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Let P = (py) be a bounded positive sequence and let A = (a,) be an infinite ma-
trix with all a,; > 0. For normed spaces E and Ej, the matrix A generates the
paranormed sequence spaces [A, Pl ((Ex)), [A,Plo((Ex)), and [A,P]((E)), which
generalise almost all the well-known sequence spaces such as co, ¢, lp, l«, and
wp . In this paper, topological duals of these paranormed sequence spaces are con-
structed and general representation formulae for their bounded linear functionals
are obtained in some special cases of matrix A.

2000 Mathematics Subject Classification: 40A05, 40C05, 40HO5, 46A35, 46A45.

1. Introduction. In the last few decades, Kothe [3], Maddox [4, 5, 6], Simons
[11], and several others have made a significant contribution to the study of
topological duals of real- and complex-valued sequence spaces. One of the clas-
sic problems in the study of topological duals of paranormed sequence spaces
is to obtain representation formulae for the elements in their dual spaces. A
decisive break with the classical approach is made in this paper by introduc-
ing vector-valued sequence spaces in place of sequences of numbers. Here, we
study the topological duals of vector-valued sequences which are generated by
infinite matrices.

The topological dual of a normed linear space is the set of all continuous
linear functionals on the space. Such duals of classical sequence spaces like
co, ¢, lp, and w), [7] are well-known sequence spaces, while the dual of [ is
a function space. But in the case of a sequence space which is generated by
an infinite matrix, the topology is most often induced by a paranorm. While
considering the paranormed sequence spaces, the topology of the dual space
must be carefully chosen since the paranorm on the original space does not
necessarily induce a well-behaved topology on the dual space. In such cases,
it may be convenient to use the topology of uniform convergence [10] on the
closed balls of the original space. In this paper, this topology has been fre-
quently used in establishing the representation formulae for the continuous
linear functionals in the dual spaces.

Attempts have been made to obtain general representation theorems for
the elements in topological duals of the vector-valued sequence spaces such
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as [A,P]o((Ex)) and [A,P]((E)), which are introduced and studied by the au-
thor in [9]. In fact, all the corresponding results related to the duals of the
sequence spaces such as co, ¢, l,, and w, (see [4, 5, 11]) follow as special
cases of results established in Section 4. A topological isomorphism is estab-
lished between [* (P, (Ex)) and 1(Q, (Ey)), for 1 < infy pi. Finally, topological
duals of the spaces (P, (Ex)), for 0 < px < 1, and w(P,E), for 0 < py < 1, are
determined.

2. Definitions and notations. Let N be the set of natural numbers and C be
the set of complex numbers. Throughout this paper, E and Ej, for all k € N,
are normed linear spaces. The topological dual of a normed linear space E is
denoted as E*. It is well known that E* is always a Banach space. The closed
unit ball in E (resp., Ex) is denoted as U (resp., Ux). We assume that for the
sequence P = (py), px > 0 for all k € N, and for the infinite matrix A = (ay, ),
an, =0 for all n,k € N. If P is a bounded sequence, then we write p; = O(1)
and M = max(supy pk, 1). If infy px > 1, then Q = (qx) is the sequence for which
1/px+1/qx = 1, for each k € N. The symbol z¥ denotes a sequence whose kth
term is z and all other terms are 0. In particular, e is a sequence with kth term
1 and all other terms 0. Let I denote the unit matrix, (C,1) denote the Cesaro
matrix [7], and D denote the upper triangular matrix.

A vector-valued sequence space is a linear space of sequences whose ele-
ments are in other linear spaces. The symbol S(6) stands for the closed §-ball
centered at the origin 0 of such a sequence space and g denotes the paranorm
[7] on a sequence space. Some of the topological properties of the following
three vector-valued sequence spaces, which are generated by the infinite ma-
trix A = (ay, ), were studied by Maddox [5, 7] in the special case when Ey = C,
for all k € N:

(i) [A,P]((E)) = {x = (xx) | xx € E, for all k and there exists [ € E such
that > an, llxx —l|IPk converges, for all n € N, and tends to 0 as n — o}
(in this case we say that x — [[A,P](E));

(i) [A,PJo((Ex)) = {x = (xk) € IIxEx | Xp an, lIxk|[Pk converges, for all n €
N, and tends to 0 as n — oo};

