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ON A RESIDUE OF COMPLEX FUNCTIONS IN THE
THREE-DIMENSIONAL EUCLIDEAN
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In the introductory part of this paper, a notion of absolute integral sums of a
complex function, which is more general with respect to that of an integral and
integral sums of ordinary integral calculus, is defined. Throughout the main part
of the paper, an attempt has been made to generalize, on the basis of redefining
the notion of a complex function residue, some of the fundamental results of
Cauchy’s calculus of residues of analytic functions. The foundation stone of the
whole theory is the total value of an improper integral of complex functions.
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1. Introduction

1.1. Notations and definitions. In this paper, we mean by a three-dimen-
sional complex vector space ¥ = x¢é, + iyé» + x1 (i denotes the imaginary
unit) a vector space of the definite Euclidean metric ds® = dv - dr* = dx? +
dy? + d»?, where 7* = xé, —iyé> + x7i is the complex conjugate of 7 and
7 is a normal vector of the unit length of ¢ = xé&; +iyé> (¢ is a two-dimen-
sional complex vector plane of the definite Euclidean metric dq® = dg - dg* =
dx? +dy?). The one-to-one map z* = x —iy and z = x + iy maps the two-
dimensional complex vector plane ¢ = z*w; + zw, (W; - W; = d1j, where &y
is the Kronecker delta, more precisely, the identity 2 x 2 matrix) into itself
(0 = xé1 +1iyé>), with the so-called Jacobian of transformation

oz* o0z*

_|lox oiy| |1 1|

AP AR o
ox 01y

If ¥4 is a position vector of an arbitrary point A, then the set 7y of points
¥4 defines, in the three-dimensional Euclidean complex vector space ¥, some
arbitrary domain G : ¥ = {¥4 : A € G}. If the domain 7; bounded by a con-
tour surface ¥, in ¥ is subdivided by planes, which are parallel to the coordi-
nate planes, into k; elemental subdomains 4 j, ¥ bounded by the elemental
contour surfaces Aj ¥y (j1 = 2,...,k1), then every subdomain aj 7 of 7¢
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can be further subdivided into new subdomains aj, j, ¥ (j» = 2,...,k2). (If
an infinite process of a subdivision of the domain 7 in ¥ leads to any point
¥n of 7: limy .10 Ajy,..j, Y6 = ¥, then the subdivision D, 7 is said to be
an evenly spaced one.) Let Aj,, 7, o and Aj,  ; v denote numerous mea-
sures of an area of Aj ;. ¥y and a volume of A;, i, ¥, respectively. Then
dpyv =1limyi0 Aj,..j, V =0 and dp, G = llm,bﬂ,c,rlyA 0

.....

----- --Jn fg yonns,

(g, 7, 18 a normal vector of the unit length of aAj, . ;, 7y at an arbitrary
J1,- J

point TAJ.I in fg) are an infinitesimal volume element and an infinitesimal sur-

face element at a point 7y of the domain 7, respectively.

Since vectors ArAH in¥a g = nr‘Ajl‘___‘jnfg Ajy,..jn O, al an arbitrary point
TAj o of a part of the elemental contour surface aj,, . ;, ¥y separating two
elemental subdomains, have opposite orientations, for every evenly spaced

subdivision:

anG = { Ajy i1 fgileZ,...,kl (l= 1,2,...,1’1,)} (1.2)

------

of 7 bounded by 7y, it follows that

k1 ko
lim > > - Z Biy, o = dpy 0. (1.3)

Nn—+o00 i 1yein’9 L
J1=2 j2=2 Jn= YNETg

The infinite sum .5 cp, dp 0 of zero vectors > cp, dpy 0 = 0 X 00, as an
indefinite expression, in this acute case reduces to the vector P whose intensity
is equal to the area of 7y: Y ey, dpy 0 = P.

