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Given a Lie groupoid Q, we construct a groupoid J1Q equipped with a universal
connection from which all the connections of Q are obtained by certain pullbacks.
We show that this general construction leads to universal connections on principal
bundles (considered by Garcia (1972)) and universal linear connections on vector
bundles (ultimately related with those of Cordero et al. (1989)).
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1. Introduction. Many problems in differential geometry of fiber bundles
and applications lead to the consideration of a whole family of connections
instead of an individual one. This is, for example, the case of the Chern-Weil
homomorphism, the universal holonomy theory, parametric models in statis-
tical theory, variational problems in classical field theory, and so forth. In such
cases, things are simplified by constructing universal connections from which
we deduce all the connections considered (for relevant comments and exam-
ples, we refer to [3, 4]).

Universal connections have been studied in, for example, [4, 8, 12, 13], to
name but a few of the earlier attempts to the subject. Narasimhan and Ramanan
[12], based on the Stiefel bundles and unitary groups, proved the existence of
universal bundles for principal bundles with a compact Lie group as a structure
group. This result was extended to the case of arbitrary connected Lie groups
in [13]. However, [8] has a rather algebraic nature showing that the geometric
construction of [12] corresponds to the identity map of the Weil algebra of the
Lie algebra of a connected compact Lie group. On the other hand, a universal
connection in the sense of [4] is defined by an appropriate 1-form on the 1-jet
bundle of sections of a given principal bundle.

Motivated by this approach, we study the existence of universal connections
on Lie groupoids. The geometry of Lie groupoids and algebroids is a topic of
current research which, beyond its significance per se, has found numerous
applications in many areas (see, e.g., [2, 9, 10, 18]). In this framework, universal
connections might be an interesting complement of the theory of groupoid
connections.

More explicitly, in Theorem 4.5, we prove that, roughly speaking, a given Lie
groupoid Q determines a Lie groupoid J; Q equipped with a universal connec-
tion from which all the connections of Q are derived (by appropriate pullbacks).
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Here, J1Q is the pullback of Q via 1, : Q1 Q — B, where B is the base of the
groupoid and Q€ is the corresponding connection bundle, whose sections
are in bijective correspondence with the connections of Q.

Before giving the proof of the main result, we study in detail the bundle QQ,
the differentiable structure of J;Q, as well as the Lie algebroid L(J;Q). We also
give an explicit description of certain mappings involved in the construction
of the universal connection.

The paper is completed with two applications. The first one explains how
Garcia’s universal connections on principal bundles fit in this scheme. Namely,
in Theorem 5.2, we show that our universal connection induces the one defined
in the sense of [4], by passing to the vertex bundle of the Lie groupoid. The
second application deals with universal connections for the frame groupoids
of vector bundles. In fact, we prove that such connections lead to the exis-
tence of universal linear connections for the corresponding vector bundles
(Theorem 5.9). As we remark in Scholium 5.10, the previous result can be re-
lated with the universal linear connection considered also in [3].

2. Preliminaries. Throughout this paper, all the manifolds and bundles are
supposed to be smooth and finite dimensional. For the standard theory of
connections on fiber bundles, we refer to [6, 7]. For groupoids and algebroids,
we mainly follow the notation and terminology of [9]; however, for the reader’s
convenience, in this section, we briefly review some facts needed in the sequel.

A groupoid Q is a small category all the morphisms of which are invertible.
Hence, Q is equipped with two projections o« : Q — B and B : Q — B (called source
and target, respectively), an inversion T:Q — Q: & — &1, and a multiplication
y:QxQ—-Q:(n,&) ~ n-&=né& where QxQ is the set of the composable
morphisms. Here, B is the set of the objects (base of the groupoid). To every
element x € B, we assign a corresponding unity (or identity) X, the set of unities
being naturally identified with B via the object inclusion map € :B - Q: x — X.
Consequently, B may be viewed as a subset of the total space Q.

