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The concept of fuzzy multiply positive BCC-ideals of BCC-algebras is introduced,
and then some related results are obtained. Moreover, we introduce the concept of
T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras and investigate
T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras,
examining its properties. Using a t-norm T, the direct product and T-product of
T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed
and their properties are investigated.
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1. Introduction and preliminaries. A BCK-algebra is an important class of
logical algebras introduced by K. Iséki in 1966. After that, Iséki posed an in-
teresting problem (solved by Wronski [8]) of whether the class of BCK-algebra
is a variety. In connection with this problem, Komori [6] introduced a notion
of BCC-algebras and Dudek [5] redefined it by using a dual form of the ordi-
nary definition in the sense of Komori. In 1965, Zadeh introduced the notion
of fuzzy sets [9]. At present, this concept has been applied to many mathemat-
ical branches such as group, functional analysis, probality theory and topol-
ogy, and so on. In 1991, Ougen applied this concept to BCK-algebras [7], and
also many fuzzy structures in BCC-algebras are considered. In this paper, the
concept of fuzzy multiply positive implicative BCC-ideals of BCC-algebras is
introduced, and some related results are obtained. Moreover, we introduce the
concept of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras,
investigating its properties. Using a t-norm T, the direct product and T-product
of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are dis-
cussed, and their properties are investigated.

By a BCC-algebra, we mean a nonempty set G with a constant 0 and a binary
operation * satisfying the following conditions:

@O ((x*xy)*k(z*y))*(x*x2) =0,

) xxx =0,
(1) O0xx =0,
IV) x*0 = x,

(V) xxy=0and y*x=0imply x =y forall x,y,z €G.
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On any BCC-algebra, one can define the partial ordering “<” by putting x < y
if and only if x x y = 0.

A BCK-algebra is a BCC-algebra, but there are not BCC-algebra which are not
BCK-algebras (cf. [5]). Note that a BCC-algebra X is a BCK-algebra if and only if
it satisfies (x x y) xz = (xxz) xy for all x,y,z € X.

A nonempty subset A of a BCC-algebra G is called a BCC-ideal if (i) 0 € A and
(ii) (xxy)*xz e Aand y € A imply x * z € A. For any elements x and y of a
BCC-algebra, x x y™ denotes (--- ((x*y)*y)*---)*xy in which y occurs n
times. A nonempty subset A of a BCC-algebra G is called an n-fold BCC-ideal
of G if (i) 0 € A and (ii) for every x,y,z € G, there exists a natural number n
such that x %« z" € A whenever (x*xy)*xz" € Aand y € A.

We now review some fuzzy logical concepts. A fuzzy set in set G is a function
u:G —[0,1].Forafuzzyset uin G and x € [0,1], define uy = {x € G | u(x) =
«} which is called a level set of G. A fuzzy set u in a BCC-algebra G is called
a fuzzy BCC-ideal of G if (i) u(0) > u(x) and (i) pu(x * z) > min{u((x * y) *
z),u(y)} for all x,y,z € G. A fuzzy set y in a BCC-algebra G is called an n-
fold fuzzy BCC-ideal of G if (i) u(0) = u(x) for all x € G and (ii) for every
X,¥,z € G, there exists a natural number n such that u(x * z") > min{u((x *
Y)xz™),u(y)}.

2. Fuzzy multiply positive implicative BCC-ideals

DEFINITION 2.1. A nonempty subset A of a BCC-algebra G is called a mul-
tiply positive implicative BCC-ideal of G if
(i) 0 A,
(ii) for every x,y,z € X, there exists a natural number k = k(x,y,z) such
that x x zX¥ € A whenever (x * y) xz" € A and y * z™ € A for any
natural numbers m and n.