For an arbitrary scalar-valued function f(7) defined and bounded on the
domain 7 of the three-dimensional Euclidean complex vector space 7, the
following holds:

ky k>
Jm S S S (R, ) bry, 0= 2 FR)ARG,  (14)
J1=2j2=2 Jn=2 PNETy
where f (fAjl,___‘jnfg) are values of f(7) at arbitrary points of parts of the ele-
mental contour surfaces aj, . j, ¥y separating two elemental subdomains, as
well as at arbitrary points of aj,, . j, ¥y belonging to 7. If f(#) is a Riemann-
integrable function over the domain 7, then for any evenly spaced subdivision
D, 7 of ¥ and any choice of points f%,.. there exists a unique limiting
value

winTg?

ki ko

in S S S () en ﬂ fAdG. (13)

J1=2 j2=2 Jn=2

The symbol ff,p denotes an integration over the closed contour surface 7,
g
in this case in the positive mathematical direction.
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To sum up, for a function f(¥), which is Riemann-integrable over g, the
infinite sum of zero vectors ZfNefa SN)dp 0 = 00 X 0, as an indefinite ex-
pression, is just equal to the integral of f(¥)

(@]
S F () dp G = ﬂ FH)dd. (1.6)

‘fN E‘fg

Accordingly, we are able to redefine, more exactly, to generalize the notion
of Riemann integral sums as follows.

DEFINITION 1.1. Absolute integral sums of a scalar-valued function f(¥),
defined on the domain #; bounded by a contour surface 7 in the three-dimen-
sional Euclidean complex vector space ¥, are by definition

Z f(fN)dVNé_v z f(fN)di'U. (17)

‘fNG‘fg N EfG

DEFINITION 1.2. Absolute integral sums of a vector-valued function E(),
defined on the domain #; bounded by a contour surface 7, in the three-dimen-
sional Euclidean complex vector space 7, are by definition

Z F(fN)'did', Z did'XF(fN),
fNG‘fg fNEfg (1 8)
Z F(fN)div
YNEYG

1.2. The purpose of the paper. Thus far, little attention has apparently
been paid to the general case in which functions of a complex variable have
an infinity of singularities. But in various applications, for example, in [1, 3], it
was essential to analyze, on the basis of the residual calculus theory, this class
of functions, so that the goal of this paper is to establish a general theory of
residual calculus whose results would be slightly more general in comparison
with the fundamental results of Cauchy’s calculus of residues. Since functions,
which are regular ones in an extended complex plane except at infinitely but
countable many points, do not belong to the functional space of either analytic
or nonanalytic functions, it follows that the notion of a residue of the class of
the aforementioned functions cannot be defined in the same way as was done
in the case of a class of analytic as well as nonanalytic functions. Accordingly,
it is necessary to redefine the notion of a complex function residue, more pre-
cisely, to generalize it. This notion, as is well known, was first generalized by
Poor [4, 5] (taken over from [3]), see, for example, [3, Definitions 1 and 2, pages
38-39].
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1.3. The outline of the rest of the paper. In Section 2.1, we will define, on
the basis of the definitions from the introductory part of the paper, a spatial
differentiability of a complex function. Our variant of the spatial derivative of
a complex function will turn out to be very convenient in defining a residue
of this general class of functions as it was done in Section 2.2. We define a
potential of a point with respect to a contour surface of integration. Thereafter,
in the same subsection, we define a total value of an improper integral as a sum
of Cauchy’s principal value and Jordan’s singular value. Note, as peculiarity,
that the total value of an improper integral is not a unique defined value in
the general case [6]. This subsection ends with an example that illustrates a
notion of a singular-analytic function.

2. Main results

2.1. On spatial differentiability of a complex function. Let f(¥) be an arbi-
trary uniform scalar-valued function defined on some domain 7 of the three-
dimensional Euclidean complex vector space ¥ = ¢ + x# as an ambient space
of the two-dimensional Euclidean complex vector space ¢. The following def-
inition is an obvious consequence of the integral equality from the definition
of the spatial derivative of f(7), see, for example, [2, Definition 2, page 291].

DEFINITION 2.1. A scalar-valued function f(7) is spatially differentiable
over the domain 7; bounded by a contour surface 7, in the three-dimensional
Euclidean complex vector space ¥ if and only if, for every evenly spaced sub-
division D, and every elemental subdomain 4j,, _;, ¥¢ of ¥, the sequence
of reduced absolute integral sums:

- 1 . .
Asjpointo =5 2 fN)dnd 2.1)
converges to

. 1 R . . . .
lim = >0 f(n)dp 0 = lim Ay = An, (2.2)
Ta=IN Y e,

where V = 3 ¢ dpy V.

