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This paper considers fuzzy subbundles of a vector bundle. We define the opera-
tions sum, product, tensor product, Hom, and intersection of fuzzy subbundles
and in each case, we characterize the corresponding flag of vector subbundles. We
then propose two alternative definitions of integrability on fuzzy subbundles of
a given type and discuss their naturality, merits, and shortcomings. We do these
here with a view to introduce and study integrable fuzzy subbundles of tangent
bundles on manifolds and foliations in further papers.
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1. Introduction. A fuzzy subspace of a vector space can be characterized
as a flag with weights, which are real numbers taken from the unit interval,
attached at each component of the “nested” subspaces of the flag [7]. Similar
ideas have been employed to study fuzzy subgroups of finite Abelian groups
by Murali and Makamba [14]. A number of authors [1, 2, 5, 6, 8, 12] have con-
sidered fuzzy subspaces of vector spaces in other contexts. On the other hand,
flags and flag manifolds are familiar objects of study for algebraists, geome-
ters, topologists, and others [3, 4, 11, 13]. The present work was suggested by
analogy with basic constructions of vector bundles. A fuzzy subbundle is a
complex mathematical construction. It consists of a chain of subbundles and
weights. Chains of subbundles or foliations are considered and investigated
in foliation theory, for example, see [10]. In this context, we will have to deal
with weights which are new components in the case of fuzzy subbundles. It is
worthwhile to investigate the role and possible applications of weights. There-
fore, a large part of this paper is devoted to the formulation and elucidation
of definitions and their simple consequences. Further, we propose some inte-
grability conditions on fuzzy subbundles, basically from an algebraic point of
view. In so doing, we hope to lay the foundations for the study of foliations
and other geometric aspects of fuzzy subbundles. We will omit the standard
topological considerations in this paper, but concentrate largely on algebraic
aspects.

2. Preliminaries

2.1. Definitions. In this paper, V denotes a vector space over the field of real
numbers of dimension n < . Further, suppose that the triple &€ = (E,M, p) is
a vector bundle, with p : E — M being the projection of the total space E onto
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the base space M. For every x € M, the fiber E, = p~!(x) is a vector space
over F isomorphic to V. For the purposes of formal constructions, it is not
necessary to impose local triviality condition on the vector bundle, and as
such, we have not assumed any such condition in general, unless otherwise
stated in a particular context. We use I = [0, 1], the real unit interval as a chain
with the usual ordering in which A stands for infimum (or intersection) and v
stands for supremum (or union).

DEFINITION 2.1. A fuzzy subbundle of & is a fuzzy subset u: E — I such
that the following holds. For x € M, the restriction py : Ex — I of u to E is
a fuzzy subspace of E,, which means that for every x € M and u,v € Ejy,
Ux(xu+Bv) = pu(u)x Ay (v), for &, € F.

Without loss of generality, throughout this paper we tacitly assume that
Ux (0) =1 for every fuzzy subspace L, x € M. We will use the following form
of Lowen’s representation theorem [6].

THEOREM 2.2. A fuzzy subset u of V is a fuzzy subspace of V if and only
if there exist an integer k < n and weights 1 = xg > &, > -+ - > ¢ = 0, and a
strict flagvV® cV* C --- Cc V% =V such that u|V*\V%-1 = x; forl < j <k.

Therefore, for every x € M, we have a strict flag
V000 cy a0 ooy 0 c L 2.1)
where k may depend on x and
1=0p(x)>0x1(x)> >0(x)=0, k=<n, (2.2)
are weights. Denote
Cx ™) =V, G\ Y, 1) i =k, x € M. (2.3)
Clearly,
CeY™ = pt (o(x)), j=1,....k, x € M. (2.4)

REMARK 2.3. In this paper, we assume that the number of subspaces k in
the flag at x € M is independent of x. Thus each weight «;(x), j =0,1,...,k,
defines a fuzzy subset of M.

From the definition of fuzzy subbundle and the Lowen’s representation the-
orem as stated above, we have the following consequences, which we state as
a proposition.

