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Nonlinear multivalued differential equations with slow and fast subsystems are
considered. Under transitivity conditions on the fast subsystem, the slow subsys-
tem can be approximated by an averaged multivalued differential equation. The
approximation in the Hausdorff sense is of order O(e!/3) as € — 0.
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1. Introduction. We consider the nonlinear perturbed multivalued differen-
tial equation

z(t) e eF(z(t), ¥ (1)), () e G(y (D)), (1.1)

where € > 0 denotes the small perturbation parameter, t € [0,T/€] the time
variable, z(-) the slow motion, and y (-) the fast motion.

The fundamental task in perturbation theory is the construction of a limit
system which represents the situation of a vanishing perturbation parameter.

In the single-valued case, F(z,y) = {f(z,y)} and G(y) = {g(»)}, that is,
in the case of perturbed ordinary differential equations, this construction re-
quires ergodicity properties of the fast subsystem. For instance, if the fast
subsystem has a unique invariant measure g on the compact invariant set N,
then the trajectories of the averaged system

2(t) = eJNf(zu),y)du(y) (1.2)

uniformly approximate the slow trajectories of (1.1) on the time intervals
[0,T/e]. Once an approximation by an averaged system is achieved, the next
task is the determination of approximation orders. Here, one mainly has to
know how fast the unique invariant measure can be realized by single trajec-
tories, that is, how fast the unique invariant measure can be approximated by
occupation measures.

In the multivalued case, an appropriate notion of invariant measure has
been introduced in [1] in order to construct an averaged system. Averaging
approaches for the order reduction of differential inclusions with two time
scales have been used in [4, 6, 7, 9]. However, to the best knowledge of the
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author, aside from the periodic case (see [8]), the problem of determining ap-
proximation orders for perturbed multivalued differential equations has not
been discussed yet.

The main purpose of the present paper is to show that, under transitivity
conditions on the fast motion, approximation orders O (€!'/3), as € — 0, can be
achieved. This result complements an analogous result on singularly perturbed
differential equations in [5], where the same approximation order is deduced
from certain mixing properties of the fast flow.

2. Preliminaries and main result. The setting is as follows.

ASSUMPTION 2.1. The state space of (1.1) is R™ x R™. There is a compact
subset N ¢ R" such that R™ x N is invariant with respect to (1.1). The set field
(F,G) is Lipschitz continuous in the Hausdorff sense on R x R™ with Lipschitz
constant L > 0, and has compact, convex, and nonvoid images. The function F
isbounded on R™ x N; there is a constant P > 0 such that F(z,y) € Bp(0) C R™
for all (z,y) € R™xN.

The initial conditions are
z(0)=zeR™,  y(0)=y"eN. (2.1)
In the sequel, we focus on the fast subsystem
Y eGy®), ¥0)=y"€eN. (2.2)
We introduce the solution map
S¢:N — P(C([0,0);N)) (2.3)

which maps every y° € N to the set of solutions of the fast subsystem. Here, a
solution is a Lipschitz continuous curve t — 7y (t) with y(0) = »°, which fulfils
the inclusion of (2.2) for almost all t > 0.

Then the averaged inclusion is constructed in the following way. First, we
define for all (z,y°) € R™ x N and S > 0 the finite time average:

1 S
Fs(z,y%) = cl( U Ejo F(z,y(t))dt), (2.4)

y(-)€Sc(¥0)

where the integral is understood in the usual sense as the union of the inte-
grals of all measurable selections v (-) € F(z,y(-)). The following transitivity
assumption is crucial.
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ASSUMPTION 2.2. For any y,y° € N, there is a time t > 0 and a solution
y(+) € Sg(»°) of the fast subsystem with v = y(t).

