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The concept of fuzzy multiply positive BCC-ideals of BCC-algebras is introduced,
and then some related results are obtained. Moreover, we introduce the concept of
T -fuzzy multiply positive implicative BCC-ideals of BCC-algebras and investigate
T -product of T -fuzzy multiply positive implicative BCC-ideals of BCC-algebras,
examining its properties. Using a t-norm T , the direct product and T -product of
T -fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed
and their properties are investigated.
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1. Introduction and preliminaries. A BCK-algebra is an important class of

logical algebras introduced by K. Iséki in 1966. After that, Iséki posed an in-

teresting problem (solved by Wroński [8]) of whether the class of BCK-algebra

is a variety. In connection with this problem, Komori [6] introduced a notion

of BCC-algebras and Dudek [5] redefined it by using a dual form of the ordi-

nary definition in the sense of Komori. In 1965, Zadeh introduced the notion

of fuzzy sets [9]. At present, this concept has been applied to many mathemat-

ical branches such as group, functional analysis, probality theory and topol-

ogy, and so on. In 1991, Ougen applied this concept to BCK-algebras [7], and

also many fuzzy structures in BCC-algebras are considered. In this paper, the

concept of fuzzy multiply positive implicative BCC-ideals of BCC-algebras is

introduced, and some related results are obtained. Moreover, we introduce the

concept of T -fuzzy multiply positive implicative BCC-ideals of BCC-algebras,

investigating its properties. Using a t-norm T , the direct product and T -product

of T -fuzzy multiply positive implicative BCC-ideals of BCC-algebras are dis-

cussed, and their properties are investigated.

By a BCC-algebra, we mean a nonempty set G with a constant 0 and a binary

operation ∗ satisfying the following conditions:

(I) ((x∗y)∗(z∗y))∗(x∗z)= 0,

(II) x∗x = 0,

(III) 0∗x = 0,

(IV) x∗0= x,

(V) x∗y = 0 and y∗x = 0 imply x =y for all x,y,z ∈G.
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On any BCC-algebra, one can define the partial ordering “≤” by putting x ≤y
if and only if x∗y = 0.

A BCK-algebra is a BCC-algebra, but there are not BCC-algebra which are not

BCK-algebras (cf. [5]). Note that a BCC-algebra X is a BCK-algebra if and only if

it satisfies (x∗y)∗z = (x∗z)∗y for all x,y,z ∈X.

A nonempty subset A of a BCC-algebra G is called a BCC-ideal if (i) 0∈A and

(ii) (x∗y)∗z ∈ A and y ∈ A imply x∗z ∈ A. For any elements x and y of a

BCC-algebra, x∗yn denotes (···((x∗y)∗y)∗···)∗y in which y occurs n
times. A nonempty subset A of a BCC-algebra G is called an n-fold BCC-ideal

of G if (i) 0 ∈ A and (ii) for every x,y,z ∈ G, there exists a natural number n
such that x∗zn ∈A whenever (x∗y)∗zn ∈A and y ∈A.

We now review some fuzzy logical concepts. A fuzzy set in setG is a function

µ :G→ [0,1]. For a fuzzy set µ in G and α∈ [0,1], define µα = {x ∈G | µ(x)≥
α} which is called a level set of G. A fuzzy set µ in a BCC-algebra G is called

a fuzzy BCC-ideal of G if (i) µ(0) ≥ µ(x) and (ii) µ(x∗z) ≥ min{µ((x∗y)∗
z),µ(y)} for all x,y,z ∈ G. A fuzzy set µ in a BCC-algebra G is called an n-

fold fuzzy BCC-ideal of G if (i) µ(0) ≥ µ(x) for all x ∈ G and (ii) for every

x,y,z ∈G, there exists a natural number n such that µ(x∗zn)≥min{µ((x∗
y)∗zn),µ(y)}.

2. Fuzzy multiply positive implicative BCC-ideals

Definition 2.1. A nonempty subset A of a BCC-algebra G is called a mul-

tiply positive implicative BCC-ideal of G if

(i) 0∈A,

(ii) for every x,y,z ∈X, there exists a natural number k= k(x,y,z) such

that x ∗ zk ∈ A whenever (x ∗y)∗ zn ∈ A and y ∗ zm ∈ A for any

natural numbers m and n.