(iii) [A,Ple((Ex)) = {x = (xx) € IIxEx | supy, > an, Xk |17k < oo},

If px = O(1), then the spaces [A,P]o((Ex)), [A,P]((E)), and [A,P]w ((Ex))
are linear topological spaces [7], the topology being induced by the paranorm

1M
g(x) —sup[Zankakak} : (2.1)
"Lk

These three spaces generalize almost all the well-known sequence spaces.
For example, if A=D, the upper triangular matrix, then [D, P]o((Ex))=L(P, (Ex)).
In particular, if py = p for all k, then we get the sequence space L(p, (Ex)) (see
[5]) and if Ex = C for all k, then we get L(P) (see [11]). Moreover, if E; = C and
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TABLE 2.1
Matrix Vector-valued sequence IfE,=C IE=C pr=1,
spaces for all k for all k
[A,P]((E)) = c(P,E) =c(P) =c
A=I [A,Plo((Ek)) = co(P,E) =co(P) =co
[A, Pl ((Eg)) = leo (P, (Eg)) =l (P) =l
[A,P]((E)) =w(P,E) =w(P) =w
A=(CD [A,Plo((Eg)) = wo(P,E) =wo(P) =wo
[A,Pleo ((Ex)) = Weo (P, (Eg)) =Wo(P) =We

pk = p, for all k, then we have the special case of [, [7]. Table 2.1 gives a few
examples of special cases of [A,P]o((Ex)), [A,P]((E)), and [A,P]« ((Ex)).
The following spaces are used in establishing some results in Section 4:

M (P, (Ey)) = UTM{(fk) € TEY | || fil["r—ax/pr < oo},
k

M, (P, (Ef)) = {(fk) ETRES] my@XZ”p"kaH < “}» (2.2)

r=0

1/q
Ms(p,E¥) =‘[(fk) | fx eE*, VK, 22””<Z|\fk|\“> <oo}.

r=0

3. Preliminaries. In this section, we introduce the lemmas that are used to
prove the main results in Section 4.

LEMMA 3.1. Ifp>1,x,yeC andl/p+1/q=1, then |xy| < |x|P +|y|P.

PrROOF. This follows from the well-known inequality [2, page 17],
a?’ bl < p'a+q'b, (3.1)

wherep’ >0,9' <1,p'+q'=1,a=0,and b = 0 by putting p’ = 1/p,q' =1/q,
|x| = (1/p)a'’?, and || = (1/q)b"/1. 0

LEMMA 3.2. Letpy > 1 and px = O(1). Then

> arxk| < [z |ak|“k+1]g(x) (3.2)
k k

for all x = (xx) € l(p) and a = (ax) € l(q), whenever g(x) < 1.
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PROOF. Bylemma 3.1, |arxk|/g(x) < |ax|% + |xk/g(x)|Pk, and since g(x)

<1,
aArXk
<g(x
4t )Z g(x)
Sg(x)ZIaqu"+|9<X>|1_MZ|XI<|”" (3.3)
k k
:g(x)[z|ak|qk+l].
k
This proves the lemma. O

LEMMA 3.3 (Simons [11,Lemma4]). LetO<pr<1.Ifx €l(p) with > |xy|Pk=
&, a €l (p) with supy |ax|Pk = B and B > 1, then Y, arxy converges absolutely
and | Y arxi| < «B.

4. Representation theorems. This section presents the main results estab-
lished in the paper. Attempts have been made in Theorems 4.1 and 4.2 to
obtain some general representation formulae for elements in [A,P]*(E) and
[A,P]§ (E), which include many known cases of representation theorems for
sequence spaces as special cases.

THEOREM 4.1. Let A = (ank) be an infinite matrix with lim,, .. ayx = 0 for
each k € N. Then for each f € [A,P]* (E), there exist uniquely defined function-
als fx € E* for all k € N such that

F) =f)+D filxi—1), 4.1)
k

where xy — L[A,P](E) and y = (L,1,1,...).