EXAMPLE 2.2. (i) Consider a BCC-algebra G = {0,1,2,3,4,5} with the Cayley
table as follows:

Ul b W N = O ¥
Ul b N~ OO
Ul = O O O
Ul O O O OlWw

Ul bk DN O O
Ul O = = O O
S = = = = O|lw

Then G is a proper BCC-algebra since (4 5) %« 2 = (4 % 2) % 5. It is routine to
check that A = {0,1,2,3,4} is a multiply positive implicative BCC-ideal of G.
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(ii) Consider a BCC-algebra G = {0,a,b, c,d} with the Cayley table as follows:

UL 0 T Q oO%
QLo T 8 oo
QU T T © o8
UL oo oW
QW O o o ofln
S Q9 O o ol

Then G is a proper BCC-algebra since (¢ x a) xd + (c * d) * a. It is routine
to check that A = {0,a,b,c} is a multiply positive implicative BCC-ideal of G.
(iii) Consider a BCC-algebra G = {0,a, b, c, 1} with the Cayley table as follows:

— 0 S Q O
= 0 T 8 oo
O Q8 O O Ol

o T T O o8

a O O O OoOln
S Q8 O O O+

Then G is a proper BCC-algebra since (1 xb) xa = (1 a) *x b. Let A =
{0,b,c}, then A is not a multiply positive implicative BCC-ideals of G because
(1kc)*0"=c*x0™ =cec Awhile 1x0Fk=1 ¢ A.

DEFINITION 2.3. A fuzzy set pin a BCC-algebra G is called a fuzzy multiply
positive implicative BCC-ideal of G if
(1) pu(0) = u(x) for all x € G,
(ii) for any n,m € N, there exists a natural number k = k(x,y,z) such that
u(x xz%) = min{u((x * y) % z"),u(y *z™)} for all x,v,z € G.

EXAMPLE 2.4. (i) Consider a BCC-algebra G = {0,1,2,3,4} with the Cayley
table as follows:

B ow oo~ O ¥
B ow oo~ OO
w w N O O
s = O = O
w o o O oOolw
S O O O Ok

It is a proper BCC-algebra since (3 1) %2 # (3 % 2) % 1. Define a fuzzy set u
in G by u(4) = 0.3 and u(x) = 0.8 for all x # 4. Then u is a fuzzy multiply
positive implicative BCC-ideal of G.
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(ii) Let G be a proper BCC-algebra as (i) and let u be a fuzzy set in G defined
by

o if x € {0,2,3},
u(x) = (2.1)
o> otherwise,

where «; > «; in [0, 1].Itis easy to check that u is not a fuzzy multiply positive
implicative BCC-ideal of G because p(4 * 0%) = p(4) = oo < min{pu((4 % 3) *
0™),u(3%x0™)} for any positive integer numbers m, n, and k.

THEOREM 2.5. Let u be a fuzzy set in a BCC-algebra G, then u is a fuzzy
multiply positive implicative BCC-ideal of G if and only if the nonempty level set
Uy ={x € G| u(x) = «} of u is a multiply positive implicative BCC-ideal of G.

PROOF. Suppose that u is a fuzzy multiply positive implicative BCC-ideal
of G and py += @ for any « € [0,1]. Then there exists x € y and so u(x) = «.
It follows that u(0) > u(x) > « so that 0 € uy. Let x,y,z € G be such that
(x *y)*z" € uy and y * z™ € uy. By Definition 2.3, there exists a natural
number k such that p(x * z%) = min{u((x*y)*z"),u(y *z™)} = min{x, &} =
« and that x * z¥ € . Hence p, is a multiply positive implicative BCC-ideal
of G. Conversely, assume that py is @ multiply positive implicative BCC-ideal
of G for every « € [0,1]. For any x € G, let u(x) = «. Then x € uy. Since
0 € U, it follows that p(0) > o« = u(x) so that u(0) > u(x) for all x € G. Now
suppose that there exist x¢, Yo, zo € G such that p(xg * z’é) <min{u((xg*yo) *
20), U(Vo * Zi) }. Let Ag = (u(x0 * z§) +min{u((xo * o) * Zo), (Vo * i) ) /2,
then Ag > p(xo * z§) and 0 < Ag < min{p((xo * ¥o) * ), (Vo * z8")} < 1, s0
we have p((xo* ) * ) = Ag and p (o * zJ') = Ao, then (xo * Yo) * 2§ € Ua,
and yo * z{f € Uy, As My, is a multiply positive BCC-ideal of G, it implies
X0 * z§ € pa, and p(xo * z§) > Ao. This is a contradiction. Hence y is a fuzzy
multiply positive implicative BCC-ideal of G. O

THEOREM 2.6. Let A be a nonempty subset of a BCC-algebra G, and u a
fuzzy set in G defined by

041 ifx EA,
px) = , (2.2)
o otherwise,

where &1 > o2 in[0,1]. Then u is a fuzzy multiply positive implicative BCC-ideal
of G if and only if A is a multiply positive implicative BCC-ideal of G.