PROPOSITION 2.4. Suppose & = (E,p,M) is a vector bundle. A fuzzy subset
u:E — I is a fuzzy subbundle if and only if there exist
(i) a flag on E for every x € M, associated with L.,
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(ii) a finite chain of fuzzy subsets defined on M in the form of
1=0p(x)>0(x)>--->0(x)=0, k<n,xeM. (2.5)

In fuzzy set theory, it is not uncommon to discuss definitions in terms of
the so-called levels. That is, the c-cut levels for 0 < ¢ < 1 of a fuzzy subbundle
is a crisp subbundle. The following example demonstrates that if c-cuts are
crisp subbundles, then the weights «’s are constants.

EXAMPLE 2.5. Let&’ = (E',p’,M) be a subbundle of § = (E,p,M). Thus E;, C
E is a subspace, dimE;, = m, m < n. Consider a fuzzy subbundle, with the
flag

{0} CE; CEx (2.6)
and the weights
1>a(x)>0, xeM. 2.7)

Thus, given c € I, the c-cut consists of E if a(x) = ¢ and {0} if x(x) <c. We
see that every c-cut of u is a subbundle of &€ only if «x(x) is a constant function
on M.

For this reason, we proposed the more general definition as given in
Definition 2.1, from which the following is, however, immediate.

For every j, the set of all v € E such that u(v) = «;(p(v)) is a subbundle
of € if dimV, %™ is constant for x € M.

2.2. Morphisms. For the sake of completeness, we recall the following.

(i) If ¢ : V — W is alinear map and if u is a fuzzy subspace of V, then by the
image of the fuzzy subspace u, we mean the fuzzy subset ¢ (u) of W defined
by (¢ () (y) = sup{u(x) : p(x) = ¥} if ¢~ (y) = @, and (p(u))(¥) = 0 if
¢~ 1(y) = @.1tis easy to check that ¢ (u) is a fuzzy subspace of W whenever
u is a fuzzy subspace of V.

(ii) A pair (¢, f), where

¢:E—FE, f:M—M, (2.8)

is a morphism between two vector bundles & = (E,p,M) and &' = (E',p’,M’)
if fop =p’o¢ and the restriction ¢, of ¢ to Ey — E}(X) is linear for every
x € M. For further results, we refer the reader to [4].

Given a fuzzy subbundle v of &', we can induce a fuzzy subbundle u of &
by the composition

U=c¢ov. (2.9)
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Clearly it is a pullback operation, and for every x € M,

HMx = d)xon(x)- (2.10)

We can also define a push-forward operation (which is not possible for the case
of crisp subbundles) on fuzzy subbundles as follows.

Let u be a fuzzy subbundle of &. Denote by ¢ (L) the image of the fuzzy
subspace L. It is a fuzzy subspace of E}(X) [8]. Given y € M’, we define

vy =inf {¢py (ux) : x € £ 1)} (2.11)

Then the collection v = {v, : ¥y € M’} of fuzzy subspaces defines a fuzzy
subbundle of &'. We call this subbundle v the image of u by the morphism
(b, ).

2.3. Fuzzy subbundles as sections. We will give a description of fuzzy sub-
bundle as a section of crisp bundle. Recall that E, is vector space isomorphic
to a given vector space V over a field F, for x € M. Denote by F(V) the set of all
fuzzy subspaces of V. Then we construct the bundle F(&) over M with the to-
tal space F(E) = J{F(Eyx) : x € M} and the projection F(p) : F(E) — M, where
F(p)(u) = x if u € F(Ey). Any section u of F(&) defines a fuzzy subbundle of
& with py = u(x) € F(Ex), x € M. This construction becomes more explicit for
a weighted flag of a given type of a vector space of finite dimension over the
field F, where F is the field of real or complex numbers. We will now explain
the concept of “type” as follows.

Let I = (I1,1o,...,lx) be a finite sequence of positive integers such that 0 <
I <lp <--- <. Afuzzy subspace u is said to be of type L if its flag contains
k subspaces Vi, V»,..., Vi withdimV, = 1,, p = 1,2,..., k. Denote by F;V (I) the
set of all fuzzy subspaces of V of type L. We often identify type [ of a flag
simply with | = (ly,I,...,1lx) where the various [;’s are the dimensions of the
various subspaces in V. If we identify V with F", then clearly the orthogonal
group SO(n,R), (SU(n) in the case of complex vector space) acts transitively
on the flags of the type l. Hence the set of all flags of type | is a homogeneous
manifold denoted by FL(L,F").