PROOF. Since xy — l[A,P](E), >k ankllxx — L||P¥ converges for each k € N
and tends to 0 as n — . So it follows that lim, _ « SUP,en D ksr Ank I Xk — LIIPK =
0. Since lim,,_. anx = 0 for each k € N, z¥ € [A,P](E) for each z € E. Also
v € [A,P](E) implies that x — v — >} _; (xx — D* € [A,P](E) for each € N,
where (x; — )¥ denotes the sequence whose kth term is xy — [ and all other
terms are 0. Hence,

- 1/M
g{(x—y)—z (xk—l)k} —suIN)[Zankak—lH”k] —0 4.2)

k=1 k=7

as v — oo, which implies that

=S (-5 fe0)=FfO)+> fxk—1* foreach f € [A,P]*(E).
k=1 k
4.3)
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To show the continuity of each linear function f; on Ey, for any fixed k € N,
define fy : E — C by fx(z) = f(z¥) for any z € E. Since f is continuous, for
€ > 0, there exists 6 > 0 such that |f(x)| < €, whenever g(x) < 6. Now, let
lzll < (8M)1/Pk /T, where T} = sup,, ank for each k and M = max(1,sup;, px).
It follows that

1/M
g(z¥) = sup (ankszH”") < THM ||z |PF™M < 8 (4.4)
n

so that | fx(z)| = |f(z%)| < €, which proves our assertion. The required repre-
sentation in (4.1) follows from this. To prove the uniqueness of the functionals
fx, note that for

Fx) =fON+> fulxk=1) = f()+ > gi(xi 1), (4.5)
k k

where xi — I[A,P](E), we have y = (0,0,0,...) when x = z¥. Therefore, fx = gk
for all k.
This completes the proof of Theorem 4.1. O

THEOREM 4.2. If P = (px) and A as in Theorem 4.1, then each f € [A,
P1¢ ((Ex)) has a unique representation of the form

Fx)=> flxi), (4.6)
k

where fi € Ejf are uniquely defined functionals determined by f only.

The proof of Theorem 4.2 is omitted since it can be proved following the
same line of argument as in Theorem 4.1.

The following results are due to Maddox [8] who calculated the representa-
tion formulae for elements in C*(E) and Cg (E). Note that C(E) (resp., Co(E))
is a special case of [A,P](E) (resp., [A,P]o(E)) obtained by substituting A =1
and pyx =1 for all k € N.

COROLLARY 4.3 [8, Proposition 6.14]. The general form of each f € C*(E)
is f(x) = f() =i fel) + Xk fulxk) for every x € C(E), where xi — 1, v =
(LLL..), fr € E*, and 3 |l fill < oo.

COROLLARY 4.4 [8, Proposition 6.15]. The general form of each f € C§(E)
is f(x) =>4 fx(xk) for every x € Co(E), where fi, € E* and > || fxll < co.

In the special case, when matrix A = D, a topological isomorphism has
been established between [D,P]; ((Ex)) and [D,Qlo((Ef)) for 1 < infy py in
Theorem 4.5, while in Theorem 4.10, a similar result is established for the
topological dual of [D,P]y((Ex)) for 0 < py < 1. Note that [D,P]o((Ex)) =
L(P, (Ex)).
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Kothe [3] has calculated the topological dual of 1, ((Ex)) in the special case
when py = p > 1 for all k. Later, Maddox [6] calculated [* (P) for py > 1 for all
k. The following theorem generalizes and unifies both these results.

THEOREM 4.5. Let 1 <infypx = L and px = O(1). Then for every f € L*(p,
(Ex)), there exist uniquely defined functionals fi € E; for each k such that
S(x) =X fe(xx) for all x € L(P,(Ey)). Moreover, (fi)* € L(Q,(Ef)) and the
map T: f—(fx) is a topological isomorphism between 1* (P, (Ex)) and L(Q, (E})).

PROOF. By Theorem 4.2, each f € I* (P, (Ex)) can be uniquely expressed as
S(x) =2k fi(xx) for all x = (xx) € I(P, (Ex)). To prove that (fi) € L(Q, (Ef)),

assume the contrary. So there exists integers ko < k1 < kp < - - - such that
ks
Mo= 3 Ifill™>1 4.7)
k=ks—1

for all s € N. Since fi € E}, there exists zx € Ui such that

1fell < 2| fie(z) |- (4.8)

Define a sequence x = (xi) such that

STIMIY fr(zi) | sgn (fi(zi)) 2k, if ks—1 < k < ks,
X = 4.9)
0, otherwise.
Then,
ks ks
S xllPe s S s PMIPE fi(ze) ||z
k=kg_1+1 k=kg_1+1
) (4.10)
< > sTEMIY|fil|®o <7t
k=ks_1+1

for each s € N. Since L > 1, x € L(P,(Ex)). But >} fx(xx) diverges since, for
each s e N,

ks ks
> filx) | =sTIMY DT | frlzi) [
k=ks_1+1 k=ks_1

(4.11)

ks
S27HS71M;1 Z ||fk||Qk :Zstfll
k=ks_1

where sup, qx = H. This leads to a contradiction and therefore (fi) € 1(Q, (E{)).

