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For positive integersm andn, relations between (hereditary)m- andn-equivalence
are studied, mostly for arc-like continua. Several structural and mapping problems
concerning (hereditarily) finitely equivalent continua are formulated.
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A continuum means a compact connected metric space. For a positive in-

teger n, a continuum X is said to be n-equivalent provided that X contains

exactlyn topologically distinct subcontinua. A continuumX is said to be hered-

itarily n-equivalent provided that each nondegenerate subcontinuum of X is

n-equivalent. If there exists a positive integer n such that X is n-equivalent,

then X is said to be finitely equivalent. Thus, for n = 1, the concepts of “1-

equivalent” and “hereditarily 1-equivalent” coincide, and they mean the same

as “hereditarily equivalent” in the sense considered, for example, by Cook in [2].

Observe the following statement.

Statement 1. Each subcontinuum of an n-equivalent continuum is m-

equivalent for somem≤n. Thus, each finitely equivalent continuum is hered-

itarily finitely equivalent.

Some structural results concerning finitely equivalent continua are obtained

by Nadler Jr. and Pierce in [9]. They have shown that if a continuum X is (a)

semi-locally connected at each of its noncut points, then it is finitely equivalent

if and only if it is a graph; (b) aposyndetic at each of its noncut points and

finitely equivalent, then it is a graph. Furthermore, in both cases (a) and (b), if

X is n-equivalent, then each subcontinuum of X is a θn+1-continuum. Recall

that Nadler Jr. and Pierce in [9, page 209] posed the following problem.

Problem 2. Determine which graphs, or at least how many, aren-equivalent

for each n.

The arc and the pseudo-arc are the only known 1-equivalent continua. In [10]

Whyburn has shown that each planar 1-equivalent continuum is tree-like, and

planarity assumption has been deleted after 40 years by Cook [2] who proved

tree-likeness of any 1-equivalent continuum. But it is still not known whether or

not the arc and the pseudo-arc are the only ones among 1-equivalent continua.

In contrast to 1-equivalent case, 2-equivalent continua need not be heredi-

tarily 2-equivalent, a simple closed curve is 2-equivalent while not hereditarily
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2-equivalent. The 2-equivalent continua were studied by Mahavier in [5] who

proved that if a 2-equivalent continuum contains an arc, then it is a simple

triod, a simple closed curve or irreducible, and that the only locally connected

2-equivalent continua are a simple triod and a simple closed curve. It is also

shown that if X is a decomposable, not locally connected, 2-equivalent contin-

uum containing an arc, then X is arc-like and it is the closure of a topological

ray R such that the remainder cl(R) \R is an end continuum of X. Further-

more, two examples of 2-equivalent continua are presented in [5]: the first, [5,

Example 1, page 246], is a decomposable continuum X which is the closure of

a ray R such that the remainder cl(R)\R is homeomorphic to X; the second,

[5, Example 2, page 247], is an arc-like hereditarily decomposable continuum

containing no arc.

Looking for an example of a hereditarily 2-equivalent continuum note that

the former example surely is not hereditarily 2-equivalent because it contains

an arc. We analyze the latter one.

The continuum M constructed in [5, Example 2, page 247] does not contain

any arc, and it contains a continuum N such that each subcontinuum of M is

homeomorphic to M or to N, see [5, the paragraph following Lemma 3, page

249]. Further, by its construction, N does contain continua homeomorphic

to M (see [5, the final part of the proof, page 251]). Therefore, the following

statement is established.

Theorem 3. The continuum M constructed in [5, Example 2, page 247] has

the following properties:

(a) M is an arc-like;

(b) M is hereditarily decomposable;

(c) M does not contain any arc;

(d) M is hereditarily 2-equivalent.

In connection with the above theorem, the following problem can be posed.

Problem 4. Determine for what integers n ≥ 3, there exists a continuum

M satisfying conditions (a), (b), and (c) of Theorem 3 and being hereditarily

n-equivalent.

The following results are consequences of [1, Theorem, page 35].

Theorem 5. For each hereditarily n-equivalent continuum X, that does not

contain any arc, there exists an (n+2)-equivalent continuum Y such that each

of its subcontinua is homomorphic either to a subcontinuum of X or to Y , or to

an arc.

Proof. Indeed, a compactification Y of a ray R having the continuum X as

the remainder, that is, such that X = cl(R)\R is such a continuum.

Since if M is arc-like and hereditarily decomposable, then so is any of com-

pactifications Y of a ray having the continuum X as the remainder, we get the

next result as a consequence of Theorem 5.



ON FINITELY EQUIVALENT CONTINUA 2071

Corollary 6. If a continuum M satisfies conditions (a), (b), and (c) of

Theorem 3 and is hereditarily n-equivalent, then any of compactifications of

a ray having the continuum M as the remainder satisfies conditions (a) and (b)

of Theorem 3 and is (n+2)-equivalent.

In [7], an uncountable family � is constructed of compactifications of the

ray with the remainder being the pseudo-arc.

Statement 7. Each member X of the (uncountable) family � constructed

in [7] is an arc-like 3-equivalent continuum. Any subcontinuum of X is home-

omorphic to an arc, to a pseudo-arc, or to the whole X.