To discuss the weights attached to these subspaces of a flag associated with
a fuzzy subspace p, consider the open simplex in (0,1)¥, denoted by Ay of all
finite sequences 1, &o,..., & of real numbers of the form 1 > ot; > oxp > -+ - >
o > 0. With these notations, we can identify

FV(1) = FL(L,F™) x Ay (2.12)
as follows (see (2.1)). Every u can be identified with

{Ocvi®tc.---CcWV* CV, (2.13)
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which gives rise to a flag
{0fcvic---CcVpCV, (2.14)
and the sequence «;,xz,..., & in
1>0>00>-->0>0, (2.15)

and vice versa.
Let, as before, & = (E,M, p) be a vector bundle.
Suppose

Fi(E) = | FEx(D), (2.16)

xeM

where FE, (1) is the set of all fuzzy subspaces of E, of type [. Now, we can
construct a new fiber bundle FE = (F;(E),M,F(p)) of fuzzy subspaces of a
given type [ and F(p) : Fi(E) — M is the fiber bundle projection. Then, we can
regard any fuzzy subbundle of £ as a section of the fiber bundle FE&, that is, a
mapping u: M — F;(E) such that yoF(p) = identity on M.

Suppose now & = (E,M, p) is locally trivial. Let ¢y : E|y — U X F™ be a local
trivialization of &, where U C M is open, E|y = p~"(U). Then uy = po (1)U*1
is a fuzzy subbundle of the trivial bundle U x F™. If ¢y : E|y — V X F™ is an-
other local trivialization of &, then ¢y o ¢U*1 restricted to U NV defines an
isomorphism of the trivial bundle (UNV) x F", and therefore

Pvody t(x,v) = (x,pvu(x)v), x€UNV, veF" (2.17)

where ¢pyy : UNV — GL(F™) is the transition function [4]. We have uy = py o
¢vy on UNV.We note that if E is locally trivial, then so is FE. Given a local triv-
ialization E|y — U x F™*, we have the induced trivialization F;(E) |y — U XFV (1),
where V = F™. The u-section induces on every trivialization a corresponding
section uy : U — FV (1), where V = F™. This point of view will be utilized later.

2.4. Continuity of fuzzy subbundles. In this section, we make a few obser-
vations about continuity of fuzzy subbundles. Given Ey, x € M, uy : Ex — I is
a step function with finite number of values in I and is only right continuous.
We want to define a continuous dependence of u, on x € M. Suppose E, M are
C* manifolds and p : E — M is a C* map. We consider the example of trivial
bundle case in the next proposition.

PROPOSITION 2.6. Suppose p : UXR" — U, where U is an open connected
subset in R™ and p is the trivial bundle projection and a fuzzy subbundle u :
UXR™ — [ isof a given type l. Given a fixed v € R", if x — u(x,v) is continuous
on U, then the flag for u is constant and the weights are continuous functions
onU.
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Here we understand the flag for u being constant in the sense that for every
x eU, Vj"‘f(") =V, j=1,2,...,k, where V; is a fixed subspace of R".

PROOF. Let o;(xg) < ox2(xg) < --- < ag(xp) be the weights at xo € U.
Consider a family of disjoint neighborhoods I, 1I5,...,Ix of & (x0), x2(x0),...,
i (xo), respectively. Given j, choose any v; € R" such that

H(xo,vj) = &(x0), forj=1,2,...,k. (2.18)
By assumption,
p(x,vj) — u(xo,vj) = «;(x0), forj=1,2,....k, as x — Xqo. (2.19)

Hence there is a neighborhood N of x( such that u(x,v;) € Ijfor j = 1,2,...,k.
Since u(x,-) has exactly k values and I;’s are disjoint, we must have

u(x,v;) =«aj(x), forj=1,2,... k. (2.20)

This shows that &;(x) — &;(xo) as x — xo.In other words, o (x) is continuous
for j=1,2,...,k. Now we will demonstrate that

VeI Zvi R, forj=1,2,... k. (2.21)