Some subsets of the groupoid are of special importance for the study of the
latter. Namely, we set

Qe=al(x), Q:=p1y), QX:=alx)np ),

(2.1)
Qui=aH(U), QV:=8NV), Q):=QunQY,
for every U,V cBand x,y €B.
As a matter of terminology, Q. is the x-fiber of Q at x, QY is the B-fiber of
Q at y, and Qf is the isotropy group of Q at x.
By definition, Q is a transitive groupoid if the anchor map

(B,0):Q— BxB:&— (B(&),x(¥)) (2.2)
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is surjective. Moreover, we speak of a differentiable groupoid if Q) and B are dif-
ferentiable manifolds, the mappings y, € are differentiable and the projections
«, B are differentiable submersions. Under these assumptions, the differentia-
bility of the inversion map T can also be deduced. The «- and B-fibers of a
differentiable groupoid are regular submanifolds of the total space.

We need the following typical examples of differentiable groupoids:

(a) the trivial groupoid B X G X B (B differentiable manifold and G Lie group)

with multiplication given by

(X!g!y)'(y!hlz):(ng'hyz); (23)

(b) the frame groupoid T1(E) of a vector bundle E defined as follows: if E,
denotes the fiber of E over z € B, then

II(E) := | f € Lis (Ex,E,) | x,y € B} (2.4)

and the multiplication is the usual composition of maps. Here, Lis(Ey,
E,) denotes the set of linear isomorphisms of Ex onto E,;

(c) the inner subgroupoid GQ of a given differentiable groupoid Q, defined
by

GQ:=J oy (2.5)
X€EB

(d) the sets QY, if U is an open subset of B and Q is a differential groupoid.
A Lie groupoid is a transitive differentiable groupoid. In this case, (f, ) is
also a submersion (see [9, pages 86-89]) and the isotropy groups are mutually
isomorphic Lie groups. We note that every trivial groupoid is Lie, while IT(E)

(see example (b) above) is a Lie groupoid if the base space B is connected.
Defining morphisms of groupoids in the obvious way (see, e.g., [9, Definitions
1.2.1 and III.1.1]), a Lie groupoid satisfies the following (equivalent) conditions:
(T.1) there is an open cover ¢ of B and local trivializing maps (isomorphisms

of differentiable groupoids) of the form

SpiQY — UxGxU, UEeE<, (2.6)

where, for the sake of simplicity, we have set G := QZ for an arbitrary
fixed b € B;
(T.2) there are smooth local sections of Q with respect to ¢, thatis, oy : U — Q
such that fooy =id |U and «xo oy = constant.
The maps Xy are related with oy by the formula

Su(8) = (BE),0u(BE) " & ou(a(®),x(®), EcQ, (2.7)

For later reference, we note that there is a bijective correspondence between
Lie groupoids and principal fiber bundles: given a Lie groupoid Q, the quadru-
ples (Qyx,Q%,B, Bx := BIQx), x € B, are mutually isomorphic principal bundles,
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called vertex bundles. Conversely, a principal bundle P is the vertex bundle of
the gauge groupoid P X P /G (see, e.g., [9, Proposition II. 1.19]).

3. Connections on groupoids. Before defining connections, we need the
fundamental notion of a Lie algebroid, generalizing that of a Lie algebra, and
originally due to Pradines ([15]).

Given a vector bundle (v.b., for short) E = (E,p,B), we denote by ¥(E) the
module of its sections.

DEFINITION 3.1. A Lie algebroid is a vector bundle E, such that the module
Y (E) is equipped with a Lie bracket [-,-] and there exists a v.b.-morphism
qf = q: E — TB, satisfying the following properties:

qeols,t]=1[qes,qot], [s,ftl=f-[s,t]1+(qos)(f) ¢, (3.1)

for every s,t € $(E) and f € C*(B).
The manifold B is the base of the algebroid and g is its anchor (fléche).
The Lie algebroid of a differentiable groupoid Q is defined to be

LQ:= | TxQx, (3.2)

X€EB

its projection 1 sending every fiber T3 Q. to the corresponding x € B, whereas
the anchor is g := TB|LQ. The bracket of LQ is induced by an appropriate
bracket on the module of x-vertical right invariant vector fields of Q (see, e.g.,
[9, Section III.3]).