The domain 7 in the three-dimensional Euclidean complex vector space ¥,
such that at all points of 7, a scalar-valued function f(¥) is spatially differ-
entiable, is a regular domain of f(#). The points #y in #, at which f(¥) is
not differentiable, are singular points of f (), and the domain 7, such that
f(¥) is differentiable almost everywhere over 7, is a singular domain of f (¥).
The singular points ¥y of ¥, at which f(¥) is bounded, are apparent singular
points of f(#). The singular domain 7, such that f(¥) is bounded on g, is
an apparent singular domain of f(#).
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If f(#) is spatially differentiable over #, then for an arbitrary evenly spaced
subdivision D,,¥; and an arbitrary elemental subdomain 4 j, . ;, ¥ of the reg-
ular domain #, it follows from equality (2.1) of Definition 2.1 that

> f(PN)dn G = Anjinfa Ditin V- (2.3)
TNEA)),.jnTa
In view of the fact that surface elements d, ¢, at every point #y of the part of
an elemental contour surface 4 j, . ;, ¥y separating two elemental subdomains,
are oppositely directed, for every level of the evenly spaced subdivision D, 7
of 776,

1 2
PNDIEE Z S fdad= S fR)ded.  (24)
J1=2 j2=2 Jn=2 PNEAj) inTa N ETg

On the other hand, on the basis of the convergence of reduced absolute
integral sums, more precisely, from equality (2.2) of Definition 2.1, we obtain

k1 k2 kn
nlll’{lw z Z z AAjlv---,jnfg ADjyynjn V = Z Adeva. (2.5)
J1=2 j2=2 Jn=2 NETG

Hence, these last three expressions give
> fP)dp G = Z Apydry (2.6)
17N€179 N EY( G

If f(¥) is defined and continuous on the domain #; bounded by a contour
surface 7y, more precisely, is integrable over ¥, which is its regular domain in
the sense of Definition 2.1, then it follows from (2.6) and (1.6) that

ﬂ FAAG = S Andnv, 2.7)
YNEYG
that is,
lim —J f@do (2.8)
‘VgﬂYN

where V = (1/3) jféf do
If a vector-valued function A(¥) (A(¥y) = Ay, ) is also defined and continu-
ous on 7, more precisely, is integrable over 7, then (2.7) reduces to

H: f)de = ﬂ . AP)dv. (2.9)
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Clearly, in this case, A(¥) is a vector-valued function of the spatial deriv-
ative of a continuous function f () CAF) =V - f(¥), and V is the so-called
Hamiltonian operator of spatial differentiability, see [2].

In view of the fact that do = dg x dxvi + dz*dzvi and dv = dv - do =
dz*dzdx if the function f(¥) is defined and continuous on (integrable over)
the bounded domain #; in the three-dimensional Euclidean complex vector
space 7 and possesses defined and continuous (integrable) partial derivatives
on (over) 7, then it follows from (2.9) that

JJ;f(f)dZdX = ,UL?G azi*f(f)dz*dzdx’
- Hy:f(f)dz*dx = HLG %f(f)dz*dzdx, (2.10)
ﬂ.of(f)dz*dl = ﬂj %f(f)dz*dzdx.
Y9 rG

Also, for a complex vector function F(7) = P(¥)11 + Q (¥)1» + R (¥)7i whose
components are defined and continuous (integrable) functions possessing de-
fined and continuous (integrable) partial derivatives on (over) the bounded do-
main 7 in the three-dimensional Euclidean complex vector space 7, it follows
from previously derived results that

Hj F(7)-dd = Jﬂ(, v-E#)dv, @.11)
H: dG xF(¥) = H N VX F(¥)dv. (2.12)

The integral equalities (2.11) and (2.12) correspond to that of the so-called
Gauss-Ostrogradski theorem attached to the three-dimensional Euclidean real
vector space 7, see [2].

