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A Timoshenko beam equation with boundary feedback control is considered. By
an abstract result on the Riesz basis generation for the discrete operators in the
Hilbert spaces, we show that the closed-loop system is a Riesz system, that is,
the sequence of generalized eigenvectors of the closed-loop system forms a Riesz
basis in the state Hilbert space.

2000 Mathematics Subject Classification: 35C10, 47A65, 93B52, 93C20.

1. Introduction. The boundary feedback stabilization problem of a hybrid
system has been studied extensively in the last decade. Many important re-
sults have been obtained. Among them, most of studies in the literatures are
concerned with Euler-Bernoulli and Rayleigh beams; there are a few results
for Timoshenko beams (cf. [3, 5, 6, 7, 9]), which are mainly focused on the
stability of the closed-loop system. Though it is important to obtain the expo-
nential stability of the system, it is also very interesting to study the rate of the
exponential decay of the system. It is well known that if the system satisfies
the spectrum-determined growth assumption, then the rate of the exponential
decay can be easily estimated via the spectra of the system operator, see [2].
Furthermore, if the system is a Riesz one, that is, the set of the generalized
eigenvectors of the system operator forms a Riesz basis of the state Hilbert
space, then the spectrum-determined growth assumption is satisfied. In [1],
the Riesz basis property was used to give some quantitative information of
the rate of the exponential decay for a simpler Euler-Bernoulli beam system
with no tip mass. For Euler-Bernoulli and Rayleigh beam systems, some fur-
ther results concerning the Riesz basis property of the systems can be found
in [4, 8].

In the present note, we consider the following Timoshenko beam equation
with a tip mass (see [7, 9]):

pw (x,t)—K(w" (x,t) —@'(x,t)) =0, 0<x<¥,
L@(x,t)—Elp" (x,t) —K(w'(x,t) —@(x,t)) =0, 0<x<¥,
w(0,t) =0,  @(0,t) =0, (1.1)
Mw,t) = -K(w' (£,t) —@p,t)) +u(t),
JoL,t) = —EI@"(L,t) +u(t),
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with boundary feedback control

u(t) = —ow @, t) —ylw (,t) -, 1],

1.2
ux(t) = B, t) —ve'(L4,1). (1-2)

Here, I, p, EI, K, and ¢ are mass moment of inertia, mass density, rigidity
coefficient, shear modulus of elasticity, and length of the beam, respectively,
and «, B, y, and v are positive feedback constants. Here, and henceforth, the
dot and the prime denote derivatives with respect to time and space variables,
respectively. In [9], the energy multiplier method is used to show the stability of
the closed-loop system (1.1) with (1.2). In this note, the Riesz basis property of
this system is proven, and hence the spectrum-determined growth assumption
of the system is satisfied. Finally, based on this consideration, we show the
exponential stability of the closed-loop system (1.1) with (1.2) via estimating
the eigenvalues of «.

2. The state space and eigenvalue problem. First, we recall the state space
and the operator defined in [9]. Let

9 =V X L5, (0,€) x Vg X L} (0,£) x RXR, (2.1

where V§ = {@p € HX(0,€) | (0) = 0}, k = 1,2, with H*(0,£) the usual Sobolev
space of order k.For Y1 = [wy,z1,@1,@1,&,m 17, Yo = [wo, 20, @2, @2, 82,0217 €
%, where the superscript T denotes the transposition of a matrix, the inner
product in ¥ is defined by

¥4 L ¢
(Y1,Y2) =J Kw{wédx+J pz1Zrdx
0 0

, . (2.2)
+Jo Elcpicp'zdx+J0Ipwlﬁdx+M’1§1§z+J*1mW.
Define the linear operator # in % by
z
K
w _(w//_(p/)
= p
1]
Q@
A v = El ., K. . (2.3)
T+ (W @)
3 1, I,
n —xz({)-K(w' (£) -p{))

—By () —Elp'(£)
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with the domain

G(s) = Y = [w,z,@,w,En" € |w, € V§, z,p €V,

(2.4)
E=Mz()+y(w () -@W), n=JyE)+ve'(D)}.