A continuum X has the RNT-property (retractable onto near trees) provided

that for each ε > 0, there exists a δ > 0 such that if a tree T is δ-near to X with

respect to the Hausdorff distance, then there is an ε-retraction of X onto T ,

see [6, Definition 0]. It is shown in [6, Theorem 5] that if a continuum X is a

compactification of the ray R and X has the RNT-property, then the remain-

der cl(R)\R ⊂ X = cl(R) is the pseudo-arc. Therefore, Theorem 5 implies the

following proposition.

Proposition 8. Each compactificationX of the ray having the RNT-property

is a 3-equivalent continuum. Each subcontinuum of X is homeomorphic to an

arc, a pseudo-arc, or to the whole X.

Observe that M of Theorem 3 being an arc-like is hereditarily unicoherent,

and being hereditarily decomposable, it is a λ-dendroid (containing no arc). An-

other (perhaps the first) example of a λ-dendroid, in fact, an arc-like, containing

no arc, has been constructed by Janiszewski in 1912, [3] but his description

was rather intuitive than precise. It would be interesting to investigate if that

old example of Janiszewski is or is not n-equivalent (hereditarily n-equivalent)

for some n.

The following problems can be considered as a program of a study in the

area rather than particular questions.

Problems 9. For each positive integer n, characterize continua which are

(a) n-equivalent; (b) hereditarily n-equivalent.

Problem 10. Characterize continua which are finitely equivalent.

Sometimes a characterization of a class of spaces (or of spaces having a cer-

tain property) can be expressed in terms of containing some particular spaces.

A classical illustration of this is a well-known characterization of nonplanar

graphs by containing the two Kuratowski’s graphs: K5 and K3,3, see, for ex-

ample, [8, Theorem 9.36, page 159]. To be more precise, recall the following

concept. Let � be a class of spaces and let � be a property. Then � is said to be

finite (or countable) in the class � provided that there is a finite (or countable,
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respectively) set � of members of � such that a member X has the property

� if and only if X contains a homeomorphic copy of some member of �. The

result of [7] mentioned above in Statement 7 shows that this is not the way

of characterizing 3-equivalent continua. Namely, the existence of the family �

shows the following theorem.

Theorem 11. The property of being 3-equivalent is neither finite nor count-

able in the class of (a) all continua; (b) arc-like continua.

A mapping f :X → Y between continua X and Y is said to be

(i) atomic provided that for each subcontinuum K of X, either f(K) is de-

generate or f−1(f (K))=K;

(ii) monotone provided that the inverse image of each subcontinuum of Y is

connected;

(iii) hereditarily monotone provided that for each subcontinuum K of X, the

partial mapping f |K :K→ f(K) is monotone.

It is known that each atomic mapping is hereditarily monotone, see, for

example, [4, (4.14), page 17]. Since each arcwise connected 2-equivalent con-

tinuum is either a simple closed curve or a simple triod, see [5, Theorem 2,

page 244], each semilocally connected 3-equivalent continuum is either a sim-

ple 4-od [8, Definition 9.8, page 143] (i.e., a letter X) or a letter H, see [9, page

209]. And since these continua are preserved under atomic mappings (as it is

easy to see), we conclude that atomic mappings preserve the property of being

2-equivalent and being 3-equivalent for locally connected continua. However,

this is not an interesting result, because each atomic mapping of an arcwise

connected continuum onto a nondegenerate continuum is a homeomorphism,

see [4, (6.3), page 51]. But the result cannot be extended to hereditarily mono-

tone mappings, because a mapping that shrinks one arm of a simple triod to

a point is hereditarily monotone and not atomic, and it maps a 2-equivalent

continuum onto an arc that is 1-equivalent. On the other hand, if X is the 2-

equivalent continuum which is the closure of a ray R as described in [5, Exam-

ple 1, page 246], then the mapping f : X → [0,1], that shrinks the remainder

cl(R) \R to a point (and is a homeomorphism on R), is atomic and it maps

2-equivalent continuum X onto the 1-equivalent continuum [0,1]. Therefore,

atomic mappings do not preserve the property of being a 2-equivalent contin-

uum. In connection with these examples, the following question can be asked.

Question 12. Let a continuum X be n-equivalent and let a mapping f :

X → Y be an atomic surjection. Must then Y bem-equivalent for somem≤n?

In general, we can pose the following problems.

Problems 13. What kinds of mappings between continua preserve the

property of being: (a) n-equivalent? (b) hereditarily n-equivalent? (c) finitely

equivalent?



ON FINITELY EQUIVALENT CONTINUA 2073

References

[1] J. M. Aarts and P. van Emde Boas, Continua as remainders in compact extensions,
Nieuw Arch. Wisk. (3) 15 (1967), 34–37.

[2] H. Cook, Tree-likeness of hereditarily equivalent continua, Fund. Math. 68 (1970),
203–205.

[3] Z. Janiszewski, Über die Begriffe “Linie” und “Flache”, Proceedings of the
Fifth International Congress of Mathematicians, Cambridge, vol. 2, Cam-
bridge University Press, 1912, pp. 126–128, reprinted in Oeuvres Choisies,
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