In view of the fact that the limiting value fffN of the sequence of reduced
absolute integral sums A*Ajly__”jnfg (see equality (2.12) of Definition 2.1) does
not depend on the form of a contour surface 7,; bounding the domain 7
in the three-dimensional Euclidean complex vector space ¥, it follows that if
¥s(¥y,dd) is an infinitesimally small spherical surface centred at 7y and of
radius dd, then for every point ¥y lying inside 7; (¥v € int7, where int7; is
an interior of 7g),

= [ £
Ay, = dd. 2.13
R V}(fN'dé)f(T) o (2.13)

For a point 7y on the boundary 7, of ¢ (v € 7y),

. 1 o
Py = )dao, 2.14
N dpv JJ;nth(fN,d5)f(T) 7 (2.14)
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where int 7 (¥y,dd) is a part of an infinitesimally small spherical surface ¥ (#y,
dé) laying inside 7.

COMMENT 2.2. Since the spatial derivative of a real-valued function f(x)
of the one variable x, which is defined on the segment [a,b] of the real axis
R!, at a point ¢ lying inside [a, b] is by definition

im LB = f(a)

labl~c b-a =Ae, (2.15)

it follows from (2.13) that

Ac= 2 [f(c+0%) ~ f(c—0")]

dex (2.16)
. flc+ax)—f(c—narx) ’
= lim .
2Ax—dex 2AX
Also, for boundary points of [a,b], it follows from (2.14) that
B +y o fla+ ax)—f(a)
Ay = dux [f(a+0") - f(a)] = A)Cllrglax x , .
. ey - e S = f(b— A x) :
A= g VO E-00]= Jig T
Accordingly, from (2.7), we obtain
fb)-f@) = > Addecx. (2.18)

cela,b]

If A(x) (A(c) = A,) is integrable over [a,b], then f(x) is continuous on
[a,b] and

b
f(b) - fla) = j A(x)dx, 2.19)

where A(x) =V f(x)=df(x)/dx.

2.2. Residue of a complex function. From the functional equality (2.2) of
Definition 2.1, more precisely, the integral relations (2.13) and (2.14), it follows
that if 7 is a regular domain of a function f(¥), bounded by a contour surface
7y in the three-dimensional Euclidean complex vector space 7, then at any point
‘fN of 17(;, Adeva = 6

On the other hand, if 7 is a singular domain of f(#), then the absolute
integral sum of the function A(#), Y cintr; Ary dry v, can be subdivided into
two absolute integral sums:

Z Adeva= Z Adeva-‘r Z Adeva, (2.20)

fNEfG fNEUp‘fG fNGUS‘fG
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where vp7; and vs7g are sets of regular and singular points of the function
f (@) in the singular domain 7, respectively. Clearly, at all regular points of
the singular domain of f(7), A}N dpyV = 0; in other words, the first absolute in-
tegral sum of A(¥) on the left-hand side of the preceding relation is an infinite
sum of zero vectors. At each singular point ¥y of the domain 7, at which the
sequence of the reduced absolute integral sum AA‘ilﬂ__Jnfg definitely diverges,
AfN dr, v reduces to an indefinite expression, more precisely, to either definite
or indefinite vector value of the extended vector space ¥ U7,, where 7, is a
set of infinite points.

2.2.1. A potential of a point with respect to a contour surface of integra-
tion. In the two-dimensional Euclidean real vector space ¢ = xé; + yé», an
intensity of the vector (¢ xdg)/g-0:(dxdg)-7/0-¢ = (xdy — ydx)/(x?+
y?) = darctan(y/x) defines an infinitesimal evolution of the vector ¢, of the
unit length as a unit vector of a position vector of an arbitrary point in ¢ with
respect to the origin

(gxdg) -1 -
———— = |do,| =do. (2.21)
¢-0 |ddo|

In the two-dimensional Euclidean complex vector space ¢ = |¢|g,, it holds
that

JO (Q">< d ") ) ,’,‘i J‘U ¢

T (Goxdgo)-i=1i| do. (2.22)
Qg e Qg 0g

(Since e2tarctan(y/X) — (1 44(y/x))2/(1+(y/x)?) = (x +iy)/(x —iy), it follows

from the functional equality @ = arctan(y/x) that ¢ = (/¢ - ¢*/2)(e" P w; +

e'Pw,) = |010,, where |g| =/¢- ¢* and g, = (1/+/2) (e 'Pw; +e'Pw»))
DEFINITION 2.3. A potential pg, .., of a point gy with respect to a contour