Then the closed-loop system (1.1) with (1.2) becomes the following evolution
equation in #:

a
EY(” =dY(t), VE>O0, (2.5)

where

V() =[w(,0),w,t),e,t),@t),Mw,t)

2.6
+y(Ww () -, 1), JoE,t) +ve' (£,t)]". (0

The following lemma can be found in [9].

LEMMA 2.1. The operator A is dissipative and generates a Cy-semigroup with
exponential decay.

In order to investigate the rate of the exponential decay of the closed-loop
system (1.1) with (1.2), we study the Riesz basis property of the generalized
eigenvector system of «. For this purpose, we need the following lemma.

LEMMA 2.2. The operator i has compact resolvent on ¥.

PROOF. It follows from Lemma 2.1 that 0 € p(sl). Then for any F = [ f1, f>,
J1,92,C1,C 1T € %, there is a unique element Y = [w,z,@,y, &, n]T € # such
that Y = F, that is,

K. , , EI , K ,
z=f1, —(w" - = fo, Y =g, —@"+—(w'-@) =g,
P I, Ip 2.7)

—az() -K(w' () -@)) =C1,  —Bw)—EI@'({) =Tz,

from which we obtain

[ @as-nw g Bfk ) fo(5)d
Ocps S—% o fi( +§1X+KO (x,5) f>(s)ds

Ji(x)
@ (x)
g1(x) '

Mfi(0) - %[afl ) +2]
J )+ [By () +Ce]

(2.8)
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where

1 ’
PO = - [(Bgl D) +C)x+1, L k(x,5)g2(s)ds

H(&fiD)+T1) (#x ¥ %2) +p ij(x,s)ds ijz (r)dr], 2.9)

s, 0=<s=<ux,
k(x,s)z{
x, x<s=<4¥.

Then it is easy to see the compactness of 1.

d

Now, we consider the eigenvalue problem of #. Let A € C be an eigenvalue
of l and Y = [w,z,@,y,&,n]T € ¥ an eigenvector corresponding to A, then

the functions w(x) and @ (x) satisfy

pA*w(x) —K(w" (x)-@'(x)) =0, 0<x <Y,
I,A°Q(x)—EI@" (x) -K(w'(x) —@p(x)) =0, 0<x<¥,
w(0) = @(0) =0,
MMw ) +K(w' () - @) = —cdw () = Ay (w' (£) — @),

AMJe W) +EIp () = BA@ (L) —Ave' ({)).

K K
ED’ EI

Denote by p; and pp the two roots of the quadratic equation

> —(a+b+c)u+ab=0,

that is,

(a+b+c)++/(a+b+c)2—4ab
1= ’
2

_(a+b+c)—+(a+b+c)>—4ab
= 5 i

2

ps =L a=piN%,  b=piA+— c=——.

(2.10)

(2.11)

(2.12)

(2.13)
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In the case of p; # pz, we define functions w;(A,x) and @;(A,x) for j = 3,4
by

1 _ .
u13(7\,x)=u1_u2((ul—b) "% sinh /i x — (42 — b) p, V/* sinh /2 x),
ws(A,x) = 1“ (cosh./u1x —cosh/Hzx),

— U2
P3(A,x) = ¢(cosh . /u;x —cosh /tzx),

— U2

1 _ . - .
P4(A,x) = - ((tn —a)p; ' sinh iy x — (2 —a) py /% sinh VE2x).
(2.14)
Set
w(A,x) = Aws (A, x) + Bwy (A, x),

2.15
PA,x) = Ap3(A,x) + B4 (A, x), =19

where A and B are two constants to be determined. Then w(A,x), @(A,x)
satisfy
pAw(x)-K(w" (x)—@'(x)) =0, 0<x<¥,
I,A2@(x)—EIp" (x)-K(w" (x)-@'(x)) =0, 0<x<¥, (2.16)
w(0) = (0) =0, w’(0) = A, @'(0) =
From (2.10), we obtain
A[(A°M + xA) w3 (A, £) + (K +yA) (w5 (A, £) —@3(A, )]
+B[(A2M + acd)wy (A, £) + (K +Ay) (wi(A,€) —ps(A,£)] =0,
A[(A2]+BA) @3 (A, L) + (ET+Av) @5(A,L)]
B[(A%] +BA) @4 (A, &) + (EI+Av)@4(A,£)] =0

(2.17)

For an eigenpair (A,Y) of «, the determinant I'(A) of the coefficient matrix of
the above linear equation system must be vanishing. Here

F(A)—det[yu ylz], (2.18)
Y21 Yo
where
yi1 = (A°M + od)ws (A, €) + (K +Ay) (w5 (A, €) — @3 (A, D)),
(2.19)

A2J+BA) @3 (A, £) + (ET+Av) @3 (A, L),
A2J+BA) @4 (A, £) + (ET+Av) @, (A, L).

