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ABSTRACT. The author considers one of the main problems in finite translation
planes to be the identification of the abstract groups which can act as
collineation groups and how those groups can act.

The paper is concerned with the case where the plane is defined on a
vector space of dimension 2d over GF(q), where q and d are odd. If the
stabilizer of the zero vector is non-solvable, let G0 be a minimal normal
non-solvable subgroup. We suspect that G0 must be isomorphic to some SL(2,u)
or homomorphic to A6 or A7. Our main result is that this is the case when
d is the product of distinct primes.

The results depend heavily on the Gorenstein-Walter determination of
finite groups having dihedral Sylow 2-groups when d and q are both odd. The
methods and results overlap those in a joint paper by Kaliaher and the author

which is to appear in Geometriae Dedicata. The only known example (besides
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Desarguesian planes) is Hering's plane of order 27 (i.e., d and q are both
equal to 3) which admits SL(2,13).

KEY WORDS AND PHRASES. Translation Planes, Collineation Graphs, Finite
Geometries.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 50D35, 05B25, 20B25.

1. INTRODUCTION

A translation plane of order qd with kernel F = GF(q) may be represented
by a vector space of dimension 2d over F. (The plane is usually said to have
dimension d over F.) Here the points are the elements of the vector space
and the lines are the translates of the components of a spread. A spread is
a class of d-dimensional subspaces (the components of the spread) such that
each non-zero vector belongs to exactly one component.

The group of collineations fixing the zero vector is called the trans-
lation complement; the subgroup consisting of linear transformations is the
linear translation complement.

The dimension and order are both assumed to be odd in this paper.

The Hering plane of order 27[8] is the only known example of a non-
Desarguesian translation plane of odd order and odd dimension in which the
collineation group is non-solvable. Thus, the question arises as to whether
there are others and what they are like (if others do exist). The trans-
lation complement contains SL(2,13) in the case of the Hering plane. The
Sylow 2-groups of the induced permutation group on £ are cyclic or dihedral
(when dimension and order are odd); it is possible that the key non-solvable
group is always SL(2,u) for some u or, perhaps, is a pre-image of A6 or A7.
This is suggested by the Gorenstein-Walter Theorem [5]. The author [14] has
previously shown that this is the case for minimal non fixed-point-free

groups (see below) which are non-solvable. However, a non-solvable linear
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group need not have a non-solvabie minimal non-f.p.f. subgroup.

Throughout this paper G is a non-solvable group of linear transformations
and GO is a minimal normal non-solvable subgroup.

Our most important result is Theorem (3.5) which states that, if d is
the product of distinct primes, a minimal non-solvable normal subgroup of the
linear translation complement either has the form SL(2,u) or is a pre-image
of A6 or A7.

We have no new examples, so the question as to whether Hering's plane of
order 27 is the only one (of odd order and dimension) remains open.

We include some informal discussion to indicate the importance of the
possibility that d might divide u-1 in the SL(2,u) case and then show that
there are severe numerical restrictions on this case and strengthen certain
results of Kallaher and the author [12].

The present paper is similar in method, spirit, and results to the joint
one. Here there are more restrictions placed on d and weaker initial
restrictions on the group.

The notation and Tanguage are more or less standard. Some of the
terminology and even some of the facts, may not be familar to every potential
reader of this paper. We finish this Introduction with a brief discussion of
these matters and some remarks on notation.

A group of linear transformations is fixed point free (f.p.f.) if no
non-trivial element fixes any non-zero vector. One obtains a Frobenius
permutation group by adjoining the translations so that every f.p.f. linear
group is a Frobenius complement [11]. For a Frobenius complement, the
Sylow subgroups of odd order are cyclic; the Sylow 2-groups are cyclic or

generalized quaternion. (See [15].)
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A normal subgroup of a linear group G is a minimal non-f.p.f. group
with respect to G if it is not fixed point free but every normal subgroup
of G properly contained in it is f.p.f.