Example 2.2. (i) Consider a BCC-algebra G = {0,1,2,3,4,5} with the Cayley

table as follows:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 0 0 0 0 1

2 2 2 0 0 1 1

3 3 2 1 0 1 1

4 4 4 4 4 0 1

5 5 5 5 5 5 0

Then G is a proper BCC-algebra since (4∗5)∗2≠ (4∗2)∗5. It is routine to

check that A= {0,1,2,3,4} is a multiply positive implicative BCC-ideal of G.
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(ii) Consider a BCC-algebra G = {0,a,b,c,d} with the Cayley table as follows:

∗ 0 a b c d
0 0 0 0 0 0

a a 0 0 0 0

b b b 0 0 0

c c b a 0 a
d d d d d 0

Then G is a proper BCC-algebra since (c∗a)∗d ≠ (c∗d)∗a. It is routine

to check that A= {0,a,b,c} is a multiply positive implicative BCC-ideal of G.

(iii) Consider a BCC-algebraG = {0,a,b,c,1}with the Cayley table as follows:

∗ 0 a b c 1

0 0 0 0 0 0

a a 0 0 0 0

b b b 0 0 0

c c b a 0 a
1 1 c c c 0

Then G is a proper BCC-algebra since (1∗ b)∗ a ≠ (1∗ a)∗ b. Let A =
{0,b,c}, then A is not a multiply positive implicative BCC-ideals of G because

(1∗c)∗0n = c∗0m = c ∈A while 1∗0k = 1 �∈A.

Definition 2.3. A fuzzy set µ in a BCC-algebra G is called a fuzzy multiply

positive implicative BCC-ideal of G if

(i) µ(0)≥ µ(x) for all x ∈G,

(ii) for any n,m∈N, there exists a natural number k= k(x,y,z) such that

µ(x∗zk)≥min{µ((x∗y)∗zn),µ(y∗zm)} for all x,y,z ∈G.

Example 2.4. (i) Consider a BCC-algebra G = {0,1,2,3,4} with the Cayley

table as follows:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 1 0 0

4 4 3 4 3 0

It is a proper BCC-algebra since (3∗1)∗2 ≠ (3∗2)∗1. Define a fuzzy set µ
in G by µ(4) = 0.3 and µ(x) = 0.8 for all x ≠ 4. Then µ is a fuzzy multiply

positive implicative BCC-ideal of G.



2656 J. ZHAN AND Z. TAN

(ii) Let G be a proper BCC-algebra as (i) and let µ be a fuzzy set in G defined

by

µ(x)=


α1 if x ∈ {0,2,3},
α2 otherwise,

(2.1)

whereα1 >α2 in [0,1]. It is easy to check that µ is not a fuzzy multiply positive

implicative BCC-ideal of G because µ(4∗0k) = µ(4) = α2 ≤ min{µ((4∗3)∗
0n),µ(3∗0m)} for any positive integer numbers m, n, and k.

Theorem 2.5. Let µ be a fuzzy set in a BCC-algebra G, then µ is a fuzzy

multiply positive implicative BCC-ideal of G if and only if the nonempty level set

µα = {x ∈G | µ(x)≥α} of µ is a multiply positive implicative BCC-ideal of G.

Proof. Suppose that µ is a fuzzy multiply positive implicative BCC-ideal

of G and µα ≠∅ for any α∈ [0,1]. Then there exists x ∈ µα and so µ(x)≥α.

It follows that µ(0) ≥ µ(x) ≥ α so that 0 ∈ µα. Let x,y,z ∈ G be such that

(x∗y)∗zn ∈ µα and y ∗zm ∈ µα. By Definition 2.3, there exists a natural

number k such that µ(x∗zk)≥min{µ((x∗y)∗zn),µ(y∗zm)} ≥min{α,α} =
α and that x∗zk ∈ µα. Hence µα is a multiply positive implicative BCC-ideal

of G. Conversely, assume that µα is a multiply positive implicative BCC-ideal

of G for every α ∈ [0,1]. For any x ∈ G, let µ(x) = α. Then x ∈ µα. Since

0∈ µα, it follows that µ(0)≥α= µ(x) so that µ(0)≥ µ(x) for all x ∈G. Now

suppose that there existx0,y0,z0 ∈G such that µ(x0∗zk0) <min{µ((x0∗y0)∗
z0),µ(y0∗zm0 )}. Let λ0 = (µ(x0∗zk0)+min{µ((x0∗y0)∗z0),µ(y0∗zm0 )})/2,

then λ0 > µ(x0∗zk0) and 0 ≤ λ0 <min{µ((x0∗y0)∗znk ),µ(y0∗zm0 )} ≤ 1, so

we have µ((x0∗y0)∗zn0 )≥ λ0 and µ(y0∗zm0 )≥ λ0, then (x0∗y0)∗zn0 ∈ µλ0

and y0 ∗ zn0 ∈ µλ0 . As µλ0 is a multiply positive BCC-ideal of G, it implies

x0∗zk0 ∈ µλ0 and µ(x0∗zk0) ≥ λ0. This is a contradiction. Hence µ is a fuzzy

multiply positive implicative BCC-ideal of G.

