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ON SEQUENTIALLY RETRACTIVE INDUCTIVE LIMITS
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Every locally complete inductive limit of sequentially complete locally convex spa-
ces, which satisfies Retakh’s condition (M) is regular, sequentially complete and
sequentially retractive. A quasiconverse for this theorem and a criterion for se-
quential retractivity of inductive limits of webbed spaces are given.

2000 Mathematics Subject Classification: 46A13, 46A30.

1. Introduction. Throughout the paper, {(E;, T, )} is an inductive sequence
of locally convex spaces and (E,T) = ind(E,, T,) is its inductive limit. Recall
that E is regular if every bounded subset in E is contained and bounded in
one of the steps, and E is sequentially retractive if every null sequence in E
converges to zero in some step. We say that E satisfies the Retakh’s condition
(M) if in every space E,, there is an absolutely convex neighborhood of zero
U, such that

(1) Uy, € Upyq for every n € N;

(2) for every n € N, there is m > n such that all the topologies of the locally
convex spaces Ey, for k > m, coincide on U,. Equivalently, T and T,
coincide on Uy,.

We assume that every such U, is T,-closed and that T,,.; and T induce the

same topology on U,, which we do without loss of generality.

Finally, we say that E satisfies condition (Q) (see [8]) if part (1) in (M) is
dropped.

Vogt in [7] studied condition (M) for LF-spaces, that is, for inductive limits
of metrizable and complete (equivalently and sequentially complete) locally
convex spaces. He obtained several important results about them; for exam-
ple, that on LF-spaces, condition (M) implies completeness, regularity, and
sequential retractivity. Recently, Wengenroth in [8] proved the following very
important result on LF-spaces: condition (M), condition (Q), acyclicity and
sequential retractivity are equivalent.

On the other hand, Gomez-Wulschner and Kucera in [2, 3] studied sequen-
tial completeness and weak regularity conditions for inductive limits of se-
quentially complete spaces. They have shown that a regular inductive limit of
sequentially complete spaces is sequentially complete [3].

In Theorem 2.5 we show a result similar to Vogt’s, but in the context of a lo-
cally complete inductive limit with condition (M) of a sequence of sequentially
complete locally convex spaces.
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The last part is devoted to webbed spaces (definitions are recalled in that
section). We present a quasiconverse to Theorem 2.5 and a criterion for se-
quential retractivity.

2. Regularity and sequential retractivity. Recall that a disk D in a locally
convex space F is an absolutely convex, bounded and closed subset. We write
(Fp,pp) to denote a normed space, where Fp = spanD and pp is the norm
topology generated on Fp by the Minkowski’s functional of D; equivalently, pp
is generated by the basis of neighborhoods {AD : A > 0}. Note that closedness
is not necessary for the Minkowski’s functional to be a norm.

In order to obtain the first theorem, we need a technical lemma and a pair
of useful propositions.

LEMMA 2.1. If E = indE, satisfies condition (M) for the sequence (Uy)y,
then VJE = Uk-; FJE" for every j € N.

PROOF. Since T restricted to Ey is coarser than T¢, we have VJE" C FJE for
k= j.So, Uy @Ek C WE. Conversely, let x € @E. There exists a net (xy)« C
Uj such that x4 X x. This implies that there exists n > j and A > 0 such
that A{(xy)a, X} C Uy. Since T and T,.1 coincide on U,, Axy Tntl, AX; so,

T —E,
Xo = x. Hence, x € U; "' m]

The next proposition is the key to Theorem 2.5.

PROPOSITION 2.2. Let every (E,, Ty) be locally complete. If E = ind E,, satis-
fies condition (M), then every Banach disk B C E is contained and bounded in
some E,,.

PROOF. Let B C E be a Banach disk. By [5, Proposition 8.5.20], there ex-
ists p € N such that B ¢ pUT,E =p Uf:y@Ek, the last identity follows from
Lemma 2.1.