Next, defineamap T : I* (P, (Ex)) — L(Q, (Ef)) by T(f) = (f). Using Lemmas
3.1 and 3.2, one can easily show that T is linear and bijective. So it remains to
establish the continuity of T and T~! at the zero elements of 1* (P, (Ey)) and
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1(Q, (E{)), respectively. Note that * (P, (Ex)) is endowed with the topology of
uniform convergence, while 1(Q, (E;)) has the usual paranorm topology. To
prove the continuity of T-1,let € > 0 and v = (yx) € S(8), the closed §-ball in
I(P, (Ey)). Also let 0 < h(fx) <min(1,e) (6™ + 1)1, where h is the paranorm
on l(Q, (EY)). It follows from Lemma 3.1 that

sk I
{zuyknpk S "}h(fk)
{znykn*’uzufknqk 0] H}h(fu

<[g" () +1]h(fi) <e,

| f)]| =

IA

(4.12)

IA

which implies the continuity of T-1.

To prove the continuity of T, it is enough to show that |h(f}) [HM-D < §-1/M
whenever sup{|f(x)| | x € S(§)} <1, for any 6 "1/M > 2. Choose z; € Uy with
| fr(zi)|l = (1/2)]fx]l, for each k € N. Then, for each n € N, define a sequence
X" = (xy) by

M/p aw-1s1/p
: 2 "Sgn(fk(?/czznfkﬂ o kzk’ it1<k=n,
X = h(fx) | n(fx) | (4.13)
0, if k > n.

Note that x™ € S(8) since g(x™) < 26YM([X_; Il 1YM h( fi)HIM) <
261/M < 5. This implies that 1 = |f(x™)| = Sp_, SYPk[h(fi) 1 H/Pk|| fi||% for
each n > 1, whenever sup{| f(x)| | x € S(§)} < 1. Also, since §1/M < §1/Pk,

S~ 1M 5 Z||fk||qk[h(fk)]7H/pk
k
~1/px
= Sl [;nfrnﬂ 414)
1/H
SNE [zufku‘ﬂ ,
k k

which shows that h(fx) < 1. So, Y™ > [h((fi) 1 HM[h((fr))]H, that is,
h(fx) < SVHEMTD "and therefore, T is continuous.
This completes the proof of Theorem 4.5. g

COROLLARY 4.6 [3]. If1<p <o,1/p+1/q =1, and Ey are Banach spaces,
then L ((Ex)) = 1 ((E)) and L} ((Ey)) = Lo ((EY)).
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COROLLARY 4.7 [6, Theorem 4]. Ifinfypx > 1 and px = O(1), then I*(P) is
linearly homeomorphic to the space 1(Q).

If the condition infy pyx > 0 is removed from the statement of Theorem 4.5,
then in that case we have the following partial result which gives a unique
representation of each linear functional on L(P, (Ey)).

THEOREM 4.8. Let py > 1 and (py) = O(1). Then each f € 1*(P,(Ey)) can
be uniquely expressed as f(x) = > fx(xx) for all x = (xy) € L(P,(Ey)), where
(fx) € M1 (P, (E)). Moreover, the map T : 1* (P, (Ex)) — My (P, (E{)), defined by
T(f) = (fx), is a linear homomorphism.