Theorem 2.6. Let A be a nonempty subset of a BCC-algebra G, and µ a

fuzzy set in G defined by

µ(x)=

α1 if x ∈A,
α2 otherwise,

(2.2)

whereα1 >α2 in [0,1]. Then µ is a fuzzy multiply positive implicative BCC-ideal

of G if and only if A is a multiply positive implicative BCC-ideal of G.

Proof. Assume that µ is a fuzzy multiply positive implicative BCC-ideal

of G. Since µ(0) ≥ µ(x) for all x ∈ G, we have µ(0) = α1 and so 0 ∈ A. Let

x,y,z ∈ G be such that (x∗y)∗zn ∈ A and y ∗zm ∈ A. By Definition 2.3,

there exists a natural number k= k(x,y,z) such that µ(x∗zk)≥min{µ((x∗
y)∗zn),µ(y∗zm)} = α1 and that x∗zk ∈ A. Hence A is a multiply positive

implicative BCC-ideal of G.
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Conversely, suppose that A is a multiply positive implicative BCC-ideal of

G. Since 0 ∈ A, it follows that µ(0) = α1 ≥ µ(x) for all x ∈ G. Let x,y,z ∈
G. If y ∗zm �∈ A and (x∗y)∗zn ∈ A, then clearly µ(x∗zk) ≥ min{µ((x∗
y)∗zn),µ(y∗zm)}. Assume that y∗zm ∈ A and (x∗y)∗zn �∈ A, we have

(x∗y)∗zk �∈A. Therefore µ(x∗zk)=α2 =min{µ((x∗y)∗zn),µ(y∗zm)}.
Hence, µ is a fuzzy multiply positive implicative BCC-ideal of G.

A fuzzy relation on any set S is a fuzzy subset µ : S×S → [0,1]. If µ is a fuzzy

relation on a set S and ν is a fuzzy subset of S, then µ is a fuzzy relation on

ν if µ(x,y)≤min{ν(x),ν(y)} for all x,y ∈ S. Let µ and ν on S be defined as

(µ×ν)(x,y) =min{µ(x),ν(y)}. One can prove that µ×ν is a fuzzy relation

on S and (µ×ν)t = µt ×νt for all t ∈ [0,1]. If µ is a fuzzy subset of a set S,

the strongest fuzzy relation on S that is a fuzzy relation on ν is µν , given by

µν(x,y)=min{µ(x),ν(y)} for all x,y ∈ S. In this case we have (µν)t = νt×νt
for all t ∈ [0,1] (see [2]).

Theorem 2.7. For a given fuzzy subset ν of a BCC-algebra G, let µν be the

strongest fuzzy relation on G. If µν is a fuzzy multiply positive implicative BCC-

ideal of G×G, then ν(0)≥ ν(x) for all x ∈G.

Proof. Since µν is a fuzzy multiply positive implicative BCC-ideal of G×G,

it follows that µν(0,0) ≥ µν(x,x) for all x ∈ G. This means that min{ν(0),
ν(0)} ≥min{ν(x),ν(x)}, which implies that ν(0)≥ ν(x).

Theorem 2.8. If ν is a fuzzy multiply positive implicative BCC-ideal of a

BCC-algebra G, then the level multiply positive implicative BCC-ideals of (µν)t
are given by

(
µν
)
t = µt×νt ∀t ∈ [0,1]. (2.3)

The proof is obvious.

Theorem 2.9. If µ and ν are fuzzy multiply positive implicative BCC-ideals

of a BCC-algebra G, then µ×ν is a fuzzy multiply positive implicative BCC-ideal

of G×G.