Consider a fixed point xo € U and choose a v € R™. Then u(xo,v) = &;(xo) for
some 1 < i < k. From the proof of continuity of the weights «’s, we conclude
that there is a neighborhood N of x in which p(x,v) = x;(x). Now let v €
V,?(‘)’(x()), that is, u(xo,v) = &j(xo) for some i > j. Therefore, u(x,v) = &;(x) =
«j(x). In other words, v € V;(x i in some neighborhood of x. Since the role
x and x( can be reversed, we have

oj(x) «;j(x0)

\% =Vx; , forxeU (2.22)

in some neighborhood of x¢ and j = 1,2,..., k. It shows that the set of x satis-
fying (2.22) is open. It is trivial that this set is also closed from the assumption
of continuity of p and proven continuity of weights. Since U is connected,

«;j(x) _ «j(xo

Vi el v wxeu, j=1,2,...k (2.23)

This completes the proof. |

DEFINITION 2.7. A fuzzy subbundle of a given type [ = (ly,1>,...,1;) is con-
tinuous or differentiable (C®) if the corresponding section s, : M — F§ is con-
tinuous or differentiable (C*).
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Clearly this definition means the following.
(i) Every distribution of the flag for u is continuous, or differentiable (C*).
(i) Every weight is a continuous, or differentiable function (C*) on M.

3. Operations on fuzzy subbundles. All the operations on fuzzy subbun-
dles are done pointwise, that is, we perform the corresponding operations on
fuzzy subspaces of E, at every x € M. Thus the properties of the operations
on fuzzy subbundles follow from the corresponding properties of operations
on fuzzy subspaces [7]. We would like to point out that the resulting fuzzy
subbundles in various cases may produce flags with the number of subspaces
varying with x even in the cases of fuzzy subbundles of constant type. This
anomaly exists even in the classical cases as most of the operations do not
give rise to further subbundles although they do give subsheaves. The actual
calculations of the number of weights and the weights themselves in various
cases are given in [7].

3.1. Intersection, sum, and dual of fuzzy subbundles. Let yand v be fuzzy
subbundles of a vector bundle & = (E,p,M). Let

[0 C V™ o c v ) c B

(3.1)
{0} cw P ool cw, i) c By
be the flags and weights of u, and vy, respectively, for a given x € M.
Fuzzy intersection is given by the equation (LA V), = Ux AVy, X € M.
A number y*(x) = min{, (x), Bs(x)} is a weight for (u A v)y if
01 (X) >y (x) = o (%),  Bso1(x) >y (x) = Bs(x), 52
3.2

Uy ) =y qwhs) 4 (0.}, x e M,
Fuzzy sum is defined by
(H+V) (V) = (e + Vi) (V) = \/ {1 (V=) Avi(t) : t € Ex}. (3.3)
A number y*(x) = min{ &, (x),Bs(x)} is a weight for (u+v) if
Cro1(X) >y (%) 2 0 (x),  Bs-1(x) > y*(x) = Bs(x). (3.4)
The corresponding subspace of E, for x € M is
UY*e0 Z yearto 4 pBsx) (3.5)

Dual subbundle p* is a fuzzy subbundle of the dual bundle £*, the fiber at
x € Mis (u*)x = (ux)*, where for f € (Ey)*,

* L f:()’
) _ 3.6
() ") () {1sup{ux(t):teEx, Ft)£0}, f+0. (3.6)
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Then the weights for pu* are o;* (x) = 1 — ot (x), with the corresponding sub-
spaces

Vi) = ()0 Z the annihilator of V&™), x € M. (3.7)

3.2. Whitney sum and tensor product. Let& = (E,p,M) and &' = (E',p’,M)
be two vector bundles over M. Let u and v be two fuzzy subbundles of & and
&', respectively.