In fact, L is a functor with L¢ : LQ — LQ’ given by

(Ld))lT,'CQx = T)?((lex)! X e B’ (33)

for any morphism of differentiable groupoids ¢ : Q — Q'.
For a Lie groupoid, the sequence of vector bundles

0 —LGQ) > LO-L TB—0 (3.4)

is exact, a fact leading to the following basic definition.

DEFINITION 3.2. A connection on a Lie groupoid Q is a right section of g,
that is, a vector bundle morphism y : TB — LQ such that goy =idrg.

In a well-established terminology, y is a splitting of (3.4). If the base B is
paracompact, as usual, connections do exist.
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For our purposes, we need another approach to the notion of a connection,
involving the sections of an appropriate fiber bundle. Namely, following [11,
Section III.1], we set

Q1Qlx := {jls | s is alocal section of Q:s(x) = X} (3.5)
for every x € B, and

Q:1Q:=|J Q1Qlx, (3.6)

X€EB

where jls is the 1-jet of s at x. We also define the mapping
m:Q1Q — B:jls — x. (3.7)

PROPOSITION 3.3. The triplet (Q1Q,111,B) is a fiber bundle.

PROOF. We are based on an explicit use of the local charts of Q (compare
with the proof of [11, Proposition IIL.1a]).

As in condition (T.2) of Section 2, we may construct smooth local sections
oy : U — Q, so that € is also an atlas of the manifold B. For every U € ¢, let

®y:UxB— TU (where B is the model space of B),

(3.8)
Sp:QY —UxGxU (G=Qb, beB)

be the induced trivializations of TB and (, respectively. We also consider the
map

k:TUXTGXTU — T.G: (u,v,w) — Tgpy-1 (V) 3.9)

if v € T,G and p, denotes the right translation of G by g. Taking a fixed linear
isomorphism ¥ : T,G — G, where G is the model space of G and e = b, we can
define the smooth map

Fy:mY(U) — UXL(B,G): jls — (x,okoTx(Syos)o(dylix}xB)).
(3.10)

We obtain a chart of Q;Q since Fy has a smooth inverse. In fact, the latter is
given by (x, f) — jls, the jet jls being determined by the conditions

s() =%,  Tes=T(Sy) " o[idryx (€ e fo(@ylix}xB) ') x0]. (3.11)

The compatibility of the previous charts is established by a direct verification;
hence, Q1Q becomes a differentiable manifold.

Finally, if pr; : U XL(B,G) — U is the projection to the first factor, we see
that pry oFy coincides with 71y |11 1(U), thus concluding the proof. O
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DEFINITION 3.4. The fiber bundle (QQ, 111, B) is called the connection bun-
dle of the groupoid Q.

The previous terminology is justified by the following proposition.

PROPOSITION 3.5. There is a bijective correspondence between the smooth
sections of Q1 and the connections of the Lie groupoid ).

PROOF. A connection y induces the section $¥ : B — Q1Q given by §¥ (x) :=
JLs, where s is alocal section of Q defined on an open neighborhood of x, with
S(x) =X and Tys = y|TxB.

Conversely, let S : B — Q1Q: x — jls be a smooth section. Then, the map
yS: TB — LQ, with y$|TxB := Tys, is a connection on Q.

It is easily checked that the assignments y — S¥ and S — y° are mutually
inverse. O

4. Universal connections. We come now to the main part of this paper,
treating the construction of universal connections for Lie groupoids. This
means, roughly speaking, that we look for a connection (on an appropriate
groupoid) from which we can derive all the connections of a given groupoid.

