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ABSTRACT: The Hardy's F-transform

F(t) = [ F (ty) y£ () dy
0

is extended to distributions. The corresponding inversion formula
(-]

f(x) = j C (tx) t F(t)dt
v
0
is shown to be valid in the weak distributional sense. This is accomplished by

transferring the inversion formula onto the testing function space for the

generalized functions under consideration and then showing that the limiting
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process in the resulting formula converges with respect to the topology of

the testing function space.
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1. INTRODUCTION.
The Hardy transforms with their inversion formulae are represented by the

following two integral equations:

£(x) = [ F (tx)tdt [ C (ty)yf(y)dy (1)
v v
and 0 0
£(x) = [ c (tx)tdt [ F (ty)y £(y) dy )
v v
where 0 0
C (z) = cospMm J (z) + sinpm Y (z) 3)
v v v
and ©
. (D)™ (z/2)VFPH2m
Fv(z"z Te+n+Drp+mty+D) “)

m=0

=2V S a1, B/ 0@ TG+ p)) (2, p. 401
The theory of the inversion formulae (1) and (2) has been given by Cooke [1].
The Hankel transform with its inversion formula can be deduced as a special case
of both (1) and (2) by taking p = 0. The Y-transform [3, p. 93] is a special
case of (1) whereas H-transform [3, p. 155] is a special case of (2) for p = %.
Recently the inversion formula (1) was proved to be valid for the generalized
function space H; (I) by Pathak and Pandey [7] in the weak distributional sense.

It turns out that the kernal y F (ty) of F -transform does not belong to the space
v v
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H (I) and therefore the inversion formula (2) cannot be proved to be valid for

o

the space of distributions directly as a corollary to theorems proved in [7]. We
will therefore extend briefly the inversion formula (2) to a generalized function

space essentially by following the techniques and results proved in [7].

2. TESTING FUNCTION SPACE H:; (I). For -5<y <% and real p let F (z) be
3 v

the function defined in (4) and let ¢ be a fixed number satisfying o + v + 2p > O.
Assume that B is also a fixed number satisfying B >0 = max (v + 2p =~ 2, -%).
For each k=0, 1, 2, ... define a positive and continuous function gk(x) on

I=1{x; 0<x<o} satisfying

x2k +a 0<x<1

x-6 -2 x > 1.

£, (x) =

An infinitely differentiable complex=-valued function @ (x) defined over I is

said to belong to the space Hv'g (1) if
(e 2]

vk(Q) = sup | gk(x) Ai (Qéél) | <e

0<x<ow

for each k=0,1, 2, 3, ... where Ax stands for the differentiation operator

2

2 1 d
(D += D -* ), D = =— . It can be readily seen that VP (I) is a vector
X x X x2 X dx P

space. The topology over Hv’g (I) is generated by the sequence of seminorms
s

v, ° 19 p. 8].
k k=0

A sequence {¢vl in this space is said to converge to the element @ if
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Y, -¢9)-0as , >e foreach k=0,1,2, 3, ... A sequence § in w>P (1)
k*y v o8
is said to be a Cauchy sequence if yk(ﬂm - Gn) -0 as m, n » » independently
of each other. It is a simple exercise to verify that the space Hv’g (I) is

(o8]
sequentially complete and so it is a Fréchet space. Since D(I) c Hv’g (1) and

[o ¥)
the topology of D(I) is stronger than that induced on D(I) by Hv’: (1), it

[o'X)

follows that the restriction of any f ¢ Hv’g (I) to D(I) is in D' (I).
s

In view of the fact that

Ak [F (xt) ] = D¥ 2 F k) - Pxyt)
X v Y
where K
Pxt) = V2P 2' . VFZpe2i 2k-21 )
=1t

ak being certain constants depending on y and p, and the asymptotic orders

[9, p. 345]
0 2T 20
F (z) =
v o
0 ‘z| |z| - o (6)
where
c=max (v + 2p - 2, '%) [8, pp. 347, 351]

it follows that for fixed t >0, x F (tx) belongs to the space Hv,g (1) when
v o>

treated as a function of x. Therefore, Hardy's F ~-transform F(y) of a generalized
v

function £ ¢ Hv’g (I) can be defined by
o>
F(y) =<{f(x), x F G¥)>, y>0. )

By following the technique as used in [7] it can be shown that F(y) is differ-

entiable for each y > 0 and that

' - ‘W 8
P - <, & {xr p> 8)
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Note that
_b_ VP
x F also belongs to H (1).
w [ N (xy)] g B
We now state some results which will be used in the sequel.