PROOF. Assume that u is a fuzzy multiply positive implicative BCC-ideal
of G. Since u(0) = u(x) for all x € G, we have u(0) = &; and so 0 € A. Let
X,¥,z € G be such that (x *y) xz" € A and y * z™ € A. By Definition 2.3,
there exists a natural number k = k(x,y,z) such that p(x *z*) = min{p((x *
V)% z"),u(y *zM)} = &; and that x * z*¥ € A. Hence A is a multiply positive
implicative BCC-ideal of G.
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Conversely, suppose that A is a multiply positive implicative BCC-ideal of
G. Since 0 € A, it follows that u(0) = &1 > p(x) for all x € G. Let x,y,z €
G.If yxz™ ¢& A and (x * y) % z" € A, then clearly p(x * z¥) = min{u((x *
)k z"),u(y x z")}. Assume that y xz™ € A and (x x y) *x z" ¢ A, we have
(x % y) % zK & A. Therefore p(x * z¥) = o0t = min{p((x * y) * z"),u(y * z™)}.
Hence, u is a fuzzy multiply positive implicative BCC-ideal of G. O

A fuzzyrelation on any set S is a fuzzy subset yu: SxS — [0,1].If yis afuzzy
relation on a set S and v is a fuzzy subset of S, then u is a fuzzy relation on
v if u(x,y) <min{v(x),v(y)} forall x,y € S. Let y and v on S be defined as
(uxv)(x,y) =min{u(x),v(y)}. One can prove that uxv is a fuzzy relation
onS and (uxv)s = uy xve for all t € [0,1]. If u is a fuzzy subset of a set S,
the strongest fuzzy relation on S that is a fuzzy relation on v is u,, given by
Uy (x,y) =min{u(x),v(y)} forall x,y € S.In this case we have (u,); = v¢ X v¢
forall t €[0,1] (see [2]).

THEOREM 2.7. For a given fuzzy subset v of a BCC-algebra G, let u,, be the
strongest fuzzy relation on G. If u,, is a fuzzy multiply positive implicative BCC-
ideal of G X G, then v(0) = v(x) forall x € G.

PROOF. Since p, is a fuzzy multiply positive implicative BCC-ideal of G X G,
it follows that u,(0,0) > u,(x,x) for all x € G. This means that min{v(0),
v(0)} =min{v(x),v(x)}, which implies that v(0) > v(x). O

THEOREM 2.8. If v is a fuzzy multiply positive implicative BCC-ideal of a
BCC-algebra G, then the level multiply positive implicative BCC-ideals of (U );
are given by

() =peXve Vte[0,1]. (2.3)

The proof is obvious.

THEOREM 2.9. If u and v are fuzzy multiply positive implicative BCC-ideals
of a BCC-algebra G, then u xv is a fuzzy multiply positive implicative BCC-ideal
of GXG.

PROOF. For any (x,y) € GXG,

(U xv)(0,0) =min {u(0),v(0)} = min{u(x),v(x)} (.4)
= (Uxv)(x,¥). '

Now, let x = (x1,x2), ¥ = (¥1,¥2),and z = (z1,z2) € G XG. For any n,m € N,
there exists a natural number k such that
(Hxv)(x*zX) = (UXV)((XlaxZ)*(ZI,ZZ)k>
= (uxv)(x1 % zX x2 % 2K)

=min {u(x; *z%),v(x2 % 2X)}
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> min {min {p((x1 % y1) *x 27"), 1 (1 x z") 1,

( )
min {v((x1*y2) *23),v(y2 % 23") }}
=min {min {p((x1 *y1) *z}),v((x2 % y2) * 2z},
min {p(y1 * z{"),v(y2 ¥ 23") }}

= min{(uxv) x1,x2) % (V1,y2)) * (21,22)">,

(¢
(Wxv)((1,32) * (21,22)™) |
(

=min {(uxVv)((x*y)*z"),(uxv)(y*xz")}.
(2.5)

Hence ux v is a fuzzy multiply positive implicative BCC-ideals of G X G. |

THEOREM 2.10. Let u and v be fuzzy subsets of a BCC-algebra G such that
uxv is a fuzzy multiply positive implicative BCC-ideal of G X G. Then
(i) either u(x) < u(0) orv(x) <v(0) forall x € G,
(i) if u(x) < u(0) for all x € G, then either u(x) <v(0) orv(x) <v(0),
(iii) if v(x) <v(0) for all x € G, then either u(x) < u(0) or v(x) < u(0),
(iv) either u or v is a fuzzy multiply positive implicative BCC-ideal of G.