Let Q be a Lie groupoid. Using the connection bundle (Q;,1;,B) (see
Proposition 3.3 and Definition 3.4), we give the following definition.

DEFINITION 4.1. The 1-jet groupoid of Q, denoted by J;Q, is the pullback
groupoid of Q by 1y, that is, J;Q := Q.

We recall that the total space J;Q € Q1 QxQxQ:Q is the set
{(ys, & gat) Isemt(y), tem(x), E€Q; x,¥ € B} (4.1)

and the operations of J;Q are defined similarly to those of a trivial groupoid
(see example (a) of Section 2 and [9, Definition 1.2.11]). The projections, the
inversion, the identity map, and the multiplication of J;Q are denoted by a;,
B1, T1, €1, and yy, respectively.

We note that J;Q here is not the first prolongation groupoid, often denoted
also by the same symbol.

PROPOSITION 4.2. The 1-jet groupoid ], is a Lie groupoid.

PrROOF. The groupoid J;Q is differentiable, as a regular submanifold of the
trivial groupoid Q:Q x Q x Q1. Indeed, using the notations included in the
proof of Proposition 3.3, the differential structure is determined by the charts
of the form

Yy : 1N (m (U) xQx iy H(U)) —— UXL(B,G) XG xUXL(B,G), (4.2)
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given by

Yy (jxs, & dyt) = (Fu(jxs), p2(Zu(©)), Fu (jyt)), 4.3)

with U running the domains of the local sections of Q. The inverse of ¥y is
Yo' (x, f,9,5,0) = (Fg' (x, £),55" (x,9,7),Fg" (v, h). (4.4)

On the other hand, the local expressions of «y, 1, and (81, 1), relative to the
previous chart are given, respectively, by the projections prs, pry, and (pry, prs)
of the following 3-factor product:

(UXL(B,G))XGx (UXL(B,G)); (4.5)

thus, the former maps are (surjective) submersions. Finally, y; and &, are
smooth since their local expressions are, respectively,

((x,f,91,9,h),(¥,h,92,2,k)) — (x,f,91-92,2,k),

4.6
(yih)’_’(y!hiley!h')! ( )

for every (x, f),(y,h),(z,k) € UXL(B,G) and g1,92 € G. O

NOTE 4.3. In the previous proof, we have used an explicit form of local
charts which will be also needed later.

We will show that the desired universal connection is one defined on J; Q.
Before its explicit description, we need a few preliminary facts. First, as an
immediate consequence of the relative definitions, we obtain that (see also [5,
Section 1])

L(J1Q) = {(u,v) : Tm(u) =TR(W)} € T(Q:Q) XLQ. 4.7)

Here, (u,v) = (u,v,0), the vector 0 € T(Q;Q) being omitted for the sake of
convenience. Hence,

L(J1Q) = T(Q.:Q) xrzLQ. (4.8)

Moreover, L(J,Q) is a Lie algebroid over Q;Q with anchor (the restriction of)
the projection to the first factor P : L(J1Q) — T(Q1Q). On the other hand,
the restriction of the second projection P> : L(J;Q) — LQ is a v.b.-morphism
covering 11 : Q1) — B.

We consider now the evaluation map

Ev: T (TB) = Q1QxpTB — LQ: (jls,v) — Tys(v), v € TxB. (4.9)
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LEMMA 4.4. The evaluation map Ev is differentiable.

PROOF. The charts Fy and &y of the bundles Q;Q and TB, respectively,
induce the corresponding chart (1r; ' (U) xy TU,¥) of Q1Q x TB, with

Vi (jls,v) == (x,D5($p(x)), (p20®5') (v)) € UXL(B,G) x B, (4.10)

where § is the local expression of s and (U, ¢) is the chart of B inducing the
corresponding v.b.-chart & (see the proof of Proposition 3.3).