Proof. For any (x,y)∈G×G,

(µ×ν)(0,0)=min
{
µ(0),ν(0)

}≥min
{
µ(x),ν(x)

}
= (µ×ν)(x,y). (2.4)

Now, let x = (x1,x2), y = (y1,y2), and z = (z1,z2)∈G×G. For any n,m∈N,

there exists a natural number k such that

(µ×ν)(x∗zk)= (µ×ν)((x1,x2
)∗(z1,z2

)k)
= (µ×ν)(x1∗zk1 ,x2∗zk2

)
=min

{
µ
(
x1∗zk1

)
,ν
(
x2∗zk2

)}
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≥min
{

min
{
µ
((
x1∗y1

)∗zn1 ),µ(y1∗zm1
)}
,

min
{
ν
((
x1∗y2

)∗zn2 ),ν(y2∗zm2
)}}

=min
{

min
{
µ
((
x1∗y1

)∗zn1 ),ν((x2∗y2
)∗zn2 )},

min
{
µ
(
y1∗zm1

)
,ν
(
y2∗zm2

)}}
=min

{
(µ×ν)

(((
x1,x2

)∗(y1,y2
))∗(z1,z2

)n),
(µ×ν)((y1,y2

)∗(z1,z2
)m)}

=min
{
(µ×ν)((x∗y)∗zn),(µ×ν)(y∗zm)}.

(2.5)

Hence µ×ν is a fuzzy multiply positive implicative BCC-ideals of G×G.

Theorem 2.10. Let µ and ν be fuzzy subsets of a BCC-algebra G such that

µ×ν is a fuzzy multiply positive implicative BCC-ideal of G×G. Then

(i) either µ(x)≤ µ(0) or ν(x)≤ ν(0) for all x ∈G,

(ii) if µ(x)≤ µ(0) for all x ∈G, then either µ(x)≤ ν(0) or ν(x)≤ ν(0),
(iii) if ν(x)≤ ν(0) for all x ∈G, then either µ(x)≤ µ(0) or ν(x)≤ µ(0),
(iv) either µ or ν is a fuzzy multiply positive implicative BCC-ideal of G.

Proof. (i) Suppose that µ(x) > µ(0) and ν(x) > ν(0) for some x,y ∈ G.

Then (µ×ν)(x,y) =min{µ(x),ν(y)} >min{µ(0),ν(0)} = (µ×ν)(0,0). This

is a contradiction and we obtain (i).

(ii) Assume that there exist x,y ∈G such that µ(x) > ν(0) and ν(y) > ν(0).
Then (µ× ν)(0,0) = min{µ(0),ν(0)} = ν(0). It follows that (µ× ν)(x,y) =
min{µ(x),ν(y)}> ν(0)= (µ×ν)(0,0). This is a contradiction. Hence (ii) holds.

(iii) Item (iii) is proved by similar method to part (ii).

(iv) Since by (i), either µ(x) ≤ µ(0) or ν(x) ≤ ν(0) for all x ∈ G, without

loss of generality, we may assume that ν(x)≤ ν(0) for all x ∈G. Form (iii), it

follows that either µ(x) ≤ µ(0) or ν(x) ≤ µ(0). If ν(x) ≤ µ(0) for all x ∈ G,

then (µ× ν)(0,x) = min{µ(0),ν(x)} = ν(x). Let (x1,x2),(y1,y2),(z1,z2) ∈
G×G. Since µ×ν is a fuzzy multiply positive implicative BCC-ideal of G×G,

then for any n,m∈N, there exists a natural number k such that

(µ×ν)
((
x1,x2

)∗(z1,z2
)k)

≥min
{
(µ×ν)

(((
x1,x2

)∗(y1,y2
))∗(z1,z2

)n),
(µ×ν)

((
y1,y2

)∗(z1,z2
)m)}

=min
{
(µ×ν)(((x1∗y1

)∗zn1 ),((x2∗y2
)∗zn2 )),

(µ×ν)(y1∗zm1 ,y2∗zm2
)}
.

(2.6)
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If we take x1 =y1 = z1 = 0, then

ν
(
x2∗zk2

)= (µ×ν)(0,x2∗zk2
)

= (µ×ν)
((

0,x2
)∗(0,z2

)k)
≥min

{
(µ×ν)(0,(x2∗y2

)∗zn2 ),(µ×ν)(0,y2∗zm2
)}

=min
{

min
{
µ(0),ν

((
x2∗y2

)∗zn2 )},min
{
ν(0),ν

(
y2∗zm2

)}}
=min

{
ν
((
x2∗y2

)∗zn2 ),ν(y2∗zm2
)}
.