PROOF. Following the same line of argument as in Theorem 4.2, it can be
shown that each f € I*(P,(Ex)) can be uniquely expressed as f(x) =
Sk Sfi(xp) for all x = (xx) € L(P,(Ex)), where fi € Eff. To show that (fx) €
M, (P, (E{)), assume the contrary. So there exists integers 1 < ko < k; <kp < - -
such that M; = ZfikHH | fxll9ks—ax/Pk > 1 for each s = 1. Also, we can find
zr € Uy such that || fxll < 2Y9| fi(zx)|, for each k > 1. Define a sequence
x = (xx) by

. sCLr a0 MY | fio(zi) | % sgn (fi(zr)) 2k, if Kooy < k < ks, @.15)
k = .
0, otherwise,
which obviously belongs to (P, (Ex)). However, since
ks ks
> fla) | =] > sCTakMIt fi(zi) |
k=ks_1+1 k=ks_1+1
. (4.16)
d 1
ZMS—IZ—IS—I z kaquS—Qk/Pk -
2s
k=ks_1+1

for each s > 1, > fx(xk) diverges, which leads to a contradiction. So it follows
that (fi) € M1 (P, (Ef)).

Clearly, the map T is linear and injective. To show that T is also surjec-
tive, let (fx) € M1 (P, (Ef)), that is, there exists an ¥ € N, v > 1, such that
Sl fill Ty —ax/Pr < oo, It follows from Lemma 3.1 that for any x € L(P, (Ey)),

> flxk) | = Z“J:—"Hllxkllr
X

k
< D [Ifil M ak 2] x| (4.17)
k

< Sl I S < o,
k k
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Let f(x) = X fk(xk). Observe that

|fieCai) | _ [l (Il
rg(x) ~—gx) r

R

< Al e+ | P [g 0],

whenever g(x) < 1. Therefore,

| fx)] < TW){Z [ fiel | =i+ || ] |P* [g(X)]M}
k (4.19)
—g<x>[z||fk|v""<rWk+N],
k

which establishes the continuity of f. This proves Theorem 4.8. |

The following result of Maddox [6, Theorem 3] is an immediate consequence
of Theorem 4.8.

COROLLARY 4.9. Ifpy > 1 and (px) = O(1), then I* (P) is linearly homomor-
phic to the space M, (P).

Note that if we impose the extra condition 1 < infy py in Corollary 4.9, then
the space M, (P) coincides with L(Q).

Next, we investigate the topological dual of L(P, (Ey)) for 0 < px < 1. Kothe
[3] calculated If ((Ex)), and later, Simons [11] established a representation the-
orem for continuous linear functionals on I[(P) for 0 < px < 1. The following
theorem generalizes these results by establishing a topological isomorphism
between [* (P, (Ex)) and L (P, (E})) for 0 < px < 1, for all k € N.

THEOREM 4.10. Let 0 < py <1 for all k € N. Then for each f € 1* (P, (Ey)),
there exist uniquely defined functionals fi € E};, for all k € N, such that f(x) =
Sk Jr(xk), where x = (xi) € L(P,(Ex)). Moreover, (fi) € lo(P,(Ef)) and the
map T : f — (fx) is a topological isomorphism between 1* (P, (Ey)) and Ll (P,
(E¥)).

PROOF. Following the same argument as in Theorem 4.2, one can show that
f(x) = X fr(xk) is the unique representation of f(x), where fi € Ejf, for all
k and x = (xy) € l(P, (Ex)). To show that (fi) € Lo (P, (E})), assume the con-
trary, that is, there exist integers 1 < k; < k» < k3 < - - - such that || fx, [Pk > s?
for each s € N. For each k € N, choose zy € Uy such that || fi|| < 2| fk(zx)| and
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define a sequence x = (x) by

sgn.fi(zk) k, if k =k, for each s € N,
xe=1 Sl (4.20)

0, otherwise.

Then

Zis 1 -
Sl - S < e < Setes a2
so that x € I(P, (Ex)). However,

Zlfk x| =Y |f"|f Z’h )] >%21, (4.22)

which contradicts that > fx(xx) converges. Therefore, (fi) € lo (P, (EY)).

Next, we show that T : I* (P, (Ex)) — l (P, (E{)), defined by T(f) = (fk), is a
topological isomorphism. Clearly, T is linear and one to one. To show that T
is also surjective, let (fi) € Lo (P, (EY)) and ¥ = (yx) € L(P, (Ex)). Then there
exists o« > 0 such that || fi||”* < « for all k, and there exists ko € N such that
Vi llPk < 1/, for all k > kg, so that | fx (k) |Pk < 1, for all k > ko. Then

S 1A= S 1A <o S [P < oo (4.23)

k=ko k=ko k=ko

which implies that > fx(vk) converges. Let f(v) = >k fk (V). The map f is
linear and continuous since, by Lemma 3.3, | f(y)| < xg(y). So, f € 1* (P, (Ey)),
which implies that T is surjective.

