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ABSTRACT. Let X be a compact subset of the complex plane ¢. We denote by
RO(X) the algebra consisting of the (restrictions to X of) rational functions
with poles off X. Let m denote 2-dimensional Lebesgue measure. For p > 1,
let RP(X) be the closure of RO(X) in Lp(X,dm).

In this paper, we consider the case p = 2. Let x € 3X be both a
bounded point evaluation for RZ(X) and the vertex of a sector contained in
Int X. Let L be a line which passes through x and bisects the sector.
For those y € L N X that are sufficiently near x we prove statements
about lf(y) - f(x)l for all f ¢ RZ(X).
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1. INTRODUCTION.

Let X be a compact subset of the complex plane t. We denote by RO(X)
the algebra consisting of the (restrictions to X of) rational functions with
poles off X. Let m denote 2-dimensional Lebesgue measure. For p > 1, let
Lp(x) = Lp(x,dm). The closure of RO(X) in Lp(x) will be denoted by RP(X).
Whenever p and q both appear, we will assume that p-'1 + q_1 = 1.

In "Bounded point evaluations and smoothness properties of functions in
Rp(X)", [6, p. 76], we proved the following:

THEOREM 1.1. Let ¢ be an admissible function and s a nonnegative
integer. Suppose that p > 2 and that there is8 an x € X represented by a
function g ¢ Lq(x) such that (z-x)-s¢(|z-x|)-1g € Lq(x). Then for every
€ >0 there is a set E in X having full area density at x such that for
every f € RP(X)

1) £ = jio(Dif)(z-x)j + R where R e RP(X) satisfies

1) Ry | §,e|y-x|s¢(|y-x|)l|f||p for all y ¢ E, and

(111) app lim—R—s(L = 0.
»x |y=x["¢(|y-x|)

It is matural to ask whether a similar result holds for the case p = 2.
The problem in extending the proof of Theorem 1.1 to the case p = 2 1is that
z—l # Lioc’ Fernstr$m and Polking have shown at least one way in which the
case p > 2 differs from p = 2 [2, pp. 5-9]. They have constructed a compact
set X such that RZ(X) + LZ(X) but no point in X 1s a bounded point eval-
uation for RZ(X). In this paper we consider the case p = 2 when x e 93X
is a bounded point evaluation for Rz(x) and is a special kind of boundary
point. We will assume that x € 3X 1is the vertex of a sector contained in

Int X.
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To prove our theorem we will need the representing functions used in [6]
and a capacity defined in terms of a Bessel kernel. We will also use results
of Fernstrdm and Polking to construct a representing function for x with
support outside the sector mentioned above.

2. REPRESENTING FUNCTIONS.

In this paper 2z will denote the identity function.

DEFINITION 2.1. A point x € X 1is a bounded point evaluation (BPE) for

R2(X) C LZ(X) if there 18 a constant C such that

1/2

[£(x) | 5_c{J Iflzdm} for all f € Rz(x).

It follows from the Riesz representation theorem that if x € X 1is a
BPE for R?(x) then there i1s a function g € LZ(X) such that £(x) = I fg dm

for all f ¢ R?(x). Such a g 1is called a representing function for x.

DEFINITION 2.2. We define the Cauchy transform of g to be
~ -1
gly) = J (z-y) g dm

for each y such that I |z-y|-1|g|dm < @,
The following lemma was proved by Bishop for the sup norm case. The
proof for our case is similar and is found in [6, p. 73].
LEMMA 2.1. Suppose that g € LZ(X) and that I fg dm = 0 for all
£ e R2(X). Suppose that g(y) is defined and % O and that (z-y)-lg e 12().
Then §(y)-1(z-y)-1g is a representing function for y.
Let c(y) = [ (z-x)(z-y)_lg dm = 1 + (y-x)g(y). From the above lemma
there follows
COROLLARY 2.1. Let g € LZ(X) be a representing function for x € X.
Then c(y)-l(z-x)(z-y)_lg is a representing function for y whenever c(y)

1s defined and # 0, and (z-y) g ¢ L2(X).
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3. CAPACITY DEFINED USING A BESSEL KERNEL.

Denote the Bessel kernel of order 1 by G1 where Gl is defined in

terms of its Fourier transform by
él(z) = (1+|z|2)-1/2.
For f ¢ LZ(C) we define the potential
Uf(z) = I G, (z-y) £ (y)dm(y).

DEFINITION. i.i denotes the space of functions Uf fe L2, where

1’
f
the norm is defined by ||U1|| = ||f||2.
DEFINITION. Li is the Sobolev space of functions in L2 whose distri-
bution derivatives of order 1 are functions in L2.