An irreducible group of linear transformations acting on a vector space
V is imprimitive if V is the direct sum of subspaces which are permuted by
the group. These subspaces will be called subspace of imprimitivity. An
irreducible group is primitive if it is not imprimitive.

A minimal invariant subspace of a reducible group G will sometimes be
called a minimal G-space. If V1 is a subspace such that all of the minimal
G-spaces 1in V1 are isomorphic as G-modules, then V1 will be called a
homogeneous space.

The order of G is denoted by |G|. If G is the full group and Gy is
a subgroup, C (GO) is the centralizer of G) in G.

The subgroup of G which fixes & is G(%).

If o is a non-f.p.f. element, V(o) denotes the subspace consisting of
all vectors fixed by o.

Fit G denotes the Fitting subgroup of G.

This research was supported in part by the National Science Foundation.

2. LINEAR GROUPS WITH DIHEDRAL 2-GROUPS.

(2.1) LEMMA. Let G be a non-solvable group of Tinear transformations
and let G0 be a minimal non-solvable normal subgroup. Let H be a cyclic
normal subgroup of G included in GO. Then H is in the center of GO.

PROOF. If Goﬂc (H) - is non-solvable, then G, centralizes H. Otherwise

0
Go/Goﬂ'C(H) is isomorphic to a non-solvable group of automorphisms of H
(induced on H by conjugation). But the automorphism group of a cyclic group

is solvable.
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(2.2) LEMMA. Let G be a non-solvable group of linear transformations
and let G0 be a minimal non-solvable subgroup. If the Fitting subgroup of
GO is fixed point free, then it is the center of GO.

PROOF. Let Fit GO be the Fitting subgroup of GO. Then Fit G0 is
the direct product of its Sylow subgroups since it is nilpotent and the
Sylow subgroups of odd order are cyclic, since it is a Frobenius complement.
The Sylow 2-group in Fit GO is either cyclic or generalized quaternion. (See
Passman [15].) Suppose that the 2-group in Fit GO is a generalized quaternion
group Q. Then GO/C (Q) n GO is isomorphic to a group of automorphisms of Q.
The automorphism group of Q is a 2-group or S4 (see Passman [15].) and hence
is solvable. Hence C (Q) N GO is non-solvable; by the minimal property of
Go, G0 =c(Q)n GO. This is a contradiction since Q is a non-abelian
subgroup of GO. Thus Fit GO is the direct product of cyclic groups of
relatively prime order and is cyclic. The rest of the argument follows from
the previous Lemma. Using reasoning similar to that used above, G0 modulo
the subgroup centralizing Fit G0 is a group of automorphisms of a cyclic
group and hence is solvable, so G0 must centralize Fit GO' But Fit GO includes
Z(GO), so Fit Gy = Z(GO).

(2.3) THEOREM. If G is a non-solvable group of linear transformations
on a vector space V over GF(q) with a minimal non-solvable normal subgroup
Go, if Fit GO is fixed point free and if the Sylow 2-groups in Eb (the
factor group of GO modulo its center) are dihedral then G0 is SL(2,u) or
PSL(2,u) for some odd u or —b = Ag or A,.

PROOF. Let H be the maximal normal subgroup of G which is included in

GO but is not equal to GO.
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Then H is solvable and includes Fit Go. By the previous Lemma Fit
Gy is Z(GO). We claim that H = Fit Gy. If not, H has a normal subgroup
B such that B/B N Z(GO) is a non-trivial and abelian. The B would be
nilpotent and hence in Fit GO' Therefore, H = Fit GO.

