e Diffg(l\;{)- Let Jyx = {hk : hi = fio Wk, Wx € Hom(My), Wi(sok) = Sox}
for fi € N,y" with limy_o fx(x) = 0, then Jrx is closed and 7t ({f)ke) C
Jr k. Therefore, gy and fi are I?g,k-equivalent if and only if there exists gy €
Hom(My) such that @i (sox) = Sox and gx(x) = fx(@r(x)) for each x € My.
Let Q (Mg, Ny) := frg(Qg (M, N)).

THEOREM 3.2. The set of Q (M, Ny) forms an inverse sequence S={Q My, Ni);
fr,i;k € N} such that prlimS =: Q"W (M,N) is an associative topological loop
monoid with the cancellation property and unit element e. There exists an em-
bedding of Qg (M, N) into Q"% (M, N) such that Qg (M,N) is dense in Q*¥ (M,N).

PROOF. Let U’; be an analytic disjoint atlas of inv(M’), f € C&(inv(M’),K),
Y € Diff‘-f(inv(M’)), then each restriction f|y/; has the form fly,(x) =
S fimQim(x) for each x € U’;, where Q,,, are basic Amice polynomials
for U'y, fim € K. Therefore f is a combination f = V;f|y, of its restrictions
flur,, hence

e (fow(x)) = D [ (fim) Vi (xton e 0 Qimi (Wi (x(K)))]  (3.32)

m
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and inevitably

O ((f o) (x)) = fropr(x(k)), (3.33)

where Qi mx := 7k (Qim), x €inv(M’) and x (k) = 7 (x).

Asin [13, Section 2.6.2] and Section 3.5 we choose an infinite atlas At' (M) :=
{(U’j,d)’j) : j € N} such that qS’j U’ - B(X,y’j,r’j) are homeomorphisms,
limg—e 7’ k) = 0, liMg—o 3" 4y = 0 for an infinite sequence {j(k) € N:k € N}
such that cly[Up-, U’ jk ] is a clopen neighbourhood of zero in M. We take
[ jy| > 7" j for each k, hence inv(B(X,y’;,7" ;) nX") = B(X,y’;—l,r’;l) nx’
and U inv(U’ jy N X") is openin X'. For anatlas At (MVM) := {(W,&):le N}
with homeomorphisms &; : W; — B(X, z;,a;), limg—e @) = 0, limg—e zjx) = 0
for an infinite sequence {l(k) € N : k € N} such that cly i [Ur-; Wi ] is a
clopen neighbourhood of 0x 0 in M v M we also choose |z;| > a; for each L.
We can choose the locally affine mapping x such that "y = 0 for each n > 2
(see the notation of Section 3.5) and B(X’,y’[l,r’[l) are diffeomorphic with
inv(U';1nX") and B(X'vX',z;!,a; ") are diffeomorphic with inv(W;n (X" v X")).

This induces the diffeomorphisms ¥ := invex oinv: M v M — M and X* :
C§ (M v M, 00 x 00), (N, 7)) — C§ (M, ), (N, ), since each & (f v g) (")
has an expression through ®!(f v g) and ®/(%~') with [,j < n and n subor-
dinated to &, where M := inv(M’) and the conditions defining the subspace
Cg((M,oo), (N, o)) differ from that of Cg((M,So), (N, y0)) by substitution of
limy_g, on lim|x|—. Then lim x|~ | X (x)| = 0, consequently, there exists kg €
N such that i : My v My — My, are bijections for each k > ko, where Xy := ;o X.
If @ € Diff* (M) and @ (0) = 0, then lim x| P (x) = 00 and lim)y|— P~ (x) =
. Then considering ¢ we get an equivalence relation Kgy in {fi : fx €
N,I(wk,lim‘x‘ﬂmfk(x) = 0} induced by Kg, where My is supplied with the quo-
tient norm induced from the space X, since X’ € X, x € M. Let J denote the
quotient mapping corresponding to Kg . Therefore, analogously to [13, Sec-
tion 2.6] we get that Q(My, Ny) are commutative monoids with the cancellation
property and the unit elements ey, since Q(My,Ni) = {fi : fi € CO(My,Ni),
lim |y« fx(x) = 0}/Kg ) and the mappings 7t} : (K¥)’; — (K¥)’; and map-
pings fr,i : S"Em_l - Siﬂ_k induce mappings fr,i 1 Q(M;,N;) — Q(My, Ny) for each
l > k. Let the topology in {fi: fx € CO(Mk,Nk),lim‘x‘quk(x) = 0} be induced
from the Tychonoff product topology in N,iw", and let Q (Mg, Ny) be in the quo-

tient topology. The space N,y" is metrizable by the Baire metric p(x,y) :=p~/,
where j =min{i: x; # Vi, X1 = Y1,.-,Xi-1 = Vi-1}, X = (X1 : X1 € Ni, l € N),
My as enumerated as N. Therefore, Q(My,Ni) is metrizable and the map-
ping (fk,gx) — fk V gk is continuous, hence the mapping (Jx(fk),Jk(gk)) —
Jk(fx) o Jk(gk) is also continuous. Then Ji(wy) is the unit element, where
wo,k(Mk) = 0. Hence Q®¥(M,N) is a commutative monoid with the cancella-
tion property and with unit element. Certainly, HkQ(Mk,Nk) is a topological
monoid and pr-lim S is a closed subset in this topological totally disconnected
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monoid. For each f € C§(M ,N) there exists an inverse sequence {fy : fx =
7ty (f), k € N} such that f(x) = pr-limy fi(x(k)) for each x € M’, but M’
is dense in M. Therefore, there exists an embedding Q% (M,N) — Q¥ (M,N).
Since C&(M,N) is dense in CJ(M,N), then Qf(M,N) is dense in Q¥ (M,N).