Since B is T-closed and T-bounded, B n Ey is Tx-closed and B n prf" CcB
is T-bounded, for every k > p. Let By = Bn pU_,,,Ek. We assume that every
Uy is Tr-closed, then (1/p)Bx C U_pE" c U™ = Uy for every k > p. By con-
dition (M), T and Ty, coincide on Uy, then (1/p)Bk is Tk+1-bounded. Now,
the local completeness of Ey.; implies that BTEM is a Banach disk in Ex,1, so
(EB—k}sk+1 s Py ) is a Banach space continuously embedded in (Egy1, Tk+1)-

Note that for every k > p,

Ep.:
Ers1 k+2

— — 5 Ek+1 J—
B =BnpU,*  cBnpl, = B . (2.1)

o —Epi1 ) J—
This implies that B **! is contained in Bx,1 <™ N Egbias therefore (EB_kEkH ,
P Fiet ) is continuously embedded in (Emfk+2 VP e ).
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It follows that ind(EBTM P ) is an LB-space. In order to finish the proof,
we prove that this is a nonproper LB-space. In other words, we show that there
exists kg € N such that (EﬁEkoﬂ ) Ekoﬂ) = (Eg, pg).

0

By,
Since B is T-closed and By C B, we have By ! ¢ B. And By **! ¢ B N Epbia
which implies that the identity map iy : (Eﬁfsk+1 , pﬁfkﬂ) — (Eg, pp) is continu-
ous for every k > p.
On the other hand,

B=BnpJT,™ = UBnplU,™ = | Bk C
k=p k=p

B! ¢ B. (2.2)
k=p =p

k
This means that span(B) = U,‘f’:p span(Bikﬂ"+1 ). Therefore, the identity map
i:ind (EEE,(+1 ,pﬂEM) — (Ep,pz) (2.3)

is continuous and onto. By the open mapping theorem (see [5, Theorem
8.4.11]), the inverse identity map

J: (Eg,pp) — ind (EB_kEk+1 lpEEk+l> (2.4)

is continuous. By Jarchow [4, Corollary 5.6.4], the space (Eg, pp) is continuously
embedded in some (E%Ekoﬂ ’kaoEkOH ).

We conclude that B is contained and bounded in (E,+1, Tky+1)- O

COROLLARY 2.3. Let every (E,,Ty) be locally complete. If E = indE,, is lo-
cally complete and satisfies condition (M), then E is regular.

PROPOSITION 2.4. Let every (E,, Ty) be sequentially complete. If E =indE,
is regular and satisfies condition (M) for a sequence (Uy),, then E is sequentially
complete and sequentially retractive.

PROOF. Let (x;); be a Cauchy sequence in (E,T). Then, A= {x;:l €N} isa
T-bounded set. So, there exists n € N, such that A ¢ E,, and A is T,,-bounded.
There exists s > 0 such that sA c U,,. Since T and 7,1 coincide on U,,, it follows
that (sx;); is Ty+1-Cauchy, then T, ;-convergent to sxg, for some xo € Ey.1,
hence (x;); is convergent to xo in (E,T).

In an analogous way, it is straightforward to show that (E, T) is sequentially
retractive. O

From the preceding results we conclude the following theorem.

THEOREM 2.5. Let every (E,, Ty) be sequentially complete. If E = indE,, is
locally complete and satisfies condition (M), then E is regular, sequentially com-
plete, and sequentially retractive.



1070 ARMANDO GARCIA

3. Sequential retractivity on webbed spaces. We give now two results on
sequential retractivity for certain webbed spaces. For convenience, we recall
some basic facts about webs which we need. For more information about the
basic properties of webs, we refer the reader to the works of De Wilde [9],
Jarchow [4], and Robertson [6].

A strand of a web W on a locally convex space (F,T) is a collection of mem-
bers of W, one from each layer, with the (k + 1)th member of the strand con-
tained in the kth member. Strands will be denoted by (Wk)kx. A web on F is
compatible with T if for each neighborhood of zero U in (F,T) and for each
strand (Wi)r of W, there is ko such that Wy, C U.

Following the idea of Wengenroth in the proof of [8, Proposition 2.3], we get
a quasiconverse for Theorem 2.5. To simplify the notation in this proposition,
we use Wy € W to denote Wy, k,,..k, €W, that is, write only one index as for
the elements of a specific strand.