Applying now the Lie functor L on Xy, after the identification &y : U x B —
TU, we obtain the diffeomorphism @y : LQ|y — U X B X G. The local expression
of Ev, relative to ¥}, and gy, is

EVipc :UXL(B,G) xB — UXBXG: (x,f,m) — (x,m,ev(f,m)), (4.11)

where ev:L(B,G) X B — G is now the ordinary evaluation map. This proves the
desired differentiability. O

Based on Proposition 3.5 and denoting by 1 : T(Q1Q) — Q1 the standard
projection of the tangent bundle of QQ, we are in a position to prove the main
result of the paper; namely, the following theorem.

THEOREM 4.5 (existence of universal groupoid connections). Let Q be a Lie
groupoid. Then, the mapping

I[=Tq:T(Q:1Q) —L(1Q) :u — (u,Ev(mg (u), Tt (u))) (4.12)

is a connection on J1Q with the following universal property: if T := P, oT, then
the equality

yS=ToTS (4.13)

holds for every connection S on Q. Moreover, T is the unique connection satisfy-
ing this property.

PROOF. First, we see that T is well defined, since (o (u), Tt (u)) € Q1QXp
TB; thus, we can apply Ev on such pairs. Also, T takes values in L(J;Q), since
T(u) € T(Q:1Q) xr5LQ = L(J;1Q), by virtue of (4.8).

The mapping T is differentiable (by Lemma 4.4), as well as a v.b-morphism.
Moreover (see also (4.8)), the projection P; : L(J1Q) — T(Q1Q) satisfies the
equality P; oT = id. Since P; coincides now with the anchor of L(J;Q), T is a
connection of J;Q (see Definition 3.2).



UNIVERSAL CONNECTIONS ON LIE GROUPOIDS 1473

On the other hand, since T,,S(v) € Ts(,)Q12, for every v € T,,B and y € B,
Proposition 3.5 implies that

(ToTS)(v) = (P2oT o TS) (V)
=Ev((rmgoTS)(v),T(m 0S)(v))
=Ev(S(y),v)
=yS(v),

(4.14)

for every v € TB; thus, proving the universal property.

Finally, let T be another connection of J;Q satisfying the analog of (4.13)
and I" = P, oT. Then, for any w € T(Q1Q), there is a local section S of Q;Q
and a vector v € TB such that TS(v) = w. Therefore, I (w) = yS(v) = T'(w),
which proves the uniqueness property. |

REMARKS 4.6. (1) For any morphism f : LQ; — A of vector bundles and any
morphism of differentiable groupoids h: Q, — Q;, we set h* f := f oLh. Since,
within an isomorphism, TS = L(§ X S) (see, e.g., [1, Section 4] and [5, Section
1]), (4.13) can be reformulated as

yS = (Sx8)*T. (4.15)

(2) By virtue of the properties stated in Theorem 4.5, we can legitimately call
I =T the universal connection of Q.

5. Applications

5.1. Universal connections on principal bundles. Our present aim is to
relate universal connections on groupoids with their counterparts defined by
Garcia (see [4]) on principal bundles. In fact, we show that T produces the
structural infinitesimal connection (form) of the vertex bundle.

First, we note that every connection y on the Lie groupoid Q is equivalent
to a v.b.-morphism c : LQ — L(GQ), such that

yoq+ioc =id. (5.1)
In order to define connection forms, we consider the (principal) vertex bun-
dle Q) = (Qb,QZ,B,BIQb) for any fixed b € B (see Section 2). Also, we need the
morphism of Lie groupoids Ad : Q — ITI(L(GQ)) (often called the adjoint repre-
sentation of Q), defined by Ad(&) = TLgo TRgl, as well as the v.b.-morphism

R:TQ — LQ:v — TeRg' (v), v € TgQu (5.2)

(see also [9, Proposition III.3.3]).
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LEMMA 5.1. Lety be a connection on Q. Then, the form w? € A (Qyp, TE,Qg),
given by

wr(v) = [Ad(E ") ecoR](v), E€Qp, veE T, (5.3)

is a connection form on the vertex bundle Q.

