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It is shown that a normalized Riesz basis for a Hilbert space H (i.e., the isomorphic
image of an orthonormal basis in H) induces in a natural way a new, but equivalent,
inner product on H in which it is an orthonormal basis, thereby extending the sense
in which Riesz bases and orthonormal bases are thought of as being the same. A
consequence of the method of proof of this result yields a series representation
for all positive isomorphisms on a Hilbert space.
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1. Introduction. Let H denote a Hilbert space (assumed real, for notational
convenience) with inner product (-,-) and let {x;} be a basis for H having
coefficient functionals {f;} denoted by {x;, f;}. We say that {x;, f;} is a Riesz
basis for H if it has the property that > a;x; converges in H if and only if {a;}
is in the sequence space [2. Equivalently, {x;, f;} is a Riesz basis for H if and
only if there is an isomorphism U on H and some orthonormal basis {¢;} for
H so that U¢; = x; for all i, implying that Riesz bases and orthonormal bases
are the “same” in linear-topological terms, but differ in geometrical ones due to
the additional orthogonality relations between basis vectors in an orthonormal
basis that is lacking in a Riesz basis. The result below (Theorem 2.1) shows that
this is, in a sense, an artificial distinction by showing that every Riesz basis,
in fact, is an orthonormal basis for H under a different, but equivalent, inner
product.

2. Main results

THEOREM 2.1. Let {xi, fi} be a normalized Riesz basis for a Hilbert space H.
Then there is an equivalent inner product on H in which {x;} is an orthonormal
basis for H under the norm induced by this inner product.

PROOF. If x and y are any two vectors in H, then the sequences {(f;,x)} and
{(fi,»)} are in I2, implying that >.(fi,x) (fi, ) converges. Clearly, the bilinear
form on H x H, defined by (x,y) = > (fi,x) (fi,»), is then an inner product on
H for which (x;,x;) = d;; for all i and j, in which {x;} is an orthonormal set
that is also complete, since if (x,,x) =0 for all n, then 0 = > (f;,x,) (fi,x) =
(fn,x) for all n; that is, 0 = > (fi,xn) (fi,x) by definition of the new inner
product for all n, implying that (f;,,x) = 0 for all n, and hence that x = 0.
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As usual, the inner product (-,-) defines a norm || - ||; on H by ||x||§ =
(x,x) = > |(fi,x)|%. Since {x;} is a Riesz basis, there is an isomorphism U
on H that maps each vector ¢; in an orthonormal basis {¢;} for H to the
vector x;, implying that the isomorphism V = (U*)"1U~! on H maps x; to f;
for all i. Since, for any x in H, (x,x) = > (fi,x)(fi,x) = O (fi,x)(Vxi,x)) =
2(fi,x)(Vxi,x) = (VIZ(fi,x)xi],x) = (Vx,x), we see that (Vx,x) = X |(f,
x)|% = Hx||{ for all X in H, so V is a positive operator. If we let W denote the
positive square root of V, then W is also an isomorphism on H so that, for
any x in H, we have || x||? = (Vx,x) = (Wx,Wx) = [Wx]? < |lwl?]/x]/. In the
same way, we see that [|x]|3 < [[W~1]|2||x]|?, and it follows that the new norm
Il - II1 is equivalent to the original norm on H. In particular, H is then complete
under the new norm, hence a Hilbert space, in which {x;} is then an orthonor-
mal basis, being an orthonormal set, that is complete in the new inner product.

O

3. Positive operators. In the proof above we used the fact that if {x;, fi}
is a Riesz basis for a Hilbert space H, then the operator U on H, mapping Xx;
to fi, is a positive isomorphism on H. It is interesting to note that, in fact,
every positive isomorphism on H is such an operator for some Riesz basis in
H, thereby providing a representation for all positive isomorphisms U on a
Hilbert space.

THEOREM 3.1. An operator U on a Hilbert space on H is a positive isomor-
phism if and only if U is of the form U = Y’ fi ® f; for some Riesz basis {xi, fi}
for H (i.e., Ux; = f; for all i).

PROOF. If U =Y f;® f; for some Riesz basis {x;, fi} for H, {¢;} is an or-
thonormal basis for H, and T is the isomorphism on H mapping ¢; to f; for
all i, then U = > T¢; ® T¢; = TT*, a positive isomorphism on H.

Conversely, if U is any positive isomorphism on H, then W, the positive
square root of U, is also an isomorphism on H. If we set f; = W¢; for some
orthonormal basis {¢;}, then {f;} is a Riesz basis for H so that, for any x in H,
we have Ux = W2x = W[X (s, Wx)pi] = WS (Wi, x)pi]l = S (fi,x)We; =
>.(fi,x) fi. Thatis, U = >; f; ® fi and the proof is complete. d
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