PROOF. (i) Suppose that pu(x) > u(0) and v(x) > v(0) for some x,y € G.
Then (uxv)(x,y) =min{u(x),v(y)} > min{u(0),v(0)} = (uxv)(0,0). This
is a contradiction and we obtain (i).

(ii) Assume that there exist x,y € G such that u(x) > v(0) and v(y) > v(0).
Then (p xv)(0,0) = min{u(0),v(0)} = v(0). It follows that (g xv)(x,y) =
min{u(x),v(y)} > v(0) = (uxv)(0,0). This is a contradiction. Hence (ii) holds.

(iii) Item (iii) is proved by similar method to part (ii).

(iv) Since by (i), either u(x) < u(0) or v(x) < v(0) for all x € G, without
loss of generality, we may assume that v(x) < v(0) for all x € G. Form (iii), it
follows that either p(x) < u(0) or v(x) < u(0). If v(x) < u(0) for all x € G,
then (uxv)(0,x) = min{u(0),v(x)} = v(x). Let (x1,x2),()1,)2),(z21,22) €
G X G. Since p x v is a fuzzy multiply positive implicative BCC-ideal of G X G,
then for any n,m € N, there exists a natural number k such that

(xv) ((x1,x2) * (21,22)")
= min § (uxv) (((x1,5x2) % (71,32)) * (21,22)"),
Wxv)((v1,32) * (21,22)™) | (2.6)
= min { (uxv) (((x1% 1) % 27), ((x2 % ¥2) % 27)),
(uxv) (yrzi", y2 % 23"}
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If we take x; = y; = z; =0, then
v(x2 % 25) = (uxv)(0,x2 x z¥)

= (uxv)((0,x2) % (0,22))
> min {(uxv) (0, (x2%y2) *xz¥), (uxv)(0,y2 x z")}
=min{min {u(0),v((x2*y2) *xz})},min{v(0),v(y2 *xzJ")}}

=min {v((x2%y2) *xz%),v(y2xzI")}.
(2.7)

This proves that v is a fuzzy multiply positive BCC-ideal of G. Now we consider
the case u(x) < u(0) for all x € G. Suppose that v(y) > u(0) for some y € G.
Then v(0) > v(y) > u(0). Since u(0) > u(x) for all x € G, it follows that
v(0) > u(x) for any x € G. Hence (uxv)(x,0) = min{u(x),v(0)} = u(x).
Taking x» = y» = z» = 0 in (2.6), then

p(xy *25) = (uxv) (x; *25,0)

= (uxv) ((x1,0) * (21,0)")
>min {(uxv)((x1%y1) *2,0), (uxv) (1 *z/,0)}
=min {min {p((x; % 1) *2"),v(0)},min{u (1 *z"),v(0)}}

=min {u((x1*y1) *z1),u(y1*z")}
(2.8)

which proves that u is a fuzzy multiply positive implicative BCC-ideal of G.
O

THEOREM 2.11. Let v be a fuzzy subset of a BCC-algebra G and let u, be
the strongest fuzzy relation on G. Then v is a fuzzy multiply positive implicative
BCC-ideal of G if and only if u,, is a fuzzy multiply positive implicative BCC-ideal
of GXG.

PROOF. Assume that v is a fuzzy multiply positive implicative BCC-ideal of
X, then
py (0,0) = min {v(0),v(0)} = min {v(x),v(¥)} = pv(x,») (2.9)

for any (x,y) € G X G. Moreover, for any n,m € N, there exists a natural
number k such that
ky _ k k
iy ((31,62) o (21,22)") = b1y (31 5 2, x5 % 25)
=min {v(x; *z¥),v(x2 % 25)}
> min {min {v((x1 % 1) *2"),v (1 xz{")},

min {v((x2*y2) *z3),v(y2 % z3") }}
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=min{min {v((x1 % 1) *z}"),v((x2 % y2) x 2"},
min{v(y1 *z{"),v(y2 *xzJ") }}
=min {py (((x1% 1) % 27), (x2 % 2) x 23),
py (1 x 2t yoxz3') }
=min {py (((x1,x2) * (71, 32)) * (21,22)"),

pv ((1,32) % (21,22)™) }
(2.10)

for any (x1,x2), (V1,)2),(z21,22) € GXG.
Hence ., is a fuzzy multiply positive implicative BCC-ideal of G X G.
Conversely, suppose that u, is a fuzzy multiply positive implicative BCC-
ideal of G x G. Then for all (x;,x72) € GXG,

min{v(0),v(0)} = uy,(0,0) = py, (x1,x2) =min{v(xy),v(x2)}. (2.11)