PROPOSITION 3.1. Let every (E,,T,) be a webbed space and E = indE,, se-
quentially retractive. Then, for every N € N there is n > N and an element WkN
of the web W) on Ey;, for some k = k(N), such that T and T, coincide on W,ﬁ".

PROOF. Suppose that this proposition is not true. So, there exists Ej, such
that for every element of its web, say W,:L % € Wno, and for each N € N there
exists n > N such that T, restricted to W,:‘ 9 is strictly coarser than Ty restricted
to W, 0.

For such ng, fix an element of the web W,:L“ e W, Let N = ng, then there
exists n; > no such that t,, restricted to W,:go is strictly coarser than Ty,.

So, there is a sequence (xfo)l c Wrzo, which is T, -null but not 7,,-null. Find
an element of the (ko +1)th layer of the web Wy, ; € W"0, such that W’ | +
Wi,y C Wy, and np > n1 such that T,, restricted to W,\’,, is strictly coarser

than Ty, restricted to W, k O . Then, there is a sequence (xl0 e Wk0+1= which
is Tp,-null but not T,,-null. In this way, determine a strand ( ko+k)k of the
web W0 an increasing sequence of natural numbers (ny)y, and a collection
of sequences [(xf"”‘)l]k such that every (x{“”k)l C W,:)‘Lk is Tp,,,-null but not
Ty, -null.

Let U be aneighborhood of zero in (E, T). Then, UmEnO is a neighborhood of
zero in (Ep, Ty, ), SO there exists K € N such that W, k 0« CUNEy, cUifk>K.

It implies that (x; ¥0+tKy c U for every L € Nif k > K. Now, if k < K, then (x; Kotky,

is a T-null sequence, since it is a Ty,,,-null sequence. Hence, arranging the
double-indexed sequence in any way into a single indexed sequence, it results
a 1-null sequence. So, this sequence should be convergent in some E,, since
E is sequentially retractive. But this is not possible, since the sequence is not
convergent in any Ej,. Hence the proposition is true. O

Recall that a space F is strictly barreled if given any ordered web in F, there
is a strand (Wy ), such that for every k € N, Wy is a neighborhood of zero. So,
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if in Proposition 3.1 everyone of the corresponding elements from the webs,
where the topologies coincide is T,,-neighborhoods of zero, then E satisfies
condition (Q), and hence by [8, Proposition 2.5], E satisfies condition (M).

Following Gilsdorf [1], a locally convex space F is sequentially webbed if it
has a compatible web W such that for every null sequence (x;,);, in (F,T),
there exist a strand (Wy)x and a natural number M for every k € N, such that
xXm € Wy for all m > My. To simplify, we denote this condition by (#).

From [4, Corollary 5.3.3(b)], the inductive limit E = indE,, of a numerable
sequence of webbed spaces is again webbed and admits a completing web W
such that W(n) = E, for every n € N. Moreover, the kth layer of the web W on
E is the collection of members of the kth layer in the spaces Ej,. In the next
theorem, we use such a web on E = ind E,, in order to characterize sequential
retractivity for inductive limits of sequentially webbed spaces.

THEOREM 3.2. Let every (Ey, Tyn) be a sequentially webbed space. E = ind E,
is sequentially retractive if and only if E is sequentially webbed.

PROOF. Suppose that E is sequentially retractive. For any null sequence
(Xm)m in (E,T), there exists n € N such that (x;,), is a null sequence in
(En, Tn). So, there is a strand (W,i"))k of the web W™ on E, satisfying (#) on
E,,. Note that by the form of the web on E, (W,E") )k is also a strand for the web
W on E. So, E is sequentially webbed. Conversely, let (x,) be a null sequence
in (E,T); since E is sequentially webbed, there is a strand (Wy)x of W on E
satisfying (#). By the form of the web on E, W; = W(n) = E,, for some n € N.
So, this strand is contained in E,, and it is a strand of W™ on E,,. Now, since
W™ is compatible with T, for every U-neighborhood of zero in (E,, T.), there
exists k € N such that Wy c U. Hence, x,, € U for all m > M. O
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