(A

yiz2 = (A’M + o) wy (A, L) + (K +Ay) (wi (A, £) — s (A, L)),
ya1 = (
= (

Therefore, we have the following result.
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THEOREM 2.3. Assume thatw (A,x), (A, x), and T (A) are defined as before.
Let A € C be such that p; # pp. Then A € o (A) if and only if T(A) = 0. In this
case, an eigenvector of A corresponding to A is

w(A,x)
Aw (A, x)
@(A,x)
A@ (A, x)
MAw (A L) +y(w' (A €) —@(A, L))
JAQAD) +ve' (A, L)

(2.20)

3. Riesz basis property of generalized eigenvector system of «. In this
section, we study the Riesz basis property of generalized eigenvector system
of . We recall that the basis {@,, | n = 1} of a Hilbert space ¥ is said to be a
Riesz basis if it is equivalent to some orthonormal basis {e, | n > 1} of %, that
is, there is a bounded invertible linear operator T on # such that T, = e, for
all n = 1. For the linear system (2.5), if the set of the generalized eigenvectors
of the operator « forms a Riesz basis of the state Hilbert space %, then the
linear system (2.5) is called a Riesz system.

In the sequel, we prove that (2.5) is indeed a Riesz system. The following
lemma can be found in [4].

LEMMA 3.1 [4]. Letd be a densely defined discrete operator in a Hilbert space
9 and {¢p,, | n = 1} a Riesz basis of #. Assume that there are an integer Ny > 0
and a sequence of generalized eigenvectors {W,, | n > N1} of A such that

)

S lpn—wall® < oo (3.1)

n=N1+1

Then the following assertions hold.

(1) There are an integer N, > N, and generalized eigenvectors {(, | 1 <n <
N>} of o such that {¢, | 1 < < Np}U{yy, | n> No} forms a Riesz basis of ¥.

(2) Let {§, | 1 =m < Nx}U{yy, | n> No} correspond to eigenvalues {0y, |
n=>1} of d. Then o (d) = {0y | n > 1}, where each o, is counted according to
its algebraic multiplicity.

(3) If there is an integer N3 > 0 such that o, # oy, for all n,m > N3, then
there is an integer Ny > N3 such that any o,, for n > N4 is algebraically simple.

From Lemma 3.1, it follows that in order to obtain the Riesz basis property
of generalized eigenvector system of o, we need to know some eigenvalues
with corresponding eigenvectors of « and their asymptotic behavior.

Now, we discuss the asymptotic behavior of eigenvalues of . A lengthy
computation shows that when J—p>v #0 and M —p,y # 0,

lim inf |T(A)] > 0. (3.2)
h——c ReA<h
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Thus, for A € o (), it is sufficient to consider A lying in some vertical zone of
complex plane, parallel to the imaginary axis. For A in this zone with |A| large
enough, we have

T'(A)
Az
pMsinhB\/m+ycosh€¢u_1+O(A*1) o)
_| P,
oY) pi sinh £ iz +v cosh iz +0 (A1)
2
=0.
3.3)

In the case of J—pov # 0 and M — p1y # 0, for n € Z, the set of all integers
denote

1 M-py1y nr . .
—In|——= |+ — fM
N 20 oy em| Tt if M>pyy,
wn = <
1 M-p1y n+1)m.,
kwln oy M + 27 i, ifM<py, »
1 J—p2v ni ., . '
— — f
o 2gln v ] 7 i, if J > pov,
W, =4
1. | J-p2v 2n+1)m. .
2eln oo+ + 57 i, if J <pov.
Then
Msinhfw! +yp; coshfw! =0,
(3.5)
Jsinhfw'? +vp,coshlw® = 0.
Set
AP = ol e, AR = pyl o + o), (3.6)
and let )\Lj) € o(d) for j = 1,2, then for |n| large enough, we have (xilj) =
om™) forj=1,2.
Now, we consider the eigenvectors of «. For A = 2\,(11>, take
w’(A,0) = (A2J+AB) P4 (A, €) + (EI +Av) @, (A, D),
, , (3.7)
@' (A,0) = — (AT +AB) @3 (A, 0) — (EI+Av) @5 (A, D),
and for A = /\ilz), take
w’(A,0) = (AM + Ax) w4 (A, £) + (K +Ay)w; (A, L),
(3.8)