(2.7)

This proves that ν is a fuzzy multiply positive BCC-ideal ofG. Now we consider

the case µ(x)≤ µ(0) for all x ∈G. Suppose that ν(y) > µ(0) for some y ∈G.

Then ν(0) ≥ ν(y) > µ(0). Since µ(0) ≥ µ(x) for all x ∈ G, it follows that

ν(0) > µ(x) for any x ∈ G. Hence (µ × ν)(x,0) = min{µ(x),ν(0)} = µ(x).
Taking x2 =y2 = z2 = 0 in (2.6), then

µ
(
x1∗zk1

)= (µ×ν)(x1∗zk1 ,0
)

= (µ×ν)
((
x1,0

)∗(z1,0
)k)

≥min
{
(µ×ν)((x1∗y1

)∗zn1 ,0),(µ×ν)(y1∗zm1 ,0
)}

=min
{

min
{
µ
((
x1∗y1

)∗zn1 ),ν(0)},min
{
µ
(
y1∗zm1

)
,ν(0)

}}
=min

{
µ
((
x1∗y1

)∗zn1 ),µ(y1∗zm1
)}

(2.8)

which proves that µ is a fuzzy multiply positive implicative BCC-ideal of G.

Theorem 2.11. Let ν be a fuzzy subset of a BCC-algebra G and let µν be

the strongest fuzzy relation on G. Then ν is a fuzzy multiply positive implicative

BCC-ideal of G if and only if µν is a fuzzy multiply positive implicative BCC-ideal

of G×G.

Proof. Assume that ν is a fuzzy multiply positive implicative BCC-ideal of

X, then

µν(0,0)=min
{
ν(0),ν(0)

}≥min
{
ν(x),ν(y)

}= µν(x,y) (2.9)

for any (x,y) ∈ G ×G. Moreover, for any n,m ∈ N, there exists a natural

number k such that

µν
((
x1,x2

)∗(z1,z2
)k)= µν(x1∗zk1 ,x2∗zk2

)
=min

{
ν
(
x1∗zk1

)
,ν
(
x2∗zk2

)}
≥min

{
min

{
ν
((
x1∗y1

)∗zn1 ),ν(y1∗zm1
)}
,

min
{
ν
((
x2∗y2

)∗zn2 ),ν(y2∗zm2
)}}
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=min
{

min
{
ν
((
x1∗y1

)∗zn1 ),ν((x2∗y2
)∗zn2 )},

min
{
ν
(
y1∗zm1

)
,ν
(
y2∗zm2

)}}
=min

{
µν
(((
x1∗y1

)∗zn1 ),(x2∗y2
)∗zn2 ),

µν
(
y1∗zm1 ,y2∗zm2

)}
=min

{
µν
(((
x1,x2

)∗(y1,y2
))∗(z1,z2

)n),
µν
((
y1,y2

)∗(z1,z2
)m)}

(2.10)

for any (x1,x2),(y1,y2),(z1,z2)∈G×G.

Hence µν is a fuzzy multiply positive implicative BCC-ideal of G×G.

Conversely, suppose that µν is a fuzzy multiply positive implicative BCC-

ideal of G×G. Then for all (x1,x2)∈G×G,

min
{
ν(0),ν(0)

}= µν(0,0)≥ µν(x1,x2
)=min

{
ν
(
x1
)
,ν
(
x2
)}
. (2.11)

It follows that ν(0)≥ ν(x) for all x ∈G. Now, for any n,m∈N, there exists a

natural number k such that

min
{
ν
(
x1∗zk1

)
,ν
(
x2∗zk2

)}
= µν

(
x1∗zk1 ,x2∗zk2

)= µν((x1,x2
)∗(z1,z2

)k)
≥min

{
µν
(((
x1,x2

)∗(y1,y2
))∗(z1,z2

)n),µν((y1,y2
)∗(z1,z2

)m)}
=min

{
µν
((
x1∗y1

)∗zn1 ,(x2∗y2
)∗zn2 ),µν(y1∗zm1 ,y2∗zm2

)}
=min

{
min

{
ν
((
x1∗y1

)∗zn1 ),ν((x2∗y2
)∗zn2 )},

min
{
ν
(
y1∗zm1

)
,ν
(
y2∗zm2

)}}
=min

{
min

{
ν
((
x1∗y1

)∗zn1 ),ν(y1∗zm1
)}
,

min
{
ν
((
x2∗y2

)∗zn2 ),ν(y2∗zm2
)}}
.