It follows that v(0) > v(x) for all x € G. Now, for any n,m € N, there exists a
natural number k such that

min {v(x; * zX),v (x2 % 2X)}
k
=y (x1 % 28,300 5 25) = 1 (31, %0) % (21,22)")

= min {y (((x1,%2) % (01,2)) % (21,22)" ), v (71, 32) * (21,22)™ ) }
=min {py ((x1% 1) % 21, (x2 % ¥2) % 23), by (V1 % 21", v2 % 257) }
:min{min{ ((er k1) *x27), v((x2*k >2) %23},

min {v(y1*2{"),v (2 % z") }}
=min{min{v((x1*y1) *z7),v(0n *z")},
{v

min {v((x2*y2) *23),v (2 % 23") }}.

(2.12)

If we take x2 = y» = zp = 0 (resp.,, x1 = y1 = z1 = 0), then v(x; * 2] ky >
min{v((xy * 1) * z1),v(y2 * z§*)}. Hence v is a fuzzy multiply positive im-
plicative BCC-ideal of G. O

3. T-fuzzy multiply positive implicative BCC-ideals

DEFINITION 3.1 [1]. By a t-norm T, we mean a function T:[0,1]x[0,1] —
[0, 1] satisfying the following conditions:
I T(x,1)=x
(I T(x,y)<T(x,z)if y <z,
) T(x,y)=T(y,x),
av) T(x,T(y,z))=T(T(x,vy),z) forall x,v,z € [0,1].
Every t-norm T has a useful property T (&, 8) < min{«, 8} forall &, 8 € [0,1].
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LEMMA 3.2 [1]. Let T be a t-norm. Then T(T(«x,B),T(v,0)) = T(T(x,V),
T(B,6)) forall x,B,v,6 €[0,1].

DEFINITION 3.3. A fuzzy subset u:G — [0,1] in a BCC-algebra G is called
a fuzzy multiply positive implicative BCC-ideal of G with respect to a t-norm
T (briefly, T-fuzzy multiply positive implicative BCC-ideal of G) if
(i) pu(0) = u(x) for all x € G,
(ii) for any n,m € N, there exists a natural number k = k(x,y,z) such that
H(x % zK) = T(u((x*y)*z"),u(y *z™)) for any x,y,z € G.

EXAMPLE 3.4. Consider a BCC-algebra G = {0,1,2,3,4} with the Cayley table
as follows:

B w N = O ¥
w w NN~ OO
B w N O O
s o= O = O
w o O O oOolw
S O O O Ok

By routine calculation, G is a proper BCC-algebra (cf. [5]). Define a fuzzy set
uby pu(0) =pu(l) =pu(2) =u(3) =0.8 and u(4) =0.3. Let T(x, B) = max{«x +
B—1,0} for all @, €[0,1]. Then T is a t-norm. It is easy to check that u is a
T-fuzzy multiply positive implicative BCC-ideal of G.

THEOREM 3.5. Let u be a T-fuzzy multiply positive implicative BCC-ideal of
a BCC-algebra G and let «x € [0,1] if « = 1, then the nonempty subset Uy is a
multiply positive implicative BCC-ideal of G.

PROOF. Assumethatx =1and x € uy, then u(x) > 1. Thus u(0) > pu(x) =1
and 0 € .

Moreover, suppose that (x *y)*xz" € uy and y * z™ € uy, then p((x *y) %
z™) = 1 and u(y % z™) = 1. By Definition 3.3, there exists a natural number
k such that p(x *z*) = T(u((x % y) % z"),u(y * z™)) = T(1,1) = 1 and that
x % zX € py. Hence iy is a multiply positive implicative BCC-ideal of G. O

For a fuzzy set u on a BCC-algebra G and a map 0 : G — G, we define a
mapping u[0]:G — [0,1] by u[0](x) = u(0(x)) for all x € G.