It remains to show the continuity of T and T~! with respect to the topol-
ogy of uniform convergence on the closed balls of L(P,(Ex)) and the usual
paranorm topology on l. (P, (Ey)), respectively. To prove the continuity of
T-1 let € > 0 and x € S(B), the closed B-ball in L(P, (Ex)). Since |f(x)| <
Sillfellllxkll < 6B < €, whenever supy || fxllPx < 6, where 6 = min(1,€)/8, it
follows that T~! is continuous.

To prove the continuity of T, choose zy € Uy for each k > 1 such that
(1/2)11fill = 1 fx(zx)|, and for each n € N, define a sequence t" = (t}) by

sgn (fi(zx)) 27| fil|[0/Px fken
th = filzk) ' ’ (4.24)
0, otherwise.
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Then, for each n € N, t" € s() since

Pn
gtm) = > |[te||™* séT"nM <. (4.25)
k

|fn(zn)’pn

So it follows that 1 > |f(t,)| = 27161/Pn| f,| for each n € N, whenever
sup{|f(x)| | x € S(6)} < 1. This implies that T((fx)) < 26~1, which proves
the continuity of T-1.

This completes the proof of Theorem 4.10. O

The following result is an immediate consequence of Theorem 4.10.

COROLLARY 4.11 [11, Theorem 7]. If 0 < px < 1, then the following state-
ments are equivalent:

(1) the map (xy) — > arXk is a linear functional on L(P);

(2) X paxxy is convergent for all x = (xy) € L(P);

(3) (ax) €l (P).

Since 1(P) admits the Schauder basis [7] (eX), f(x) = X f(ex)xk, for each
X = (xx) € L(P). So this result amounts to saying that [*(P) = Ll (P) when
0 < px < 1, which is a special case of Theorem 4.10.

The next theorem deals with the special case when A = (C,1), the Cesaro
matrix. The structure of the topological dual of [(C,1),P](E) = w(P,E) is dis-
cussed for 0 < py < 1. The calculation of topological dual of w (P, E), for py > 1,
still remains open.

Borwein [1] determined the structure of the continuous linear functionals
on w, for 1 < p < . Later, Maddox [4, 5] investigated w* (P) and wg (P), for
O<pr<l.

THEOREM 4.12. Let O < infy py < px < 1. Then, every f € w*(P,E) can be
uniquely expressed as

F) =fO)+> filxx) =D fr(D), (4.26)
k k

where xy — l[w(P,E)], v = (L,L,1,...), and fi € E* for all k. Moreover, (fi) €
M, (P,E*) and the map f — (fx) is a linear homomorphism between the spaces
w*(P,E) and M (P,E*).

PROOF. By Theorem 4.1, for each f € w*(P,E), there exist uniquely defined
functionals f € E* such that (4.26) holds for each x = (xy) € w(P,E), where
Xi — l[w(P,E)]. To show that (fx) € M»>(P,E*), assume the contrary, that is,

> max 2" Pk[| fil| = oo. (4.27)

r=0
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Then, by Dini’s theorem [12, page 403], there exists a decreasing null se-
quence (eg) such that X ,.,€, max, 2"/ || fi|| = co. Choose z, € U such that
I fill < 2|fx(zk)| and let N, be the integer such that max, 2"/Pk| fil| =
27PN || fiu, Ul

Define a sequence b = (by) by

27PNy gy Zn, SEN z , if k=N,, for eachr > 0,
bk _ Ny <Ny g (va( Nr)) v (428)
0, otherwise.
Since
27+1
277 S ||k = 2727 el [|zn, ||TVNE — 0 as v — o, (4.29)
k=2r
we can define f(b) = > fx(byx). On the other hand,
27+1
> Sulbi) = en, 27PN | fiy, (2n,) |
k=27 (4.30)
1
> Sen, 2"/PNr || f, |,  for each 7 = 0,
which implies that
2r+1
> 2 I filb)| = Z—GNVZ””N’HfN I
2
=0 k=27 r=0
= Z en, max 2"Pk||fil| (4.31)
T>0 2¥ <k <2+l
>= > ¢ max 2Pk
s e, max 20l