(2.12)

If we take x2 = y2 = z2 = 0 (resp., x1 = y1 = z1 = 0), then ν(x1 ∗ zk1) ≥
min{ν((x1∗y1)∗zn1 ),ν(y2∗zm2 )}. Hence ν is a fuzzy multiply positive im-

plicative BCC-ideal of G.

3. T -fuzzy multiply positive implicative BCC-ideals

Definition 3.1 [1]. By a t-norm T , we mean a function T : [0,1]×[0,1]→
[0,1] satisfying the following conditions:

(I) T(x,1)= x,

(II) T(x,y)≤ T(x,z) if y ≤ z,

(III) T(x,y)= T(y,x),
(IV) T(x,T(y,z))= T(T(x,y),z) for all x,y,z ∈ [0,1].
Every t-norm T has a useful property T(α,β)≤min{α,β} for allα,β∈ [0,1].
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Lemma 3.2 [1]. Let T be a t-norm. Then T(T(α,β),T(ν,δ)) = T(T(α,ν),
T(β,δ)) for all α,β,ν,δ∈ [0,1].

Definition 3.3. A fuzzy subset µ : G→ [0,1] in a BCC-algebra G is called

a fuzzy multiply positive implicative BCC-ideal of G with respect to a t-norm

T (briefly, T -fuzzy multiply positive implicative BCC-ideal of G) if

(i) µ(0)≥ µ(x) for all x ∈G,

(ii) for any n,m∈N, there exists a natural number k= k(x,y,z) such that

µ(x∗zk)≥ T(µ((x∗y)∗zn),µ(y∗zm)) for any x,y,z ∈G.

Example 3.4. Consider a BCC-algebraG = {0,1,2,3,4}with the Cayley table

as follows:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 1 0 0

4 3 4 4 3 0

By routine calculation, G is a proper BCC-algebra (cf. [5]). Define a fuzzy set

µ by µ(0) = µ(1) = µ(2) = µ(3) = 0.8 and µ(4) = 0.3. Let T(α,β) = max{α+
β−1,0} for all α,β ∈ [0,1]. Then T is a t-norm. It is easy to check that µ is a

T -fuzzy multiply positive implicative BCC-ideal of G.

Theorem 3.5. Let µ be a T -fuzzy multiply positive implicative BCC-ideal of

a BCC-algebra G and let α ∈ [0,1] if α = 1, then the nonempty subset µα is a

multiply positive implicative BCC-ideal of G.

Proof. Assume thatα= 1 andx ∈ µα, then µ(x)≥ 1. Thus µ(0)≥ µ(x)≥ 1

and 0∈ µα.

Moreover, suppose that (x∗y)∗zn ∈ µα and y∗zm ∈ µα, then µ((x∗y)∗
zn) ≥ 1 and µ(y ∗zm) ≥ 1. By Definition 3.3, there exists a natural number

k such that µ(x∗zk) ≥ T(µ((x∗y)∗zn),µ(y∗zm)) ≥ T(1,1) = 1 and that

x∗zk ∈ µα. Hence µα is a multiply positive implicative BCC-ideal of G.

For a fuzzy set µ on a BCC-algebra G and a map θ : G → G, we define a

mapping µ[θ] :G→ [0,1] by µ[θ](x)= µ(θ(x)) for all x ∈G.

Theorem 3.6. If µ is a T -fuzzy multiply positive implicative BCC-ideal of a

BCC-algebra G and θ is an epimorphism of G, then µ[θ] is a T -fuzzy multiply

positive implicative BCC-ideal of G.
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Proof. Let µ[θ](0) = µ(θ(0)) = µ(0) ≥ µ(y) for any y ∈ G. Since θ is an

epimorphism ofG, then there exists x ∈G such that θ(x)=y . Thus µ[θ](0)≥
µ(θ(x))= µ[θ](x). As y is an arbitrary element of G, the above result is true

for any x ∈G.

Moreover, for any n,m∈N, there exists a natural number k such that

µ[θ]
(
x∗zk)= µ(θ(x∗zk))= µ(θ(x)∗θ(z)k)

≥ T(µ((θ(x)∗θ(y))∗θ(z)n),µ(θ(y)∗θ(z)m))
= T(µ(θ((x∗y)∗zn)),µ(θ(y∗zm)))
= T(µ[θ]((x∗y)∗zn),µ[θ](y∗zm)).