The Calderén-Zygmund theory shows that I.z

1 equals the space of functions

L7 and that the norms are equivalent [4].

We recall the definition of the capacity Fz.

DEFINITION. Let E € ¢ be an arbitrary set. Then T,(E) =
inf j |grad wlzdm where the infimum is taken over all w € Li such that
wéi 1 on E. Hedberg has used this capacity to characterize BPE's for
RZ(X) [3]. The next theorem is proved in [6, p. 82].

THEOREM 3.1. Let O € X be a BPE for RZ(X) that is represented by
a function v e LZ(X). Suppose that ¢ 1s an admissible function such that

o

o(lzD7v e L2x). Then 22“¢(2‘“)‘2r2(Ah\x) < =,

REMARK. The theorem i:jlin fact, true if ¢ 1is any positive non-
decreasing function defined on (0,®).

Now we define the Bessel capacity which Fernstrdm and Polking use to
describe BPE's for RZ(X).

DEFINITION. Let E & ¢ be an arbitrary set. Then C1,2(E) =
inf J |f|2dm where the infimum is taken over all f ¢ L2(¢) such that

f(z) >0 and Uf(z) >1 for all z ¢ E.
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The equivalence of the norms on jLi and Li implies that the capacities

F2 and Cl,2

4, A FUNDAMENTAL SOLUTION FOR

are equivalent.

3
3z
We will use B = (Bl,Bz) to denote a double index that may be (0,0),

0,1), or (1,0). We set IBI = Bl + 82. Letting z = x + 1y, we denote

the first order partial derivatives by

B B
B2t 8’
) 82'
9x dy
9 13 9
The differential operator — = E-S;-+-§ 3;- has the function H(w,z) =
9z
%(;%;) as a bi-regular fundamental solution. Hence 2—-H(z,w) = Gw and
t t 9z

2 H(z,w) = §_ where —> is the formal adjoint of °— and 5, is the
ow z ow 9Z
Dirac measure supported at z. We note that for B8 = (0,0), (0,1), (1,0)

000,20 <X o181 40,
The next lemma links BPE's to the function H(w,z). A proof which includes
this as a special case is in [2, p. 3].

LEMMA 4.1. A point z. ¢ X is a BPE for R°(X) & L2(X) 1if and only if
1

2-z

) for all

there is a function f € L (¢), such that f£(z) = %(

,loc

z ¢ {\X.
The next lemma we need is proved by Fernstr®dm and Polking in [2, pp. 13-15].
It is interesting that this lemma holds for B = (0,0) as well as (0,1)
and (1,0). Before stating it we introduce more notation.
DEFINITION. For a compact set X, let
X_ = {z|Dist(z,X) < €}.

DEFINITION. We denote A (0) = {zlz'k'l < |z| < 27k,

-k-2 f_l 2-k+1}.

by Ak'
DEFINITION. Let Al = {z]2 z| <

LEMMA 4.2. Let X C ¢ be compact and suppose that
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I 2%%c, ,\0) < =
k=0 1’

Then for each € > 0 and for each k 2 0 there is a function wk € C°°
such that

(1) wk(z) =1 for z near Aﬂ \ Xe, and

(1) |D8¢k(2)|2dm(z) < F2‘2k(1—|8|)c

-k+1

l’Z(AI'(\X)
]z|52

for B8 = (0,0), (0,1), and (1,0). The constant F 1is independent
of k.

5. THE MAIN RESULT.

It is no restriction to assume that the boundary point x € 3X 1is the
origin (x = 0). Also, we may assume that X < {|z| < 2}. 1In taking O
to be the vertex of a sector in Int X we mean that there are numbers
a, B, 0 S a < B < 271, and a number a, 0 < a < 2, such that if (r,6) are
polar coordinates, and S = {(r,8)|a < 6 <8, 0 <r < a}, then Int S C Int X.
Let L be the mid-line L = {(r,e)le = Q%E-, 0 <r <a}. Since y e Int X
is a BPE for RZ(X), we may use f(y) to represent the value of that linear
functional at a given f ¢ R?(X). We want to study f£f(y) - £(0) for
fe RZ(X) as y approaches 0 along L.

First we will construct a function g € LZ(X) which represents 0 for
RZ(X) and which has support disjoint from a sector surrounding L. This
second sector S' 1s a subset of S defined by

s' = {(r,8)]|a + E%E <psB- E%E, <r < a}.