So, it follows from (4.27) that >'; fk (by) diverges, which leads to a contra-
diction. Therefore, (fy) € M»(P,E*).
Since > fx (xx —1) converges and

27+1
Z AD]<1t S Sl
r>0 k=27
27+I
SIS max 20 3 2 432
k=27
<Hl|lZ , max 2717 i < e,
Y>O

for each x = (xy) — l[w (P,E)], >k fr(xk) converges. This shows that the rep-
resentation in (4.26) is valid.
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Next, define the map T :w*(P,E) — M>(P,E*) by T(f) = (fx). Clearly, T is
linear and injective. To show that T is continuous, define amap t : w(P,E) —
by t(x) = I, where x = (xy) — l[w (P,E)]. Clearly, t is well defined and linear.
Next, let s = min(||L||, ||L||?%). So, for € > O,

2r+1 2r+1 2r+1

s<27 > Pk <27 DT [T-x P27 D |lx PR < g(x) +€,  (4.33)
k=2r k=27 k—2r

which implies that [[t(x)]l = |Il]| < (1/2)[g(x) + g(x)VL] and therefore t is

continuous. Then define two maps h; and h, on w(P,E) by hy(x) = i fik (1)
and hy(x) = > fr(xk), respectively. The map h, is continuous since

[ ()| = Il lefk|| =y, max 27l
ron (4.34)

N\m

[g(x)+g(x)VH],

where B =3, . omaxyr cg<or+1 27/Pk|| fi||. To prove the continuity of hy, let & =
max(1,g(x)). Then since

Tl \* a0 g0, s
27/ Pk x1/1 Sl T x 7 .
k=2r
it follows that
o1+l or+l
S fele)| = ol max 2P| [fl] 3 [ledf2 e
= = k=2r (4.36)
<ol max 201 fi| LX)
2¥ <f<2r+1
and therefore
21’+1
(2 ()| < X X [fi(x) |
r=0 k=27

4.37
a-w[z max 2””k||fk||}g<x> @30

r=0 2‘V<k<27+

< ,8 71+1+/Lg(x)

which shows that h» is continuous. Hence f is continuous.
This completes the proof of Theorem 4.12. ]
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The following two results are special cases of Theorem 4.12.

COROLLARY 4.13 [4, Theorem 6]. Let O < infy px < px < 1. Then, for arbi-
trary &, a = (ax) € M>(P), and x = (x;) € w(P) with x; — L[w(P)], f(x) =
Lo+ > arxy defines an element of w* (P). Conversely, every element of w* (P)
can be represented in this form.

COROLLARY 4.14 [4, Theorem 7]. If 0 < px < 1, for all k, then f(x) =
>k axxy defines an element of wi (P), for each x = (xx) € wo(P), where (ax) €
M, (P). If, in addition, 0 < infy py, then f(x) = >, axXy is a continuous linear
functional on wq (P) if and only if (ayx) € M»(P).

We have not been able to obtain anything more satisfactory than linear ho-
momorphism for w*(P,E), when py, = p > 1 for all k.

THEOREM 4.15. Let 1 < p < co. Then, every f € wy (E) can be uniquely
expressed as

Fx) =F)+ D fix= > fi(D), (4.38)
k k

where xi — L{wp(E)], ¥ = LL1,..., and fy € E* for each k. Moreover, (fi) €
Ms(p,E*) and the map T : f — (fx) is a linear homomorphism between the
spaces w;,‘ (E) and M3(p,E*).

The proof of the above theorem is analogous to a result given by Maddox
[4] for the corresponding special case w,.

The topological dual of w (P, E), for py > 1, still remains to be determined.
The space [A,P]% ((Ex)) has also been excluded from the current discussion
because even in the special case of [, the topological dual is a function space,
which will be discussed in a subsequent paper. The study of the three spaces
[A,P]s((Eg)), [A,P]o((Ex)), and [A,P]((E)) using techniques of functional
analysis generalizes and unifies many of the existing results on sequence spac-
es. Much more has to be investigated on the duals of these spaces. Stated oth-
erwise, topological duals of sequence spaces by matrix transformation can be
studied with a new approach and insight with the introduction of these three
spaces.
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