04 bounding an arbitrary domain ¢ in the two-dimensional Euclidean complex
vector space ¢ is by definition

pég“@N = 4[9’ . __. ¥ - (2.23)
In view of the fact that differential d is an absolute one for any closed path
of integration ¢, bounding the domain ¢¢ in the complex plane ¢, it follows
that
(e 2mi for gy €intgg,
Pig-on = lﬁ a0 = . (2.24)
¢ 0  for¢n ¢ dc,

g

where int ¢ is an interior of g¢.
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In the case when a point gy belongs to the boundary ¢, of d¢, the potential
Pg,-éy Of a point gy with respect to ¢, is defined to be the sum of limiting
values of ifg; a0 over a part of the path of integration ¢4 from the point g4
to the point g3 (04 and g3 are intersection points of the path of integration
04 and some arbitrary small circle g5 centred at ¢y and of radius o) as well as
over circular arcs from the point g to the point g, when the radius 6 of g5
tends to zero, in other words, when the boundary points of the circular arcs
04 and ¢, along the path of integration ¢4, tend to the point gn.

Considering the fact that the limiting value of if;g do over a part of the path
of integration ¢4 from the point ¢4 to the point g3 is equal to

QB%A QB%A
lim iJ 46 - i,  lim iJ 46 = —ia, (2.25)
5—-0* dg 5—-0* intgs
as well as
éAnéB
lim iJ do =i(2m - ), (2.26)
0—0% Jextgs

where intgs and extgs are circular arcs inside and outside g4, respectively,
and « is a limit angle of tangent lines to g4 at the points ¢4 and ¢ in the case
when the boundary points ¢4 and g3, along ¢, tend to the point gy, it follows
that

01
Porose =1 (2.27)
coen {Zﬁl.

DEFINITION 2.4. A potential py, .5 of a point 7y with respect to a con-
tour surface ¥, bounding the domain 7 in the three-dimensional Euclidean
complex vector space ¥ = ¢ + x7i is by definition

Priyevy = 2Pgg—6n> (2.28)

where ¢, = 75N ¢ and ¢ is any complex plane such that 7y = ¢n.

If one takes into consideration the fact that except the point #y , which is an
inner point with respect to an infinitesimally small spherical surface ¥ (¥, d6),
all remaining points of the vector space ¥ are external points, then according
to the defined notion of the potential py, .., of a point 7y with respect to a
contour surface 7, bounding a certain domain 7 in ¥ and Poor’s definition
of nonanalytic functions residue (see [3, Definition 1, page 38]), the notion of
residues of a scalar-valued function f(#) can be defined as follows.
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DEFINITION 2.5. A residue (Res) of a scalar-valued function f(#) at a point
¥y in the three-dimensional Euclidean complex vector space ¥ is by definition

(@] —
H FFYAG = pr i) vy RES £(F). (2.29)
V=N

¥s (YN,do)

DEFINITION 2.6. A residue (Res) of a scalar-valued function f(#) at the set
of the infinite points 7. is by definition

Res f() =— > Res f(7). (2.30)
Y=To S V=TN
YNEY
From equality (2.29) of Definition 2.5, it follows that at all points inside a
certain singular domain #; bounded by a contour surface 7, (¥ € int#g),

Apydpyv = Vi f (F)dpy U = pryory Res f(7), (2.31)
Y=¥N
while at points on the boundary 7, of v (¥y € 7y),
Apydiy U = Pintsy (7 do) i YRP;,S f@), (2.32)
=¥N

where according to equality (2.28), Pintr; (ry,ds)~ix = 2Pintds (dy,ds) —on and

a dpla
int G5 (dN.dS)— G =iJ do = lim iJ a0 =iq, (2.33)
Pintgs (dn,ds) - on ntd, (@n.d5) Pt

intds
and « is an angle of tangent lines at the point ¢y lying on the boundary ¢, of
the domain g¢: 06 =¥ N0 (0y = ¥y N O).