LEMMA 5.1. Suppose that 0 is a BPE for R2(X) that is the vertex of
a sector S in X. Then, there is a function g € LZ(X) such that:

(1) g represents 0 for RZ(X),

(11) m((supp g) N S') =0,

(1i1) For all n 2 0,
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n+l
lg|%am < F ) 22
k=n-1

A NX
n

kCl,z(All\x)

where F 1s a constant independent of n.
PROOF. Choose X € Cg(Rl) such that

0 if t < %- or t 22
) =

1 if %-S t<1

For each integer k set
A (2) = A(2%|z])/ f A@d|z]) for z e f\Int s.
For those values of :-Qin Int S define Ak(z) so that the following
three conditions are satisfied:
1) AN(2) e ¢’
(2) Ak(z) =0 for ze XN S', and

(3) There are constants Fl and F, such that for all k

2
A, (z) A, (z)
k k k k
|——1 s F;2° and | 5 | < F2.
The constants F1 and F2 are independent of k.

Given € > 0 choose the functions wk of Lemma 4.2. On the complement

of X, we have wklk = Ak since supp Ak C Aﬂ. Thus, g wkxk =1 on

421

A(0,1/4)\Xe. Choose X ¢ C; with X(z) =1 near X. Set h(z) = X(z)H(0,z)

1
where H(0,z) = Pt
For each double index B8 = (0,0), (0,1), and (1,0) there is a constant

FB such that

I°h(z)] < Felzl-l_'si.

These inequalities follow from those of Section 4 and the fact that X and
o ©
its derivatives are bounded. Set fe =h g wklk = g wkhk where hk = Akh.

Since supp kk C Aﬂ, the above inequalities imply that
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B k(1+|8])
(*) ID hk(z)| < Fg2 .

Henceforth, we will limit the number of symbols denoting constants by

letting F denote any constant. The inequalities (*) combined with Lemma 4.2

imply that
2 v B Y 2
He 1%, <7 1 f ID"h, (2)D"y, (2)|“dm(2)
©2 0 [#A[s1 k=0 " k
<F 22k(1+|6|) J D)‘wk(z)lzdm(z)
k=0 |g+r|<1 2| 1,7kl

IA

S .2k
F ) 27c, ,(AN\X).
Lot G2 A

Finally, by the subadditivity of the capacity C we have

- 1,2’
e 12, <7 ] 2%c) 0.

L1 =0
The net {fe} is bounded in Li
that converges weakly in Li. Let £(z) = lim £ (z) + (1-x)H(0,z) for
i,loc’ and £(z) = H(gT:) %or z € ¢\X. Note that

since fe (z) =0 forall ze XN S', £(z) =0 for a.e. ze X N S'.

. We can choose a subsequence {fe }

z e ¢\X. Then f e L

If necessary, we may redefine f on X /) S' so that £(z) = 0 for every

zeXNS'.

i 2

Set g=—f. Then g e L°(X), and g 1is a representing function for

9Z
0 (see [2, p. 3]). If =z ¢ X, g(z) = 0. Clearly, m((supp g) N S') = 0.
We have

Iglzdm <F z I IDBfIde
ANX 181<1 , Ax
n n
° B A |2
<F ) ) I |, D%y, |“dm.
|B+r|<1 k=0 ,

Nnx
n
The integral I IDBhkwklzdm will be nonzero only for those k such that
ANX
n

ANA N X+ ¢, i.e., k=n-1,n, n+1. Thus, by (*) and Lemma 4.2,
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n+l
J lg)%dm < F ) J [DBth)‘wklzdm
[B+A]<1 k=n-1
ANnX ANX
n nil 2K n
<F 2°%c. . (AN\X).
SR W A

This completes the proof of (i), (ii), and (iii).

We will use the next lemma to obtain representing functions for points
near 0 on the line segment L. Let 0,X,S, and g be as in the previous
lemma, and let c(y) be as defined in Section 2.

LEMMA 5.2. Let 0 € X be represented by a function v ¢ LZ(X).

Suppose that ¢ 1is an admissible function and that v(z)qs(|z|)-1 € LZ(X).
Then for any € > 0 there exists a § such that if |y| <§ and y e L,
then |e(y)| = |1 +yg(¥)]| >1 - ¢.