LEMMA 2.3. Suppose that Assumptions 2.1 and 2.2 are fulfilled. There is a
limit set field Fy on R™ with closed, uniformly bounded, convex, and nonvoid
images such that uniformly in z € R™ and y° € N, the finite time averages
satisfy the estimate

du(Fs(z,7°),Fy(2)) =0(S71?), asS§S — . (2.5)
This limit set field Fy on R™ defines the averaged differential inclusion
2(t) € eFo(z(t)), z(0) =z". (2.6)

In order to formulate the approximation theorem in a concise way, we define
the solution maps for the original and the averaged system. Here, % (X) denotes
the power set of a set X. The function

S(er,c) : R™ XN — P(C([0,T/€]l;R™ xN)) (2.7)
maps every (z%,1%) € R" x N to the set of solutions of (1.1) and (2.1), and
Sery : R™ — @(C([0, T/€];R™)) (2.8)

maps every z0 € R™ to the set of solutions of (2.6). We remark that the set-
valued maps S(er,c), Sg, and Ser, have compact images; compare, for example,
[2, Theorem 3.5.2]. Therefore, we can use the Hausdorff metric, which we de-
note by dgy (-, -), for the images of the solution map.

THEOREM 2.4. Suppose that Assumptions 2.1 and 2.2 are fulfilled. Then the
following estimate is valid:

A (MS(er,6)(2°,5°),Ser, (2°)) = O (e3), ase — 0, (2.9)

uniformly in (z°,v%) € R™x N, whereIl: C([0,T/€],R™xN) — C([0,T/e],R™)
is the projection.

What follows is a short discussion on the assumptions.

Assumption 2.1 is standard. First, we mention that the system (1.1) has a
particular structure since the fast flow is decoupled. Without this structure, it
may happen that the averaged system is not Lipschitz anymore, and no approx-
imation orders can be expected. Concerning the fast flow, Lipschitz continuity
is not really needed and could be replaced by upper semicontinuity. In this
case, we would need to introduce a uniform bound on ¢ > 0 in Assumption 2.2.
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We have already mentioned that Theorem 2.4 complements a result in [5],
where the same approximation order is achieved for ordinary differential equa-
tions with decoupled mixing fast flows. But Theorem 2.4 is by no means a mul-
tivalued generalization. This is due to the fact that the transitivity condition,
formulated in Assumption 2.2, is a typical multivalued feature and reduces to
a periodicity condition in the single-valued case. However, the regularity con-
ditions used in the present paper are weaker than in [5], where the vector fields
are of class C!.

3. Proofs

PROOF OF LEMMA 2.3. First, we show that the time t > 0, which is needed
for the transition from one point y° € N to another point y € N (see
Assumption 2.2), is uniformly bounded. For t = 0 and y° € N, we set

A,y = U  {yw} (3.1)

y()€Sc(¥0)
and note that A(t,y°%) ¢ N is compact in N according to Assumption 2.1. By
Baire’s theorem, there is an n € N such that A(n,¥°) has interior points in N.

Then the claim follows by standard compactness arguments.
As a consequence, we obtain the estimate

du(Fs(z,27),Fs(z,¥39)) =0(S7"), as§ — o, (3.2)

uniformly in z € R™ and y?,vY € N. We conclude that

k
dH(iZFS(Z!yO)leS(ZVyO)> 20(5—1), as § — oo, (33)

i=1
uniformly in k € N, holds. Moreover, it follows by a well-known fact from

convex analysis that the estimate

k
dH(% ZFS(Z,J/O),COHVFS(Z,)’O)) =0(k™), ask— oo, (3.4)

i=1
uniformly in S > 0, is true. Combining the last two estimates, we obtain
dy (Fs2(z,9°),convFs(z,y%)) =0(S7!), as S — o. (3.5)

From this we conclude that Fs(z,1°) is a Cauchy sequence, as S — oo, and the
lemma’s statement follows. O
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PROOF OF THEOREM 2.4. (I) Let (T,e) € R* x R". We divide the time inter-
val in subintervals of the form [t;,t;,1] which all have the same length S, > 0,
except for the last one which may be smaller. Accordingly, the index [ is an
element of the index set I. := {0,...,[T/(€S¢)]}. Later, we will define a map
€~ Se.