@' (A,0) = —(A’M +A0) w3 (A, €) — (K +Ay)wi (A, £).
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Set

Ay = Jp;tsinhAlY pol +vcoshAlV py
By = Mp;!tsinhA!? pi€+vcoshA!? p; L.

Then with |n| large enough, we have

w' (AL,0) =A4,A0 +0(1), @ (AL,0)=0(1),

. . . (3.10)
@ (A2,0) =B, AP +0(1), w' (A?,0)=0(1).

For A € 0(4) and j = 3,4, denote

w;j(A,x)
Aw; (A, x)
®;(A,x)
A@;(A,x) ’
MAw; (A, 0) +y(wi(A,0) —@;(A, 1))
JAQ;(A,0) +vej(A,f)

Y;(A) = (3.11)

then according to Theorem 2.3, as an eigenvector of ¢, we can take
Y =27 w (4,00 Y3(A) + A1’ (A,0) Y4 (A). (3.12)

Based on the above discussion, now we are able to prove the main result of
the present note.

THEOREM 3.2. Let % and sl be defined as before. If J — pov # 0 and M —
p1Yy # 0, then the generalized eigenvector system of sl forms a Riesz basis of ¥.
Moreover, the eigenvalues of 4 with large module are algebraically simple.

PROOF. Assume, without loss of the generality, that p; # p», then for A € C
with |A] large enough, it follows that /iy = p1A + O(A™1) and VH2 = p2A+
O(A™1). So, for A = Ail” with |n| = N, where N is a sufficiently large positive
integer, we have

VAT = pAL +0(n ) = ) +0(nY),

(3.13)
Viz = A +0(n7!) = paprt i’ +O(n7Y),
and for A = )\%2) with |n| = N, we have
Jii=pi AP +o(n ) = pipytwP +0(nh),
(3.14)

VHz =P +0(n7!) = w? +0(n7Y).
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Therefore, for AY € o (s4) with [n] large enough, we have
_ T
v3(A)) = [l sinhw V' x, pi ' sinh{x,0,0,0,0] +Gi(AY),  (3.15)

where |G, (AY) ] = 0(n1) and Y4(AY) = 0(1).
Similarly, for M € o (o) with [n] large enough, we have

va(A2) = 0,0, wf)_lsimwf)x,pz’lsinhwif)x,O,O]T+Gz(/\§l”), (3.16)
where [|G2(A%) | = 0(n~1) and Y3(A¥) = O(1). Thus, it follows that

Y(AD) = Ag [P sinhwPx, p sinhwlx,0,0,0,0] + FL(AY)  (3.17)
with |[FL(A%)) | = O(n1), and that

Y(A;LZ)):Bn[o,o,wgfrlsmhw;?x,pz*lsinhw§5>x,0,0]T+F2(A§3>) (3.18)

with [F2 (A7) | = O(mn D).
Noticing that

0<inf |Ay] <sup|A,| <o, O<inf|B,| <sup|By| < , (3.19)
nez nez nez nez
it remains to prove that the sequences {®,, | n € Z} U {¥,, | n € 7}, defined by

-1 . B X T
<1>n=[w,(¢1> smhwil“x,pl1smhw§})x,0,0,0,0} ,

(3.20)
Y, = [O,O,w;‘?r1 sinhw{? x, p, 7! sinhw(rf)x,o,o] ,
form a Riesz basis of the subspace #; of %, where
9 =Y |Y =[w,z,@,y,0,0]7 € %). (3.21)

Obviously, it is equivalent to prove that the sequence

{[coshwi})x,pfl sinhwMx]" | ne Z} (3.22)
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forms a Riesz basis of L% (0,4) X L2(0,¢) and that the sequence
{[coshwilmx,pg‘l sinhw@x]" |ne Z} (3.23)

forms a Riesz basis of L2;(0,4) xL%p 0,0).
In the case of M > p,y, we define operator 7 by

cosh(—ln M—plyD plsinh<—ln M—pw’)