Clearly,

~

) 0ACB
55 (8 gy =1 do = lim iJ o =i(2m— ). (2.34)
Pextas(@n.do)-an th G5 (Gn,d5) 5-0* Jextgs
DEFINITION 2.7. Cauchy’s principal value (v p) of an improper integral of a
vector-valued function V f(¥), with respect to a certain domain 7z bounded by
a contour surface 7, in the three-dimensional Euclidean complex vector space
¥, is by definition

vp ﬂj Vi@dv= > Apdpv, (2.35)
G ‘fNEUpr
where v p7; is a set of regular points 7y of the function in the domain 7.

DEFINITION 2.8. Jordan’s singular value (vs) of an improper integral of a
vector-valued function V f (¥), with respect to a certain domain ¥z bounded by
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a contour surface 7, in the three-dimensional Euclidean complex vector space
¥, is by definition

vsﬂ Vfdv = >  Apdy (2.36)

YNEVSYG

where vs7 is a set of singular points 7y of the function in the domain 7.

DEFINITION 2.9. The sum of Cauchy’s principal value (vp) and Jordan's
singular value (vs) is a total value (vt) of an improper integral.

Since the derived equality (2.6) holds also in the case when the sequences
of reduced absolute integral sums AAjlm_Jnfg diverge, in other words, in the
case of a singular domain 7 of the function f(¥), it follows that if f(¥) is
an integrable function over a contour surface ¥,; bounding a certain singular
domain 7 of f(¥), then

ﬂ f@Ade = > Apdpv+ D> Apdpv. (2.37)

VNEUPVG VNEUSVG

Finally, on the basis of Definition 2.9 as well as equalities (2.35) and (2.36),
we obtain

ﬂ f@ydoe - vpm Vf@dv= > pTgHyNReSf(T) (2.38)

TNEUSTG

where vs7g is a set of singular points ¥y of f(#) in the singular domain 7
bounded by a contour surface 7, in the three-dimensional Euclidean complex
vector space ¥, more precisely

Hfjf(f)dc?=vtﬂfc V() dv. (2.39)

If a function f(¥) is not integrable over a contour surface 7; bounding a
certain singular domain #; of the function, in other words, if singularities of
the function f(#) lie not only inside but on the contour surface 7, too, then
on the one hand

> fP)dp i+ D ﬂ f@#)da

PNEVPTy PNEVSTy Int7s (7y,d5)

:vaJJfGVf(f)dv+ Y. dmiRes f(7),

rNevsintvg

(2.40)
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and on the other

> f)ded+ D H fwde

YNEVPTy YN EVSTy ext¥s (7, do)

_UPHJ Vf@dv+ D 41TlR€Sf(T)

YNEVSYG

(2.41)

more precisely

th] fdao - vpﬂj Vf@dv= > pTgH,NResf(r) (2.42)

YNEVSYG

where

vtﬂ F(7)dc = vpﬂ £(7 d0+v5ﬂ £(7

_ Z f(fN)di6'+ Z {_pmt-ﬁ(ﬁv.d&)wﬁv} R_ésf(f).

. . . . e (1) 7 V=7
AyEvpry PyEVSTy Pext 75 (N,dO) ~¥N N

(2.43)

COMMENT 2.10. For areal-valued function f(x) of the one variable x, which
is spatially differentiable almost everywhere over the segment [a, b] of the real
axis R! and defined at boundary points a and b of [a, b], it follows from (2.38)
that

f(b) - f(a)—va Vix)dx= >  Pap- cRes f(x), (2.44)

cevsla,b]
where 2pgp..c = Pg,-g. and 04: 0y NR' = {a,b} as well as
Pap-cRes f(x) = f(c+07) - f(c—07) = Acdcx, (2.45)
more precisely

pu,bﬁcgsgf(x) hm [f(c+ AX)—f(c—arx)]. (2.46)

2ax—d

Based on Definitions 2.7, 2.8, and 2.9,

b
vtj Vf(x)dx = f(b)—f(a). (2.47)

EXAMPLE 2.11. The scalar-valued function f(x) = log x, where log denotes
principal logarithm, is spatially differentiable at all points of the segment
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[—a,b] of the real axis R' (a,b € R}) except at the point x = 0. Since

P-ap-oResf(x)= lim [log(ax)-log(— ax)]=Frmi,
x=0 2ax—dox

b b (2.48)
vp Jia Vf(x)dx = loga,

it follows that vt [”, (dx/x) = log(b/a) T .