(3.1)

Hence µ[θ] is a T -fuzzy multiply positive implicative BCC-ideal of G.

Let f be a mapping defined on a BCC-algebra G. If ν is a fuzzy set in f(G),
then the fuzzy set µν of G defined by µ(x) = ν(f(x)) is called the preimage

of ν under f .

Theorem 3.7. An onto homomorphic preimage of a T -fuzzy multiply posi-

tive implicative BCC-ideal is a T -fuzzy multiply positive implicative BCC-ideal.

Proof. Let f : G → G′ be an onto homomorphism of BCC-algebra, ν a T -

fuzzy multiply positive implicative BCC-ideal of G′, and µ the preimage of

ν under f . Then µ(0) = ν(f(0)) = ν(0′) ≥ ν(f(x)) = µ(x) for all x ∈ G.

Moreover, for any n,m∈N, there exists a natural number k such that

µ
(
x∗zk)= ν(f (x∗zk))= ν(f(x)∗f(z)k)

≥ T(ν((f(x)∗f(y))∗f(z)n),ν(f(y)∗f(z)m))
= T(ν(f ((x∗y)∗zn)),ν(f (y∗zm)))
= T(µ((x∗y)∗zn),µ(y∗zm))

(3.2)

for anyx,y,z ∈G. Hence µ is a T -fuzzy multiply positive implicative BCC-ideal

of G.

If µ is a fuzzy set in a BCC-algebra G and f is a mapping defined on G, then

the fuzzy set µf in f(G) defined by µf (y)= supx∈f−1(y) µ(x) for all y ∈G is

called the image of µ under f . A fuzzy set µ in G is said to have sup property

if, for every subset T ⊆G, there exists t0 ∈ T such that µ(t0)= supt∈T µ(t).

Theorem 3.8. An onto homomorphic image of a T -fuzzy multiply positive

implicative BCC-ideal with sup property is a T -fuzzy multiply positive implicative

BCC-ideal.

Proof. Let f : G→ G′ be an onto homomorphism of BCC-algebras and let

µ be a T -fuzzy multiply positive implicative BCC-ideal of G with sup property.

Then µf (0) = supf∈f−1(0) µ(t) = µ(0) ≥ µ(x) for any x ∈ G. Furthermore, we
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haveµf (x1)=supt∈f−1(x1) µ(t) for anyx1∈G′. Thusµf (0)≥supt∈f−1(x1) µ(t)=
µf (x1) for any x1 ∈ G′. Moreover, for any x1,y1,z1 ∈ G′, let x ∈ f−1(x1),
y ∈ f−1(y1), and z ∈ f−1(z1) such that

µ
(
x∗zk)= sup

t∈f−1(x1∗zk1)
µ(t),

µ
(
(x∗y)∗zn)= sup

t∈f−1((x∗y)∗zn)
µ(t),

µ
(
y∗zn)= sup

t∈f−1(y1∗zm1 )
µ(t).

(3.3)

Thus

µf
(
x1∗zk1

)= sup
t∈f−1(x1∗zk1)

µ(t)= µ(x∗zk)

≥ T(µ((x∗y)∗zn),µ(y∗zm))

= T
(

sup
t∈f−1((x1∗y1)∗zn1 )

µ(t), sup
t∈f−1(y1∗zm1 )

µ(t)
)

= T(µf ((x1∗y1
)∗zn1 ),µf (y1∗zm1

))
.

(3.4)

Therefore, µf is a T -fuzzy multiply positive implicative BCC-ideal of G′.

4. Fuzzy multiply positive implicative BCC-ideals induced by norms

Theorem 4.1. Let T be a t-norm and G = G1×G2 the direct product BCC-

algebra of BCC-algebrasG1 andG2. If µ1 (resp., µ2) is a T -fuzzy multiply positive

implicative BCC-ideal of G1 (resp., G2), then µ = µ1×µ2 is a T -fuzzy multiply

positive implicative BCC-ideal of G defined by µ(x1,x2) = (µ1×µ2)(x1,x2) =
T(µ1(x1),µ2(x2)) for all (x1,x2)∈G1×G2.

The proof is identical with the corresponding proof from [3].

We will generalize the idea to the product of n T -fuzzy multiply positive

implicative BCC-ideals. We first need to generalize the domain of t-norm T to

Πni=1[0,1] as follows.