PROOF. By definition,
w) = (TeL' ITEQ) o (TiReIL(GQ) ) o (c|(LQ)ge) o TeR;  (5.4)

thus, w%’ € L(TgQp, T[,Qg) for every & € Q. Since R and Ad are differentiable,
w? is a differentiable 1-form.
Now, for any X € SP(T(QE)), we see that c([Ad(E)](X})) = [Ad(E) 1(X}).
Consequently, if X* is the Killing vector field corresponding to X,
wg (X)) = W (TLg (X)) = [Ad (") oco TeRg "o Ty L] (Xp)
=[Ad(§7")ecoAd(®)](X;) = [Ad(E7") o Ad(E)](X;) (5.5)
=X =X.

On the other hand, for every (v,g) € TeQp x QF,

RiwY (V) = ), (TeRy (1)) = [ Ad(Eg) o coTegRZ, o TeRy | (V)
=[Ad(g7!) cAd(EY) oo TeR: (1) = [Ad (g71) [ (w? ().

Equalities (5.5) and (5.6) prove that w? is indeed a connection form. O

In order to apply the preceding lemma to the case of the universal connection
I =T, we need the analytic expression of its splitting C:L(J1Q) — L(G(J1Q)).
As a matter of fact, for every v € L(J1Q) |y, with Y := j}s € (Qi1Q)]y = 1T1_] ()
and y € B, we see that

v = (v1,v2,0y) € Ty (Q1Q) xLQ|, x Ty (Q19Q), (5.7)

with Tty (vy) = TB(v2). Hence, using the analog of (5.1) and the definition of
T!

C(U) = (Oy,UZ*Ty(SOTl'l)(’Ul),Oy), (58)

where Oy denotes the zero element of Ty (Q1Q). As a consequence, we obtain
the following theorem.
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THEOREM 5.2. The connection form w' on the vertex bundle of J,Q, induced
by the groupoid universal connectionT =T (see Lemma 5.1), coincides—within
an isomorphism—with the universal connection (in the sense of [4]) of the vertex
bundle Q.

PROOF. Wefixa Z € Q;QJp and the vertex bundle ((J1Q)z, (J1Q)%,Q:Q,p1)
of J1Q. Then, by virtue of Lemma 5.1, ' may be regarded as a connection on
the principal bundle (J;Q) .

Every v € Tg(J1Q)z, where F = (X, &,Z) € (J1Q)z, is identified with a triple
of the form v = (vy,v,,07),with0z € T, (Q1Q),v1 € Tx(Q1Q),and v, € TEQb-
If we express the maps TFR;l and Ad(F~!) in these terms, then, for X := jégs,
Lemma 5.1 and (5.8) imply that

wi(v) = (0x,Ad (E7") (R(v2) = Tx(somm)(v1)),0x). (5.9)
Also, we consider the 1-jet principal bundle (J'(Qp),QF,J" (Qp)/QL, 1) cor-

responding to the principal bundle Qj (see [4, Section 2]), as well as the iso-
morphism (I,1>,13) between the bundles (J;Q), and J'(Qy), determined by

L (1Q), — JH(Qp) = (jx$,E,Z) — jix (sE) (5.10)
with (s&)(y) :=s(y) - &, for every y € dom(s),

L:(h1Q), —0b:(Z,9,2) — g,

R b 0 (5.11)
I3: QIQ —J (Qb)/Qh xS — [JX(STI)]
for an arbitrary n € Q.
Now, w! induces a differentiable 1-form 6 given by
Ok (w) = (Thowly ¢y o TIT ) (), (5.12)

where K := I, (X,&,7Z) and w € Tx(J1(Qp)). Hence, comparing (5.9) and (5.12)
with the definition of the universal connection 6 for ordinary principal bundles
(see [4] along with [17]), we conclude that

Ok (w) = (TeLg' 0 0x) (w), (5.13)

which completes the proof. |

SCcHOLIUM 5.3. Since every principal fiber bundle is the vertex bundle of
its gauge groupoid, the previous theorem shows that universal connections on
principal bundles (in the sense of [4]) can be derived from the general con-
struction given in Theorem 4.5.
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5.2. Universal linear connections. In this section, we prove that the uni-
versal connection of the frame groupoid IT(E) of a vector bundle E = (E, 1T, B)
with connected base B (see example (b) in Section 2) induces a universal linear
connection on E.