O

COROLLARY 3.3. The inverse sequence of loop monoids induces the inverse
sequence of loop groups Sy := {L(My, Ny); ﬁ,ﬂ; N}. Its projective limit L"¥ (M,N) :=
pr-limS; is a commutative topological totally disconnected group and Lg(M,N)
has an embedding in it as a dense subgroup.

PROOF. Due to the Grothendieck construction, the inversion operation fj —
fi 1 ijs continuous in L(Mg,Ng), and homomorphisms fr,ﬁ and 71, have con-

tinuous extensions from loop submonoids onto loop groups L(Mj,Ny). Each
monoid Q (Mg, Ni) is totally disconnected, since N,iwk is totally disconnected
and Q (Mg, Ny) is supplied with the quotient ultrametric, hence the free abelian
group Fy generated by Q(My, Ny) is also totally disconnected and ultrametriz-
able, consequently, L (Mg, N) is ultrametrizable. Evidently, their inverse limit
is also ultrametrizable and the equivalent ultrametric can be chosen with val-
ues in Ix := {|z| : z € K}, where Ik N (0, ) is discrete in (0,0) := {x:0 < x <
o, x € R}. Then the projective limit (i.e., weak) topology of L"% (M,N) is in-
duced by the weak topology of C°(M,K). When M and N are nontrivial, then
certainly this weak topology is strictly weaker than that of Lo(M,N). O

THEOREM 3.4. For each prime number p, the loop group Lg(M,N) in its
weak topology inherited from L (M,N) has a p-adic completion isomorphic
with 7).

PROOF. IfKis a finite algebraic extension of the field Q,, then the projective
ring homomorphism 7ty : B(K,0,1) — S -k induces the following mapping
i (f(x)) = fi(x(k)) for each f € B(CE(M,K%),0,1). Using pavings of K and
C%(M,K?) by disjoint unions of balls, we get 7ty on K and 7ty on C5(M,N),
respectively, where i (x) 1= x := x + B(K,0,|m[¥) for each x € K (see also
Sections 3.3 and 3.10). Then the condition

‘lilm f(x)=0 (3.34)
xX|—o0
implies the condition
lim fi(x(k)) =0. (3.35)
[x (k)| -0

Therefore, supp(fi) := M,{ == {x(k) : fi(x(k)) = 0} is a finite subset of the
discrete space M for each k € N. Then evidently, T ({(g)k ¢) is a closed subset
in N,I(Wk for each g € Cg((M ,0),(N,0)), since the support of each limit point f
of 11 ({g)ke) is the finite subset in M. Let ko be such that Ny, = {0}, then
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this is also true for each k > ko. If fx ¢ Tx((wo)k,e) and k = ko, then f/™ ¢
T ({wo)k,g) for each n € N, where f/" := fi v---V fi denotes the n-times
wedge product, since

1" llce = 1Flee > 00 A ety = 1 oo g, >0 (3.36)

where C(S;’;l,k,s‘gm,k) =1 (B((CE(K¥,K¥%),0,1)) is the quotient module over
the ring S,;|-x. Each i ({ f)x,£) can be presented as the following composition
v1by + - - - +v;b; in the additive group L (Mg, Ny), where each b; corresponds to
fik((gi)k.g) and the embedding of Q (Mg, Ny) into L(M,N), v € {—1,0,1},1 =
card(M,{), Mf* are singletons for each i = 1,..., . Using the group Hom (Ny) we
get that L(My,Ny) is isomorphic with 7", where ny = card(Ng) > 1. In view of
Corollary 3.3, Lg(M,N) has the p-adic completion isomorphic with ZZO, since
Z is dense in Z, and pr-limy 2"k = 7%0, a

3.11. Note. Using quotient mappings n,s:Z—2Z/p*Z we get that Lg(M,N)%0
has the compactification equal to [[,cq ZZO, where % denotes the set of all
prime numbers p > 1, s € N. These compactifications produce characters of
Lg(M,N), since each compact abelian group has only one-dimensional irre-
ducible unitary representations [6]. On the other hand, there are irreducible
continuous representations of compact groups in non-Archimedean Banach
spaces [19]. Among them there are infinite-dimensional [3, 4, 16]. Moreover,
in their initial topologies diffeomorphism and loop groups also have infinite-
dimensional irreducible unitary representations [13, 11].
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