Consider the Whitney sum £ @ &', where the total space of £ £’ is the union
of Ex @ E5., x € M. The Whitney sum p & v is a fuzzy subbundle of £ & &’, with
(U®V)x = Ux ®Vx, X € M, where iy ® vy is the fuzzy subspace of Ex @ E
defined by (ux ® vy) (t,t") = ux (t) Avx(t') for t € Ex, t’ € E}.. Accordingly, the
number y*(x) = min{o, (x), Bs(x)} is a weight for (u & v), if and only if the
rectangle

[otr (x), -1 ()] X [ Bs (x), Bs—1(x) ] (3.8)
has nonempty intersection with the diagonal I X I. The corresponding subspace
is

VY WYX C E, @ EL. (3.9)

Similarly, for the tensor product, (£ ® V)x = Ux ® Vy is a fuzzy subspace
of Ex ® E;, for x € M see [7, Section 4.2, page 204]. Accordingly, the number
y*(x) =min{o, (x),Bs(x)} is a weight for (u @ v) if and only if the rectangle

[t (x), 01 (X) ] X [Bs (x), Bs—1(x) ] (3.10)

has nonempty intersection with the diagonal I X 1.

3.3. Bundle of bilinear forms and Hom bundles. Let & = (E,p,M) and
&' = (E',p’,M) be two vector bundles over M. Let u and v be two fuzzy subbun-
dles of & and &', respectively. Consider the bundle B(&,&') = (B(E,E'),p,M),
where B(E,E') = J(B(Ex,Ey) : x € M) with the fiber being the space of all bi-
linear maps from Ex X E;, — F. Given two fuzzy subbundles y, v of § and &',
respectively, we define a fuzzy subbundle of B(&,&") as follows:

(U-V)x=Ux-Vx, XEM (3.11)

as given in [7, Section 5.1, page 205]. The corresponding flag for i - vy is given
by

B*(Ex,E}) = {¢ € B(Ex,E}) : p(u,v) =0 for (u,v) € Ex' *x E,' ™%},
(3.12)

Similarly, for the bundle Hom(&, &") with the fibers,

Hom, (&,&") = Hom (Ey,E}), Xx € M. (3.13)
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We have Hom(u,v) a fuzzy subbundle of Hom(&,&") with the subspaces
(EL- ' e (EL)%, xeM. (3.14)

Accordingly, anumber y* (x) = min{«, (x), Bs(x)} is a weight for Hom (tx, Vi)
if and only if the rectangle

[0 (x), -1 (x) ] X [Bs(x), Bs—1(x)] (3.15)

has nonempty intersection with the diagonal I xI. Then
* L 7\ Bs
Hom”” (ity, vx) = (Ex'"r %) & (E)*™, xeMm. (3.16)

4. Subbundles of tangent bundles. In this section, we consider fuzzy sub-
bundles of tangent bundle on a manifold and we propose two different def-
initions of integrability of fuzzy subbundles. These two definitions apply to
fuzzy subbundles u of TM of a given type L, where TM is the tangent bundle
of a manifold M.

4.1. Integrability I. We firstly recall that by a distribution of a tangent bun-
dle TM of a manifold M, we mean a field of subspaces {D,}, where D, C T,.M
for x € M and Dim(Dy) = k, where k is independent of x € M [10]. It can be
regarded as a section of the Grassmanian bundle Gy (M), [10]. In terms of sec-
tion of Grassmanian bundle, integrability means existence of local coordinates
in which the section is constant. In the context of fuzzy subbundle of type I,
it works as follows.

Let u be a fuzzy subbundle of the tangent bundle T = (TM,M,p) where
p : TM — M is the bundle projection. It defines a section u of the bundle F(T) =
{FL(TM),M,F(p)}. Every local coordinate about x € M defines a trivialization
of TM|y — U x R™ and the corresponding trivialization of FL(TM)|y — U X
FR"(1). This allows us to consider the induced section u|y : U — FR"(l) as
discussed in the end of Section 2. We say that u is integrable if about every
x € M there is a neighborhood U of x and coordinates in U such that the
induced section u|y is constant.

This definition, among other things, implies that

(i) the flag for u is integrable or all its distributions of subspaces are inte-
grable,

(ii) weights are constant on U.

We observe that the above definition, though a natural one, is too restrictive
because we would like to have a definition of integrability that would be equally
applicable to fuzzy subbundles with variable weights. This is the content of
next two subsections. These concepts of integrability depend on what we mean
by isomorphism of two fuzzy subspaces.