THEOREM 3.6. If u is a T-fuzzy multiply positive implicative BCC-ideal of a
BCC-algebra G and 0 is an epimorphism of G, then u[0] is a T-fuzzy multiply
positive implicative BCC-ideal of G.
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PROOF. Let u[0](0) = u(6(0)) = u(0) = u(y) for any y € G. Since 0 is an
epimorphism of G, then there exists x € G such that 6(x) = y.Thus u[0](0) >
u(O@(x)) =ul0](x). As v is an arbitrary element of G, the above result is true
for any x € G.

Moreover, for any n,m € N, there exists a natural number k such that

HLO1 (x * 2%) = p(0(x % 24)) = u(0(x) % 0(2))
=T (u((0(x)*0(x))*x0(2)"),u(0(y)*0(z)™)) a.1)
=T(u(O((x*y)*2")),u(0(y*2"))) '
=T(ulO1((x*xy)*2"),ul01(y x2™)).
Hence u[@0] is a T-fuzzy multiply positive implicative BCC-ideal of G. O

Let f be a mapping defined on a BCC-algebra G. If v is a fuzzy set in f(G),
then the fuzzy set u, of G defined by u(x) = v(f(x)) is called the preimage
of v under f.

THEOREM 3.7. An onto homomorphic preimage of a T-fuzzy multiply posi-
tive implicative BCC-ideal is a T-fuzzy multiply positive implicative BCC-ideal.

PROOF. Let f:G — G’ be an onto homomorphism of BCC-algebra, v a T-
fuzzy multiply positive implicative BCC-ideal of G’, and u the preimage of
v under f. Then u(0) = v(f(0)) = v(0') > v(f(x)) = u(x) for all x € G.
Moreover, for any n,m € N, there exists a natural number k such that

(xx2%) =v(f(x) x f(2)¥)

() * ) *f @), v(f () * f(2)™)) (3.2)
(f(xxy)x2"),v(f(y*2z™))) '
(

(x*ky)*z"),u(y*xz"))

for any x,y,z € G.Hence pu is a T-fuzzy multiply positive implicative BCC-ideal
of G. |

If pis a fuzzy set in a BCC-algebra G and f is a mapping defined on G, then
the fuzzy set p/ in f(G) defined by pf () = Supye -1, u(x) forall y € G is
called the image of y under f. A fuzzy set u in G is said to have sup property
if, for every subset T < G, there exists to € T such that p(ty) = sup;cr u(t).

THEOREM 3.8. An onto homomorphic image of a T-fuzzy multiply positive
implicative BCC-ideal with sup property is a T -fuzzy multiply positive implicative
BCC-ideal.

PROOF. Let f:G — G’ be an onto homomorphism of BCC-algebras and let
u be a T-fuzzy multiply positive implicative BCC-ideal of G with sup property.
Then pf (0) = Sup rep-1(o) M(t) = u(0) = p(x) for any x € G. Furthermore, we



T-FUZZY MULTIPLY POSITIVE IMPLICATIVE BCC-IDEALS ... 2663

have pif (x1) = sup;e p-1(x,) H(t) forany x1 € G'. Thus p/ (0) = Sup;c p-1(x, ) H(t) =
uf(x1) for any x; € G'. Moreover, for any x1,v1,z1 € G, let x € f~1(x1),
v e f1(y),and z € f~1(z;) such that

p(xxz¥) = sup  pu(),

tef-1(x1 *z’l‘)

p((x*y)*z") = sup p(t), (3.3)

tef—1((xxy)xzn)
p(y*z") = sup  p(t).
tef~tyr*z)

Thus

pf(xixzf) = sup  p(t) = p(x*zb)
tef*l(xl*z’f)

=T (u((x*xy)*z"),u(y*z"m))
(3.4)
=T< sup u(t),  sup u(t)>

tef~L(xy*y1) %zt tef~Lyr*zi)

= T(uf ((x1 % 1) % 21), 0/ (1% 21)).
Therefore, p/ is a T-fuzzy multiply positive implicative BCC-ideal of G'. O

4. Fuzzy multiply positive implicative BCC-ideals induced by norms

THEOREM 4.1. Let T be a t-norm and G = G X G, the direct product BCC-
algebra of BCC-algebras G, and G». If iy (resp., uz) is a T-fuzzy multiply positive
implicative BCC-ideal of G, (resp., G2), then u = py X Uz is a T-fuzzy multiply
positive implicative BCC-ideal of G defined by p(xi1,x2) = (U X Uz) (x1,X2) =
T (p(x1),42(x2)) for all (x1,x2) € G1 XGo>.