Define

Hy (t,x)

N
j cv (tx) cv (xy) y dy

o

N [x cv+1(xu) Cv(tN) -t cv+1(tN) cv(xNi] - Q (x,t)

x2 -t2
where - 2y 2v
2 -
Q (x, t) = ZBBRPT o bpym —E2E s (10)

2

msinym xv tv(x2 - t%

=2sinp1‘rsin(p+v)n N when t = x
msinym x2

[8, p. 466].
Using the technique employed in proving Lemma 2 in [7] it can be proved
that for fixed t, x.Q (x,t) ¢ H\”g (I).
o>

It is now a simple exercise to prove for o > |v|, B <v - 4 and § ¢ D(I) that

b
X J‘ Q(x,y) @ (y) y dy also belongs to H:;’g (1).

a

LEMMA 2. Let gk(t) be defined as in section 2. Then for 0 <y <1

P % | min@+2, -o-2k 0. 1. 2
0<t<ow gk(ty) = > = ’ ’ ) e
PROOF. The result follows by dividing the t- line into three parts

0<t<l1l, 1<t<l/ly, l/y <t <o and considering the corresponding

sup £, ()
0<t<e |E(ty)
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LEMMA 3. Let C (z) be the function as defined in (3) and let
v -

5<v<% -~ -2p<o<3/2, B>max (v +2p -2, -5).
Then for fixed x >0,
T‘ VP
tIF (ty) C (xy) ydy - 0 in H (I) as 7 -0+
v v asB
0
PROOF. The lemma can be proved by using lemma 2 and a variation of the
technique used in proving lemma 4 of [7].
LEMMA 4. Let @, B, v and p be restricted as in Lemma 3 and let

£ ¢ HP, then

osB

N N

[<£®), tF (ty) > C_ () ydy = < f(t), t [ F (ty) C_(xy) ydy >.
v \Y) v v

0 0

PROOF. The result follows in view of Lemma 3. The details of the
technique to be used can be found in [7, Lemma 5].

LEMMA 5. Let b >a >0 and HN (t,x), Q (t,x) be the functions as
defined by (9) and (10). Then

b 1 te [ab]

R IR RO B ey

N-oo

PROOF. See Lemma 6 in [7].

LEMMA 6. Let the support of ¢ ¢ D(I) be contained in (a,b) where
b>a>0. Let HN (t,x), Q (t,x) be the functions as defined in (9) and (10).
Assume that -3¥<y <%, max (-v -2p, v) S@<3/2 and B >max (v+ 2p - 2,
Then

t [HN (t,x) + Q (x,t)] ¢ (x) xdx » t ¢ (t) in H::g (I) as N » =,

pe— T
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PROOF. The proof can be given only by using Lemma 3 and a simple variations

of the techniques used in proving [7, Lemma 7] and so the details are omitted.

3. INVERSION OF THE DISTRIBUTIONAL

Fv- transform: We now state and prove our main result.

THEOREM. Let -¥< v <%, max (-v - 2p, |v|]) <o <3/2 and B > max
v+ 2 -2, -%).
Assume that F(y) is the distributional Fv-transform of fe Hv’g (I) as defined

(03]

by (7). Then
1im N
<f F@) Cv (x,y) ydy, @ (X)> = < £, ¢ > for each @ ¢ D(I).
N -9 o
0

PROOF, Let the support of ¢ be [a,b] where b >a > 0.

Since F(y) C (xy) y generates a regular distribution we have

N b N
f é(y) c, Gv)ydy, ¢ (X)> = [9 & ax [FO)C, () ydy
0

a 0

b N

=[ (), t[F (ty)C (x)ydy) @ (x)dx
\Y AY
a 0
[ Lemma 4]

b
=[ (), t {H.N(t,x) + QN(t,x)}> g (x) dx

2 [7, Lema 8]

b
RGO LG Q(t,x>}> 9 (0 dx
a

for N>b >0 [1, Lemma ¢ p. 394]
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b
= <%(t), t I {HN(t,x) + Q(t,x#i> Qﬁil x dx
a

by Riemann Sums technique [9, p. 148]
- <f(t), t. 9_(t2> =<f, ¢>
t
[ Lemma 6]

This completes the proof of the theorem.
Taking p=0 and p = % 1in the above theorem we derive
COROLLARY 1. Let fe Hv’g (I) where -3¥<v <% |v] <a<3/2 and
[o 1

B > -%. Define the distributional Hankel transform of £ by

ro) = CE®), e 3 @)

then

N
Lim <j *®)y I Gy) 4, ¢<x)> -0 )
0

N-w

for all § ¢ D(D).

COROLLARY 2.  Let fe B S

B > -%. Define the distributional Struve transform (H -transform) of f by
- v

vk (I) where -%3<v<% |v] <@<3/2 and
3

Fy) = {E(B), t B, (7))

then

N
1im
Nw<£ FO) Y () y 4y, ¢<x)> = <f ¢>

for all ¢ e D(D).
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