First, we need the following general lemma.

LEMMA 5.4. Let f:V — B be a differentiable map and f*E be the pullback
vector bundle of E by f. Then,

FHII(E) = TI(f*E). (5.14)

PROOF. The groupoid f*II(E) consists of triples of the form (v, g, x) for all
x,y €V and g € Lis(Ef(x),Ef(y)). On the other hand, II( f*E) consists of pairs
(cX,9), for all x,y € V and g € Lis(Ef(x),Ef(y)), where cx denotes the map-
ping {x} — {y}. We get an isomorphism, say k, by setting h(y,g,x) = (cx,g).

O

Applying the previous result to the case of 11y, Definition 4.1 implies also
the following corollary.

COROLLARY 5.5. The following identification holds true:
J1(TI(E)) = 1t (TI(E)) = I1(17{°E). (5.15)

It is already known (see, e.g., [11, Section III.2]) that there is a bijective cor-
respondence between the linear connections of the vector bundle E and the
connections of IT(E). This leads to the following basic proposition.

PROPOSITION 5.6. The universal connection T = ') of the Lie groupoid
I1(E) induces a linear connection C' on the vector bundle ;" E.

PROOF. By its construction, T is defined on the 1-jet groupoid J; (IT(E)).
Thus, by virtue of Corollary 5.5, we obtain a connection on II(r;"E) and, in
turn, a linear connection C' on rrl*E . O

In order to complete the previous statement, by showing that CT has indeed a
universal property, we find its analytic expression. This is a consequence of the
next result, relating linear connections with connections on frame groupoids
by means of a simple formula.

To this end, observe that, since I1(E) projects to B via the source map k),
we may consider the corresponding fiber product IT(E) xp E (with respect to
o)), the evaluation map

ev:II(E) XgE — E: (f,e) — f(e), (5.16)

and the partial mappings ev, : TI(E)|x) — E, for every e € E. Therefore, we
have the following lemma.
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LEMMA 5.7. Lety : TB — L(II(E)) be a connection on the frame groupoid
II1(E). Then, the corresponding linear connection

¢Y:mm*(TB) =ExgTB — TE (5.17)
on E is given by
c¥(e,v) 1= TigeV (y(v)), (e,v)em*(TB), (5.18)

where id is the identity map on the fiber E., if x = 11 (e).

PROOF. By Proposition 3.5, y induces the section S¥ : B — Q; (II(E)) with
SY(x) = jls, where Tys = y|TxB and s(x) = id. Now, proceeding as in [11,
page 190], S¥ gives rise to the section

SfsiE—J'Ete— jl(s-&) (5.19)

of the canonical morphism p : J'E — E: jlt — t(z). Here, s - é is the section of
E, given by

(s-8)(y) =ev(s(y),e) €E, (5.20)

for every y € B. Recall that, by the definition of II(E), s(y) € Lis(Ex,E,) and
s(x) is the identity map on Ej.