The proof is identical with the corresponding proof from [3].

We will generalize the idea to the product of n T-fuzzy multiply positive
implicative BCC-ideals. We first need to generalize the domain of t-norm T to
I, [0,1] as follows.

The function T, : 1" ;[0,1] — [0, 1] is defined by

Tn(“l;“%---;“n) = T((XisTn—l(0(11---;O(i—lyai+1;---10(n)) (41)

forall 1 <i<mn,wheren >2, T, =T, and T, = id (identity). For a t-norm T
and every «;, 8; € [0,1], where 1 <i <n and n > 2, we have

T (T (01, B1), T(cx2,B2) 5., T(n, Brn))

=T(Tn(or, 0,0, 60), Tn(B1, B2, Bn))- “2
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THEOREM 4.2. Let T be a t-norm, {G;}}, the finite collection of BCC-alge-
bras, and G =111 G; the direct product BCC-algebra of {G;}. Let u; be a T-fuzzy
multiply positive implicative BCC-ideal of {G;}, wherel < i <n. Thenp =111 | y;
defined by u(x1,x2,...,xn) =T H) (X1, X2, ..., X0) = Tn(U1(x1), U2(x2), ..., Hn(Xn))
is a T-fuzzy multiply positive implicative BCC-ideal of G.

The proof is identical with the corresponding proof from [3].

DEFINITION 4.3 [4]. Let T be a t-norm and let y and v be fuzzy sets in a
BCC-algebra G. Then the T-product of u and v, written as [u - V], is defined
by [p-v]r(x) =T (u(x),v(x)) for all x € G.

THEOREM 4.4. LetT be at-norm and let u and v be T-fuzzy multiply positive
implicative BCC-ideals of a BCC-algebra G. If T* is a t-norm which dominates
T, that is, T*(T(x,B),T(v,08)) = T(T*(v,8),T*(B,0)) forall x,3,v,0 €[0,1],
then the T*-product of u and v, [ - v]r+, is a T -fuzzy multiply positive implica-
tive BCC-ideal of G.

PROOF. Let [p-Vv]r«(0) = T*(u(0),v(0)) = T*(u(x),v(x)) = [H-v]Ir=(x)
for any x € G. Moreover, for any n,m € N, there exists a natural number k,
such that

[ v (x % 2¥)
=T*(u(xxz%),v(x*xz"))
=T (T(u((exy)xz"),u(y*xz™)), T(v((x*xy)*z"),v(y*z™)))
= T(T*(u((xxy)x2"),v((x*xy)x2")), T*(u(y*2™),v(y xz™)))

=T([p-v]r«((xky)xz"),[u-v]r (v xz™)).
4.3)

Hence [u - v]r+ is a T-fuzzy multiply positive implicative BCC-ideal of G. O

Let f: G — G’ be an onto homomorphism of BCC-algebras. Let T and T* be
t-norms such that T* dominates T. If y and v are T-fuzzy multiply positive
implicative BCC-ideals of G’, then the T*-product of y and v, [u-Vv]r+, is a
T-fuzzy multiply positive implicative BCC-ideal of G'. Since every onto homo-
morphism preimage of a T-fuzzy multiply positive implicative BCC-ideal is a
T-fuzzy multiply positive implicative BCC-ideal, the preimages f~!(u), f~1(v),
and f~'([u-v]r+) are T-fuzzy multiply positive implicative BCC-ideals of G.
The next theorem provides the relation between f~! ([ - v]7+) and T*-product

Lf Y ) - fL (V) ]+ of f~1(u) and f1(v).

THEOREM 4.5. Let f : G — G’ be an onto homomorphism of BCC-algebras.
Let T and T* be t-norms such that T* dominates T. Let u and v be T-fuzzy
multiply positive implicative BCC-ideals of G'. If [u - v] 1+ is the T* -product of u
and v, and [f~Y(u) - f~1(v) 17+ is the T*-product of f~*(u) and f~*(v), then
S vIe) = L) - f 1) I
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