The function Tn :Πni=1[0,1]→ [0,1] is defined by

Tn
(
α1,α2, . . . ,αn

)= T(αi,Tn−1
(
α1, . . . ,αi−1,αi+1, . . . ,αn

))
(4.1)

for all 1 ≤ i ≤ n, where n ≥ 2, T2 = T , and T1 = id (identity). For a t-norm T
and every αi,βi ∈ [0,1], where 1≤ i≤n and n≥ 2, we have

Tn
(
T
(
α1,β1

)
,T
(
α2,β2

)
, . . . ,T

(
αn,βn

))
= T(Tn(α1,α2, . . . ,αn

)
,Tn

(
β1,β2, . . . ,βn

))
.

(4.2)
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Theorem 4.2. Let T be a t-norm, {Gi}ni=1 the finite collection of BCC-alge-

bras, andG =Πi=1
n Gi the direct product BCC-algebra of {Gi}. Let µi be a T -fuzzy

multiply positive implicative BCC-ideal of {Gi}, where 1≤ i≤n. Then µ =Πni=1µi
defined by µ(x1,x2, . . . ,xn)=(Πni=1µi)(x1,x2, . . . ,xn)=Tn(µ1(x1),µ2(x2), . . . ,µn(xn))
is a T -fuzzy multiply positive implicative BCC-ideal of G.

The proof is identical with the corresponding proof from [3].

Definition 4.3 [4]. Let T be a t-norm and let µ and ν be fuzzy sets in a

BCC-algebra G. Then the T -product of µ and ν , written as [µ ·ν]T , is defined

by [µ ·ν]T (x)= T(µ(x),ν(x)) for all x ∈G.

Theorem 4.4. Let T be a t-norm and let µ and ν be T -fuzzy multiply positive

implicative BCC-ideals of a BCC-algebra G. If T∗ is a t-norm which dominates

T , that is, T∗(T(α,β),T(ν,δ))≥ T(T∗(ν,δ),T∗(β,δ)) for all α,β,ν,δ∈ [0,1],
then the T∗-product of µ and ν , [µ·ν]T∗ , is a T -fuzzy multiply positive implica-

tive BCC-ideal of G.

Proof. Let [µ ·ν]T∗(0) = T∗(µ(0),ν(0)) ≥ T∗(µ(x),ν(x)) = [µ ·ν]T∗(x)
for any x ∈ G. Moreover, for any n,m ∈ N, there exists a natural number k,

such that

[µ ·ν]T∗
(
x∗zk)

= T∗(µ(x∗zk),ν(x∗zk))
≥ T∗(T(µ((x∗y)∗zn),µ(y∗zm)),T(ν((x∗y)∗zn),ν(y∗zm)))
≥ T(T∗(µ((x∗y)∗zn),ν((x∗y)∗zn)),T∗(µ(y∗zm),ν(y∗zm)))
= T([µ ·ν]T∗((x∗y)∗zn),[µ ·ν]T∗(y∗zm)).

(4.3)

Hence [µ ·ν]T∗ is a T -fuzzy multiply positive implicative BCC-ideal of G.

Let f :G→G′ be an onto homomorphism of BCC-algebras. Let T and T∗ be

t-norms such that T∗ dominates T . If µ and ν are T -fuzzy multiply positive

implicative BCC-ideals of G′, then the T∗-product of µ and ν , [µ ·ν]T∗ , is a

T -fuzzy multiply positive implicative BCC-ideal of G′. Since every onto homo-

morphism preimage of a T -fuzzy multiply positive implicative BCC-ideal is a

T -fuzzy multiply positive implicative BCC-ideal, the preimages f−1(µ), f−1(ν),
and f−1([µ ·ν]T∗) are T -fuzzy multiply positive implicative BCC-ideals of G.

The next theorem provides the relation between f−1([µ·ν]T∗) and T∗-product

[f−1(µ)·f−1(ν)]T∗ of f−1(µ) and f−1(ν).

Theorem 4.5. Let f : G → G′ be an onto homomorphism of BCC-algebras.

Let T and T∗ be t-norms such that T∗ dominates T . Let µ and ν be T -fuzzy

multiply positive implicative BCC-ideals of G′. If [µ ·ν]T∗ is the T∗-product of µ
and ν , and [f−1(µ) ·f−1(ν)]T∗ is the T∗-product of f−1(µ) and f−1(ν), then

f−1([µ ·ν]T∗)= [f−1(µ)·f−1(ν)]T∗ .
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