EXAMPLE 2.12. The scalar-valued function f(x) = x~! is spatially differen-
tiable at all points of the segment [—a,b] of the real axis R' (a,b € R1) except
at the point x = 0. Since

. 1 1
p,u,hHORegf(x) = lim [— + —] = +00,
X=

2ax—dox L A X A X
(2.49)

b
va:a Vf(x)dx = —o,

in this case the total value of an improper integral vt ﬁ’u x~?dx, as an indefinite
expression oo — oo, has exactly definite value

Pdx  b+a

vt —_—=——.
—a X2 ab

(2.50)

Let the singular domain 7 of the function f(¥) : f(¥) = f(z*,z) , defined on
the complex plane ¢, be a cylindrical domain bounded by a contour surface 7
in the three-dimensional Euclidean complex vector space ¥ : ¥ = ¢ + x7i, whose
bases are obtained by translation of the domain ¢ bounded by a contour ¢, in
the complex plane ¢ in the direction of the unit normal vector 7 for constant
values —h and h (%1 (9) = —h and x»(¢) = h). In this case, if the function f(7)
is integrable over the contour of integration ¢, then it follows from (2.38) that

)
f(Z,Z*)dZ—UpJJ 0 f(Z;Z*)dZ*dZ
dg oG oz*
= 2 Pog-oy Res f(z,2%),
ONEVSIG o=en

(2.51)

Qg

[ iz —op || Ziteetazaz

- Z Pi,-an Res f(z,27%).
o=0n

ONEVSOG

Clearly, partial residues of the function f(z,z*) are by definition

(@]
J‘  f(z,2%)dz = pg.oy.as)-ax Res f(z,27),
0s(@N,do) 0=0N (2.52)
(@) * "
—J‘ - f(z,2%)dz* = pg,oy.as) oy Res f(z,27).
Js(ON,d0S) 0=0N
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DEFINITION 2.13. The function f(#) is a regular-analytic function on the
domain ¢ in the complex plane ¢, which is a regular domain of f(¥), if and
only if a function f(¢) = f(z,z*), at any point gy of ¢¢, satisfies one of the
conditions {(0/0z*) f(z,z*)}sy =0 0r {(0/02) f(z,2*)} gy =

DEFINITION 2.14. The function f(¥) is a singular-analytic function on the
domain ¢ in the complex plane ¢, which is a singular domain of f(#¥), if and
only if a function f(¢) = f(z,z*), at any point gy of ¢¢, satisfies one of the
conditions: {(0/0z*) f(z,z*)}gy =0or {(0/02) f(z,2*)} gy = 0.

For a complex vector-valued function F(g) = P(¢)w, + Q (¢)w> defined on
the two-dimensional Euclidean complex vector space ¢, whose components
P(¢) and Q (¢) are integrable functions over a contour of integration ¢, bound-
ing a singular domain g¢ of F(g),

J, [F@) xdg]vi-vp || [V-F(@)]d )
Qg e

= Z Pgg- QNBeSF(Q)

ONEVSOG

3] (2.53)
| F@ag-vp| n-1vxE@)@s i
Qg oG
= > Péy-in Ees F(9).
ONEVSOG a
In this case
Res F() = Res P(z,z*) + R*e‘s Q(z,z*),
0=0n g=0n 0=0n (2.54)

Res F(0) = Res Q(z,z*) — Res P(z,z%).
@=@N @=0ON @=0ON

EXAMPLE 2.15. Adomain g, = {0:a = |¢| = §; (6,a) € R!} of the complex
plane ¢ is a regular domain of the function (z,z*) —~ (1/2)log(zz*). Taking
into account the fact that (1/2)log(zz*) = (1/2)In(x? + y?), it follows from
the result of the well-known Green-Riemann theorem that

O O
log(zz*)dz—| log(zz*)dz
Qa 25

. X+1iy
=2 dxdy,
lﬂg% x2+ 2 ray

O O
- log(zz Ydz*+ | log(zz*)dz
ds

—2ﬂ lyd xdy.
9Ggs

(2.55)