207 | M+ 207 M+
T = Mpléyy M pp;/y B2
P1 smh(zyln M+p1y‘) cosh(%)ln M+p1y’)

and in the case of M < p;y, we define

M_ply ’ :I) < [ M_ply ‘ :|)
h 1 inh
cos ( [n M<+pry +i1T p1si o7 M+pry +1iTT

ritonn (e [y [rm]) o (el iy l) |

Obviously, 7 is a bounded invertible operator on L K(O L) ><L2 (0,4) and satis-
fies

nIix

coshw x cosh
s o (3.26)
o2y Tsinhwy x p7lsinh nimix

0

Therefore, the sequence {[Coshwn X,p1 smhwm 17 | n € Z} forms a Riesz
basis of L2 (0,£) fo,(O,ﬂ) because the sequence

. T
{[COShnTélx,pflSinhy] Inez} (3.27)

is an orthonormal basis on L% (0, ) x L2(0,%).
The similar approach can be used to prove that the sequence

{[coshwilz)x, p;lsinhw@x]" |ne Z} (3.28)

forms a Riesz basis of L2;(0,£) xL,zp (0,4). Thus, the sequence {®, | n € Z} U
{¥, | n € Z} forms a Riesz basis of #; and so does the sequence {A,,®, | n €
7} U {B, Y, | n € Z}. Therefore, there is a positive integer N such that

SIYQAD) = Ap@nl+ 3 (Y (AP) = Bp ¥l < oo. (3.29)
[n[=N In|=N

Using Lemma 3.1, the required result follows. ]
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According to the proof of Theorem 3.2, there exists an integer N > 0 such
that Aill), /\,(3) for |[n| = N are simple eigenvalues of «, and Y(Aﬁll)) and Y(/\%Z))
are two eigenvectors of « associated with A and AP, respectively. Denote

00 =0 (VAL AP | |n| = N}, (3.30)
then oy is a finite set, that is,
00 = {H1, oy, i} (3.31)
with k < 4N —2. For each eigenvalue p;, let
{Yin, Yz, Vs, } (3.32)

be a basis of the corresponding root subspace. Therefore, by Theorem 3.2, the
set

{(Yiill<j<k l<i<s;}u{Y(AD)|Inl=N}u{Y(A?)||n|l=N} (3.33)
forms a Riesz basis for 7. Let

Yill<j<k 1=<i<sJu{Y*QA) [ Inl=N}u{y*(A?) | In|= N}
(3.34)

be the biorthogonal system associated with {Y;; |1 <j <k, 1 <i<s;}U
(Y(AY) | In] = NYU{Y(AY) | In| = N}. For each F € %, we have

k Sj

F=3 Y (FY/)Yji+ > (FEY*QAP))Y@AP)+ > (FY*(AP)Y(AP).

j=li=1 [n|=N n|=N

(3.35)

Let T(t) be the Cy-semigroup generated by s{. Then, for each Y € span{Yj ; |
i=1,2,...,5;}, we have
Sj
T(Y =eMi' Y P (Y, 1Y, (3.36)
i=1
where Py i(Y,t)is a polynomial of order less than s;. Hence, we have the fol-
lowing corollary.

COROLLARY 3.3. Let # and A be as before. Let T(t) be the Cy-semigroup
generated by sd. If ] —pov # 0 and M — p1y # 0, then the solution of system (2.5)
with initial data F € ¥ can be expressed as

k Si
TWOF =Y S eitP (F,0)Y;+ > M L{F,Y*(AL)Y(AL)
j=li=1 In|=N (3_37)

+ 3 MR Y AR Y (AR,
n|=N
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4. Exponential decay of the closed-loop system. In Section 3, we discussed
the Riesz basis property of system (2.5) in 9 and gave the solution expres-
sion of the system. In this section, we discuss the exponential decay of the
closed-loop system. Since (2.5) is a Riesz system, according to [2], we have the
following theorem.

THEOREM 4.1. Let % and s be as before. If ] — p>v # 0 and M — p1y # 0,
then system (2.5) satisfies the spectrum-determined growth assumption in the
state space K.