Finally, based on the relation between linear connections and sections of the
canonical morphism p (see, for instance, [4, 16]), we check that

cY(e,v) =Tx(s-&)(v) = Ty (eV(s,ce)) (V)

:Tx(ﬁeos)(v) :Tidﬁe(TxS(v)) (5.21)
= Tiqeve (y (v)),
(where c, is constant) by which we conclude the proof. O

To obtain the analog of the previous result for the connections I and CT, we
consider the entities 71;E, Q1 (II(E)) = Q;, T =T, and pr; : 71{E — Q; in place
of E, B, y, and 1, respectively. Also, analogously to ev, we define the map

ev:II(1{E) xXq, T 'E — 1 E: (g,m) — g(m). (5.22)

PROPOSITION 5.8. The linear connection C' : pri(TQ,) — T(1;'E) is given
by

C'(a,w) = (w, Tigeve (Tys (Txm (w)))), (5.23)

where a = (X,e) e mfE< Q1 XE, X = jls, and w € TxQ;.
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PROOF. We outline the main steps of the procedure, omitting the computa-
tional details whose verification is a matter of routine.

First, we observe that every h € TI(17;E) can be written, by the identification
of Corollary 5.5, in the form h = (Y,h,X) with X = jls, Y = jls’, and h €
(I1(E))%. In these terms, the map év is equivalently given by

ev((Y,h,X),(X,e)) = (Y,h(e)). (5.24)

Using the projections p; : J1 (II(E)) — Q1 (II(E)) and p» : J; (TI(E)) — II(E), the
previous equality becomes

&4 = (p1,&c0p2), a=(X,e), (5.25)
from which we obtain
Tiq€Va = (Pry, Tig€Ve o Pry ), (5.26)

where Pr; and Pr; are the corresponding differentials of p; and p», respectively,
whereas id denotes the identity between appropriate spaces.
On the other hand, by the definition of I' and Lemma 5.7, we conclude that

C'(a,w) = TiqeV, (T(w)) = TiaeVa (w, Txs (Txm (W))). (5.27)

The desired expression is now an immediate consequence of (5.26) and (5.27).

O
For a given section S of Q (II(E)), we define the map
S:m*TB — pry (T(Q1(II(E)))) (5.28)
with pr; : 71 (E) — Q1 = Q (II(E)) and
S(e,v) = (((Som)(e),e), TS(v)). (5.29)
Also, we denote by
Po:TQ, %3 TE = T(1t}E) — TE (5.30)

the natural projection to the second factor.
With the previous notations, we are in a position to state the universal prop-
erty (4.13) for linear connections. Namely, we have the following theorem.
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THEOREM 5.9. Let (E,,B) be a vector bundle with connected base and
Q1 (II(E)) be the connection bundle of the frame groupoid I1(E). Then, the linear
connection (5.23) of t{*E satisfies the universal property

S —ProCl oS (5.31)

for any linear connection ¢’ of E, corresponding to a section S of Q1 (II(E)).

PROOF. The section S corresponds to the connection yS of II(E), which
induces on E the linear connection

c¢$:ExgTB — TE: (e,v) — Tigeve(yS (v)) (5.32)

(see Proposition 3.5 and Lemma 5.7). As in the proof of Proposition 3.5, S(x) =
Jjis with x = 1t(e). Thus, we get yS(v) = Tys(v) and

c3(e,v) = Tiqeve (Txs(v)), (e,v) € ExgTB. (5.33)
Therefore, we check that

(P20C"08)(e,v) = (P20 CY)((S(x),e), TS(v))

= P2 (TS (v), TiaeVe (Tx s (Tsx) 1 (Tx S (V)))))
=P2(TS(W), Tigeve (Txs(v))) (5.34)
= Tidﬁe(sz(v))
=c’(e,v),

by which we conclude the proof. O

For the sake of completeness, we note that, since C! is fully determined by
the mapping P, o CT =: ¢, then the universal property (5.31) can be also written
under the form

=S¢, (5.35)

which is analogous to the pullback expression of the universal connection of
ordinary bundles.

SCHOLIUM 5.10. Under an appropriate interplay between 77, E and the ordi-
nary vector bundle of jets J'E of a vector bundle (E, 1, B) (the details of which
are beyond the framework of this paper, dealing principally with groupoids),
we can show (see [14]) that the universal connections of Section 5.2 are related
with the universal connections on frame bundles considered in [3].
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