4.2. Integrability II. Let (U,u) and (V,v) be two fuzzy subspaces. We recall
that a linear isomorphism of vector spaces L : U — V is an isomorphism of
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fuzzy subspaces if
v(L(u)) =pu(u), uel. (4.1)

Suppose u is a fuzzy subbundle of the tangent bundle TM. A diffeomor-
phism f : M — M induces a diffeomorphism d f : TM — TM through the dif-
ferential d f of f. We say that f preserves u if

() = u(df (), foreTM, 4.2)

Equivalently, if x € M and & € T, M, then

Hx (8) =ty (Af (x)(8)), 4.3)
which means that the differential
af(x): TyM — T)M (4.4)
is an isomorphism of fuzzy subspaces py and pf(y). Further, we notice that
o(x) = o (f(x)), VxeM, j=1,2,..,k, (4.5)
df () (VX)) = Vi V0D = Vi 6 ) (4.6)

since (4.5) is true.
Conversely, we have the following immediately straightforward result.

PROPOSITION 4.1. A diffeomorphism f : M — M preserves a fuzzy subbundle
u:TM — I if and only if f satisfies (4.5) and (4.6).

Similarly, if X is a vector field on M and {¢;}, the corresponding flow for X,
then we have the flow

&n =d¢:TM — TM, 4.7)

and we say X preserves pu if {¢,} preserves u for all t € R.
From (4.5) and (4.6),

o (x) = & (pe(x)) (4.8)

(or each weight «; is a first integral of X),

;i (x)

b (V™) = VI Vi eR; j=1,2,...k. 4.9)

We also have the following proposition.

PROPOSITION 4.2. A vector field X on M preserves u if and only if (4.8) and
(4.9) are satisfied, or, equivalently, each weight «; is a first integral of X and
each distribution {Vx%™}, forx e M, j =1,2,...,k, is preserved by X.
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According to foliation theory [10], a field X preserving a foliation is a foliated
field.

Suppose a fuzzy subbundle y: TM — I is C* (or smooth). We propose the
following definition.

DEFINITION 4.3. The fuzzy subbundle u is integrable if
(i) {Vi%™} is involutive (or a foliation) x € M, j =1,2,...,k,
(ii) the weight o is a basic function for the foliation {V, %™} x € M.

Recall that «: M — R is a basic function for a foliation ¥ = {F,}, x € M, if
for any vector field X € ¥ or (X(x) € Fx x € M), £xx = 0 or « is a first integral
of X. It means that « is constant on the leaves of & [10].

From this definition, we observe that, through x € M we have a chain of
leaves

LicLl,c---CLyCM, (4.10)

where L; is the leaf of the foliation V,*®) and «; is constant on L;. We can
use the py function to express the above the fact.

REMARK 4.4. It is well known that there are foliations which do not ad-
mit any nonconstant basic function [10]. The definition II of integrability ties
up closely the weights and the distribution of a fuzzy subspace. This can be
relaxed if there is a need for it.

4.3. An extension to integrability II. Finally, we discuss a more general
concept of isomorphism of fuzzy subspaces [9]. A possible third integrability
condition (INT III) could be based on such an isomorphism (see Remark 4.7
below), and integrability II will then be a special case of INT III.

Let (U,u) and (V,v) be two fuzzy subspaces. A pair (L,0), where L: U — V
is an isomorphism and 0 : I — I is an increasing and onto function, is called an
isomorphism of y and v if

v(L(w)) =0(u(u), uel. (4.11)

Let {U%},i=1,2,...,k, and {V}, j=1,2,...,1, be the two flags with weights
corresponding u and v, respectively. From (4.11), we get

k=1, (4.12a)
Q(O(i)Zﬁi, i:1,2,...,k, (4.12b)
L(U%) = Vhi, (4.120)

We now apply this concept of isomorphism to fuzzy subbundle u of TM. An
isomorphism of u is given by the following data: a pair (f,0) of mappings,
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such that f: M — M is a diffeomorphism and
O:MxXMxI—1 (4.13)

is a function which satisfies
(i) t — O(x,y,t) is increasing and onto, for each pair x,y € M,

(i) p(df(E)) =0(m (&), f(1(E),u(&), E€TM,
where 1m: TM — M is the bundle projection.
Equivalently, for any x € M,

Hroo (Af(x)(E) =0(x, f(x),ux(§)), &€ TM. (4.14)

Since we only work with fuzzy subbundles of a given type, we have from (4.12b)
and (4.12c) of (4.12)

dAf(x)(UXX)) =y,

(4.15)
i (f(x)) =0(x,f(x),x;(x)), j=1,2,...,k

Now, let X be a vector field on M and let {¢,}, {d:t} = {d¢} be the corre-
sponding flows. Suppose 0 is a function as in (4.13) which satisfies (i) and (ii).