Let T(t) be the Cy-semigroup generated by . The rate of exponential decay
of T(t) is defined by

w(T) =}imw 4.1)
and the bound s () of the spectrum of s is given by
s(sd) =sup{ReA |A € o (4)}. (4.2)

Theorem 4.1 implies that w(T) = s(#A). In order to estimate s(s), denote

1 ln’M—ply‘ L J—sz‘}
20py  IM+pry’28p2 | J+pav])’

w1 =max{

1 M 1 J (*:3)
. —P1Y —p2V

w> = min ln‘ ‘, In ‘}

: {2%1 M+piy " 20p2 | J+pov

From the discussion in Section 3, we know that the lines ReA = w; and ReA =
w> are two asymptotic lines of the spectrum of #. Noticing that w» < w; <0,
obviously for any € > 0 with w1 + € < 0, there are only finitely many eigenvalues
of A outside the zone

wy—€& <ReA <w;+e. 4.4)

If ReA < w; for any A € o (o), then s(4) = ;. If there is an eigenvalue A of o
such that ReA > w1, then there exists at least one eigenvalue A of s such that
ReAg = s(sA). Since oA is a dissipative operator and o (#4) NniR = &, we have
s(A) <O0.

Summarizing the above discussion, we have the following result.

THEOREM 4.2. Let «d and ¥ be as before and T (t) the Cy-semigroup of con-
tractions generated by 3. Then it holds that

w(T) =s(4) = max {w;,ReA} <0, (4.5)
Aeo(sd)

and hence the closed-loop system is exponentially stable.
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We have proven that system (2.5) is a Riesz system. However, from the previ-
ous discussion we also can see that the asymptotic behavior of the eigenvalues
of the closed-loop system operator ¢ is dependent only upon the feedback pa-
rameters y and v. So, if we take o« = 0 and 8 = 0 in the feedback controls, then
it is not difficult to prove that the corresponding closed-loop system is also
a Riesz system. In this case, it is natural to ask whether the corresponding
closed-loop system decays still exponentially. The answer is positive. In fact, if
we denote by s, the operator «f with @ = 0 and S = 0, then ¢, is also dissipa-
tive. In order to prove the exponential stability of the Cy-semigroup generated
by #;, similar to above, it is enough to show that there is no eigenvalue of <,
on imaginary axis. It is easy to see that 0 € p(#;). If A € iR is an eigenvalue of
sy and Y = [w,z,@,p, &, nlT € B(s,) is an eigenvector of s; corresponding
to A, then

Re (sd1Y,Y) = —% lw' (&) —p @) |* - VTEI @’ ()| =0, (4.6)
from which it follows that w’(¥) — @ (£) = 0 and @’ (¥£) = 0. Then w(x) and
@ (x) satisfy

pNw(x)-K(w"” (x)—p'(x)) =0, 0<x<4,
I,A2@(x)—EIp" (x)-K(w'(x)-@(x)) =0, 0<x<¥,
w0)=@0)=0, wH-pd)=0, @) =0,
w(f) =0, @) =0.

(4.7)

Thus, w(¥) =w’({) =0and @ (¥) = ¢’ (£) = 0, and hence according to the gen-
eral theory of ordinary differential equations, it follows that w(x) = @(x) =0
for all x € [0,¢], that is, Y = 0. This shows that there is no eigenvalue of s{;
on the imaginary axis. Notice the fact that when J—p,v £ 0 and M —p,y # 0,
the lines ReA = w; and ReA = w; are two asymptotic lines of o (#4;) and the
system associated with {; is a dissipative Riesz system; we can assert that the
closed-loop system decays still exponentially and the rate of the exponential
decay of the system is just equal to the supremum of real parts of the spec-
tra of <. Let Ty (t) be the contraction semigroup generated by s;. Similar to
above, we have the following result.

THEOREM 4.3. Let A1, #, and w, be defined as before. Let T, (t) be the
contraction semigroup generated by si,. Then it holds that

w(Ty) =s(s41) = max {w;,Red} <O0. (4.8)

Ao (dy)
Notice that the exponential decay rates of the systems associated with ¢ and
A, are different. In fact, we can show that w(T) < w(T}). It is very interesting

to clarify the dependence of the exponential decay rate on the parameters «
and B.
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