(II) We take some initial values (z°, %) € R™ x N and a solution (z¢(+), ¥e(+))
€ Ser.c) (2%, ¥9). We have

tr41
zelt) = ze(t) + | zewat, (3.6)
L

where Z.(-) € €F(zc(-),¥e(-)) is ameasurable selection. For [ € I, we set & :=
z% and

ti+1
BBt | wint, (3.7)
1
where w;(-) € €F(&;,y(+)) is a particular measurable selection to be specified

later.
We define for all I € I,

Ar:= & —ze ()],
di:= max [|z(t)—&ll. (3.8)
t <t<tjyq
We observe that
d; < A+ €SP. (3.9)

According to the Filippov lemma (cf., e.g., [3, Proposition 3.4(b)]), there is a
measurable selection w;(-) € €F (&, ye(-)) with

||Zg(t)_wl(t)|| <eld; (3.10)

for almost all t € [t;,t;.1]. We conclude that

141
Ars1 sAl+L [|Ze(£) —wy(t)||ds
1
< Ay +€eScLd, (3.11)
<A;(1+€ScL) +€*S2P.
Considering that Ag =0 and [ < T/€Se, we obtain
-1

A <€S2PY (1+€ScL)" <eScPTe™™. (3.12)
i=0
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According to Lemma 2.3, we can choose a v; € €Fy(&;) such that

141
vl—l wi(s)ds|| <e0(S71?). (3.13)
SE t
For all I € I, we define ng := z° and
Nis1:= N+ Sevp. (3.14)

We interpolate piecewise linearly and set, for t € [t;,t;1],

() :=n+(t-t)v. (3.15)
Obviously, we have for all [ € I,

=&l < TO(S1?). (3.16)

For t € [t;,t;11], we have

dist (i (t),eFo(ni(t))) < du (eFo(&1),€Fo(m)) +du (eFo(n),eFo(ni(t)))
<€eLTO(S;'?) +€?LS,P.
3.17)

According to the Filippov theorem, there is a solution zo(-) € Sep, (2% of the
averaged system (2.6) with

l1zo(t)) =il < (LT?O(S;Y/?) + TLeS.P)e!T. (3.18)
By (3.12), (3.16), and (3.18), we can estimate

||Z€(tl) 720(t1) || < eSepTeTL +TO (Sgl/z)

(3.19)
+(LT?0(S;Y?) + TLeScP)eT.

(IlI) We take an initial value z0 € R™ and a solution zo(+) € Sef, (2°) of the
averaged differential inclusion (2.6). We furthermore choose an arbitrary initial
value % € N. Then we have for all I € I and almost all t € [t;,;41],

dist (2o(t),€Fy(z0(t1))) < €2LScP. (3.20)
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By the convexity of Fy(zo(t;)) we even have for all [ € I,

l1+1
diSt(;J Zo(t)dt,EFg(Zo(t”)) < €’LScP.
€

13}

For all | € I, we choose v; € €Fy(z(t;)) in a way that

and define §¢ := z° and

1

— <€?LS.P
Se € hoe

11
J 20(t)dt—vl
2]

0141 :=01+Scv;.
Then we can estimate for all [ € I,
[|zo(t;) — 61| < TeLSeP.
For I € I, we define successively & := z° and
Eiv1:= &+ Sewy,
where w; € €Fs, (&, (t;)) is chosen such that

[[vi—w|| < dist (v1,€Fo(81)) +dr (€Fo(61),€Fy (&1))

+du (eFo(&1),€Fs. (&,5(t1)))
< €’L’TScP +eL||5;— & +€0(S:1?).
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(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Notice that, by the choice of the w; € €Fs, (&, (t1)), we obtain successively a
trajectory ye(-) of the fast subsystem of (1.1). Then we have for all | € I,

0141 — & ]| < [|61 = &l |+ Sel|vi —wi]|

< |61 - &||(1 +€SeL) +€2S2L*TP + €S0 (S 1?).

Since [ < T/(eS¢) for all L € I and |69 — &yl = 0, we conclude that

61— & < (e?S?L*TP +€S.0(S-1/?) Z 1+€ScL)

< (L?TeSP+0O(S;1?))elT

(3.27)

(3.28)
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Similarly, as in part (II) of this proof, we can estimate for all [ € I,
||& -z (t1)]] < €ScPTel™ (3.29)

for a solution z(-) of the slow subsystem of (1.1). By (3.24), (3.28), and (3.29),
we can estimate

[1zo(t1) = ze (1) || < €SeTLP + (€ScL2TP + O (S:1?))e™ +eScPTe!.  (3.30)
(IV) Considering that, for t € [t;,t;,1], we have
[|zo(t) —zo(t1)]| < €SeP, [|ze(t) — ze (t1) || < €SeP, (3.31)
the claim follows by (3.19) and (3.30), setting

Sei=¢€7%3, (3.32)
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