PROOF. Since the capacities P2 and C1,2 are equivalent, Theorem 3.1
implies that

T 520, -0y -2 .
nzlz 62 Cl’z(Ah\X) < o,

To show that c¢(y) is defined, we first note that

vl Jg-(z-y)-ldml < ¢(IY|)W(IY|)J lglv(z=y > 6 (| z-y ) " am.
where yY(r) = r'¢(r)_1. By definition of S' there is a constant kl such
that kllz-y| > |z| for any y € L and 2z € X\S' - {0}. Similarly, there
is a constant k, such that k2|z-y| > |ly| forany y el and z e X\S' - {0}.
Since ¢ and ¢ are both increasing,

s(zDoCz=y D™ sk and vClyDvClz=yD7h s Ky

Hence

~¢-1dm.

< odlyD) | s

€ LZ(X) and therefore g-¢-1 € Ll(X). First observe

|Y|' J g (z=y) "Ldm

We claim that g~¢-1

that
I|g|2°¢-2dm5 I o™ [ | &) %am.

n=1 A NX
n
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By Lemma 5.1 and the subadditivity of C

1,2
2.-2 v . ,.-n.-2.2n
f lg| %6 %dm < nzl¢(2 )2, 4 \0.

we get

The capacity series converges. Thus, é(y) is defined. Since 1lim ¢(r) =0,

0
we can choose for any given € >0 a 6 > 0 such that
lye | = Iyl | I g-(z-y)'ldm| < Fo(ly]) I g6 ham < ¢
for |y| <8 and y e L. It follows that [c(y)| = |1 + ye» | > 1 - .

In the following theorem, X, O, and L are just as they have been.
THEOREM 5.1. Let O € 3X be a BPE for RZ(X) which is represented by
function v € RZ(X). Suppose that ¢ 1s an admissible function and that
v(z)ct»(lz|)_l € Lz(x). Then for any € > 0 there is a 6 > 0 such that if
y € L N A(0,9),
£ - £ < eolyDI£]],
for all f € RZ(X).
PROOF. let g € LZ(X) be a representing function for 0 as in Lemma 5.1.
Choose 61 by Lemma 5.2 so that for y ¢ L and ly] < 61, le ]| > 1/2.
Then by Corollary 2.1,
£5) - £0) = e [ £ - £@12 Gy Vgem
- eyl [ 1E - £OIIL + 7@y 1gem
- ye ™ [ 1£ - £0)1 (e g,
Thus, for y € L and |y| < 61
50 - 2@ < 2ly] [ 1€ - £© ]2y glam.
There exists a monotone, increasing function ¢ such that 1im+$(r) =0
and ¢(|z,)-l$(|z|)-1v(z) € L2(X) (see [6, p. 74]). Moreover, :Zomay choose
$ so that the function r¢(r)_l$(r)-1 is also monotone increasing. Let

8(r) = ¢(r)+$(r). Then recalling that k,|z-y| 2 |z| and k,|z-y| = |y]

for y e L and z e X\S' - {0}, we have
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-]
i -n,- 2,41
|50 - 2] = reclyD1gi1,¢ T o™ [ [gl%am2.
n=1 A NX
n
If the sum of the infinite series is less than 1, the theorem is nearly
proved. Suppose the sum is greater than or equal to 1. Then
-n,~-2

v 52
le) - £@] < FldyD]lel], nzlz "2 ey (D)

< B ClyDeclyD el 2122“0(2’“)'201’2(Ah\x).
n=

Since the capacity series converges by Theorem 3.1, we may choose 62 such that

_ s 2 —n.-2
for |y| <&, Fo(|y] nzl 202 ™0y ,(A\D) < e

Then |f(y) - £(0)] < e¢(|y|)||f”2 for |y| < min($,,6,) and y e L.
This concludes the proof.
REMARKS. (1) If 0 € 8X is a BPE for RZ(X), there always exists an
admissible function ¢ as in the hypotheses of Theorem 5.1 (see [5, p. 741).
(11) The theorem may be extended by techniques of Wang [5] to
include bounded point derivations of order s so that a statement similar
to Theorem 1.1(ii) holds for y e L /Y A(0,S6).
(1ii) For certain sets X a point O ¢ 3X which is a BPE for
RZ(X) may not be the vertex of any sector having interior in Int X. Suppose,
however, that O 1is a cusp for a curve whose interior is in Int X. Let L
be a line segment which bisects the cusp at 0 and let C denote the interior
of the cusp near 0. Then if ye L M C and 2z e X\C, Iy—z|1(|y|) > |y|
where T 1s a monotone decreasing function such that lim+r(r) = o, Depending
on how rapidly t approaches = at 0O (or how rapid1;+2he cusp "narrows'),

we can show that functions in Rz(x) satisfy an inequality similar to that

of Theorem 5.1.
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