*
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Similarly, as (1/2)log(z/z*) = iarctan(y/x), then

ég é[)

~ ~

0B0A 2 ¢cép 2 éa
j log—dz+J log—dz+J logz—*dz+J log—dz
25

=—2Lﬂ XELY xdy
905\>905 Xe+y
¢p

Qa
a) ~ e

0Bda . Qc z . dclp 0a z .
J‘ logz—*dz +J‘ logz—*dz +J‘ log—dz +L lgz—*dz

Qa 21 25 2

(2.56)

= —2iﬂ dxdy,
0G5\> G Xz +_’)’2

where the domain gg;\ > ¢g; is a part of the domain ¢ bounded by parts
of circular contours of integration ¢, and ¢s bounding ¢g¢; also by segments
of straight lines gy of 0:0x = {0:0 = 8100k (P = Pi)} (k =1,2). The points
04, OB, Oc, and ¢p are obtained by an intersection of circular contours of
integration ¢, and ¢s with directions gy.

For arbitrary chosen angular values @y, when @, — m and @, — -1, it
follows that

© z © z = z
éalog —*dz—J: log—*dz+ . log Z—*dz

_ _oj ﬂ x+1yd dy
0s X

_ (2.57)
log dz - log —*dz* +| log i*dz*
CGa 9 Ok z
— —2i H U’ Cdxdy.
0Gs
In other words, the scalar-valued function z — log z:
logz = l[10 (zz*)+lo i] (2.58)
gz = > g gz* :

is a singular-analytic one on the domain ¢, = {¢: |¢| < a} in the complex plane
¢, more precisely

O
10gzdz+J logzdz = 11151 logzdz,
s

B (2.59)

O
—J logzdz* —vpﬂ —dzdz* - logzdz* = - hm logzdz*.
Ga dg 2 Ok =0 Jgs
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3. Conclusion. On the basis of a notion of absolute integral sums of a com-
plex function, which is slightly more general with respect to that of integral
sums of ordinary integral calculus, result (2.6) has been derived as an imme-
diate consequence of equality (2.1) of Definition 2.1 so that its generality is
undeniable since it is not conditioned by convergence of reduced absolute
integral sums. In other words, the aforementioned result (2.6) is more gen-
eral with respect to that of the well-known Cauchy fundamental theorem on
residues of Cauchy’s calculus of residues. Also, results (2.38) and (2.42) as
well as the results of Section 2.2, which are based on the redefined notion of
a complex function residue as well as the defined notion of the total value of
an improper integral of a function with respect to a certain singular domain
bounded by a contour surface in the three-dimensional Euclidean complex vec-
tor space and which are more general with respect to the fundamental results
of Cauchy’s calculus of residues of both analytic and nonanalytic functions,
have been derived.

Any further generalization of the results of Cauchy’s calculus of residues
as well as of the results in near relation to other areas of either the pure or
applied mathematics must have the aforementioned results as its base.

REFERENCES

[1] R. Bellman and K. L. Kuk, Differential-Difference Equations, Izdat. Mir, Moscow,
1967 (Russian).

[2]  D. Mihailovi¢ and D. D. ToSi¢, Elements of Mathematical Analysis, Naucna Knjiga,
Belgrade, 1983 (Serbian).

[3] D. S. Mitrinovi¢ and J. D. Kecki¢, Cauchy’s Calculus of Residues with Applica-
tions, Matematicki Problemi i Ekspozicije. 8., Nau¢na Knjiga, Belgrade, 1978
(Serbo-Croatian).

[4]  V.C.Poor, Residues of polygenic functions, Trans. Amer. Math. Soc. 32 (1930), no. 2,
216-222.

[S] __, Onresidues of polygenic functions, Trans. Amer. Math. Soc. 75 (1953), 244-
255.

[6] B. Saric, On the finite Fourier transforms of functions with infinite discontinuities,
Int. J. Math. Math. Sci. 30 (2002), no. 5, 301-317.

Branko Sari¢: 32 000 Cacak, Kralja Petra I br.1, Serbia and Montenegro
E-mail address: bsaric@ptt.yu


mailto:bsaric@ptt.yu

Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for

Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009

Manuscript Due

First Round of Reviews

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