DEFINITION 4.5. A vector field X on M preserves u with respect to a given
0 if and only if

(e (8)) = O (E), e (11(E)), u(E)), (4.16)

forallt e R, & € TM, or

Hgeoo (D) (E)) = 0(x, e (x), 1ix (E)), (4.17)

forall t € R, € € T, M for each x € M.

For the subspaces and weights, we have the following equations:

e () (UN)) = Uy B, (4.18)
& (pe(x)) = 0(x, e (x),xj(x)), x€Mj=1,2,...,k. (4.19)

We note that the choice of a connecting function € can be done for every

¢, t € R. In the above, we assumed that 6 is the same for all £. The second
identity (4.19) implies (after passing to differentials)

Pxo(x) =L30(x,x,0;(x)), j=1,2,...,k, (4.20)

where éf%@ is the Lie derivative of 6 on the second variable, 0 (x, y,t).
Collecting the above equations, we have the following proposition in terms
of the flow equations.
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PROPOSITION 4.6. A vector field X on M preserves u with respect to 0 if and
only if the above equations (4.18) and (4.20) are satisfied.

REMARK 4.7. We get the second integrability condition if 6(x,y,t) =t for
all x,y € M, t € I. The problem of integrability involving nontrivial 0 function
where 0(x,y,t) is not necessarily equal to t for all x,y € M, t € I will be
fully discussed in an another paper. Further geometric integration theory and
discussions on foliations will follow.

ACKNOWLEDGMENTS. Both authors were supported by the JRC of Rhodes
University and the first author was supported by the FRD of South Africa. We
gratefully acknowledge the support. We are very thankful and grateful to the
anonymous referee for a number of valuable suggestions which improved the
paper considerably.

REFERENCES

[1] K. S. Abdukhalikov, The dual of a fuzzy subspace, Fuzzy Sets and Systems 82
(1996), no. 3, 375-381.
[2] K.S.Abdukhalikov, M. S. Tulenbaev, and U. U. Umirbaev, On fuzzy bases of vector
spaces, Fuzzy Sets and Systems 63 (1994), no. 2, 201-206.
[3] R.Forman, Hodge theory and spectral sequences, Topology 33 (1994), no. 3, 591-
611.
[4] D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966.
[5] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector
spaces, ]J. Math. Anal. Appl. 58 (1977), no. 1, 135-146.
[6] R.Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3 (1980), no. 3, 291-310.
[7]1  G.Lubczonok and V. Murali, On flags and fuzzy subspaces of vector spaces, Fuzzy
Sets and Systems 125 (2002), no. 2, 201-207.
[8] P. Lubczonok, Fuzzy vector spaces, Fuzzy Sets and Systems 38 (1990), no. 3,
329-343.
[9] B. B. Makamba, Studies in fuzzy groups, Ph.D. thesis, Rhodes University, South
Africa, 1992.
[10] P. Molino, Riemannian Foliations, Progress in Mathematics, vol. 73, Birkhduser
Boston, Massachusetts, 1988.
[11] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959),
253-286.
[12] J. N. Mordeson, Bases of fuzzy vector spaces, Inform. Sci. 67 (1993), no. 1-2, 87-
92.
[13] T. Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J. 22
(1993), no. 3, 263-347.
[14]  V.Murali and B. B. Makamba, On an equivalence of fuzzy subgroups. I, Fuzzy Sets
and Systems 123 (2001), no. 2, 259-264.

V. Murali: Department of Mathematics (Pure and Applied), Rhodes University, Gra-
hamstown 6140, South Africa
E-mail address: v.murali@ru.ac.za

G. Lubczonok: Department of Mathematics (Pure and Applied), Rhodes University,
Grahamstown 6140, South Africa
E-mail address: g.lubczonok@ru.ac.za


mailto:v.murali@ru.ac.za
mailto:g.lubczonok@ru.ac.za

Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