It follows from the definition of H that GO/H has no proper
characteristic subgroup - i.e., it is characteristically simple. Hence it
is a direct product of isomorphic simple groups. (See Huppert [10], Satz 9.12.)
By hypotheses, the Sylow 2-groups of Eb = Go H = GO/Z(GO) are dihedral. It
follows that Eb is a simple group with dihedral Sylow 2-groups. Furthermore,
the minimal property of G0 implies that G6 = Go and hence H is a Schur
multiplier for Eb. By Gorenstein and Walter [5], Eb = PSL(2,u) for some odd u
or is equal to A7. Furthermore, if Eb = PSL(2,u) and u # 9 then G
(See Huppert [10], Satz 25.7.) Note that PSL(2,9) = Ag-

0= SL(2,u).

One of the key assumptions of Theorem (2.3) was that Fit Go is fixed
point free. The next few Lemmas develop the machinery for examining the case
where Fit GO is not fixed point free. Dixon [2] gives a similar development
for vector spaces over an algebraically closed field. We have attempted to
modify Dixon's argument to apply to vector spaces over a finite field.

(2.4) LEMMA. Let G be a group of linear transformations acting
irreducibly on a vector space VF of dimension n over GF(q) = F. Suppose
that the non-singular linear transformations which commute with G are all
scalars. If ¢ is any element of GL(n,q) such that trace op = 0 for all
p in G, then o = 0.

PROOF. Let M= {o| trace op = 0V p in G}. The ring of all linear
transformations on VF is a vector space of dimension n2 over F and 7 is a

subspace.
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Furthermore G acts in a natural way as a group of linear transformations
on this vector space of dimension n2 and G leaves 7 invariant.

Let g be a minimal G-invariant subspace of % . By Lemma (2.7) in
Dixon [2], the dimension of &£ is n and there is a vector v in VF such that
<V£>=VF.

Let {ul. Uy -ees un} be a basis for £ . The {vul, Vios -ees vun} is
a basis for Vf. Label these vectors Vis cees Yy respectively.

Let w be an arbitrary non-zero element of V and let

Wiy = § ay5vy = v § aij”j where the aijéF. Let A = A(w) be an eigenvalue

of the matrix (aij)' If X ¢ F, let E be an extension which contains X.
Then {(w - Av)ul, (w - Av)uz, vees (w - XV)un} is a basis for the vector
space <(w - v)§&>. This is a subspace of VE’ where VE is a vector space of
dimension n over E.

Note that wuy - Aviy = V[I M5 - A:]. The determinant of the matrix

ij i
J

(aij) - Al is zero, so the vectors (w - Av)ui are dependent and the dimension
of <(w - v)£> 1is less than n.

Thus <(w - Av)£> is a subspace of Vg which is invariant under G and
is not VE‘

We had iy = Vi Let W = W Now v; and w, are in VF (which is
embedded in VE). Let the mapping 1 be defined by w;t = Av;. Then 1
becomes a linear transformation on VE by defining (clw1 + oeee + cnwn)r
cl(wlT) + oeee + cn(wnr) for cs ...s Cp € E. (Note that T also acts as a
linear transformation on VF.)

Let x be an arbitrary member of V Then x + xt belongs to

£
<(w - v)g> . Suppose that x;T = x,T. Then (x1 + xlr) - (x2 + xzr) =X - X

is a vector in Vg which belongs to <(w - A)g >.
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Now <(w - Av)g> n VF is a G-invariant subspace of VF and, since G

is irreducible, is either the null space or all of VF. Suppose that
VF §5<(w - Av)g >. A basis for VF is also a basis for VE so in this
case <(w - av)g£> = Vgs which is a contradiction.

Hence X|T = XoTs X Xy € VF implies X| = X5 S0 T is a non-singular
linear transformation on VF. IfpeGand x e VF’ then (x + xt)p = xp + XpT
so T commutes with G. Hence T is a scalar transformation on VF' We had
WiT = Avi. Hence A ¢ F and E = F.

Hence <(w - Av)g > is a G-invariant subspace of VF of dimension less
than n. Hence <(w - Av)£ > is the null space for each w # 0 in Ve-

In particular this holds for w = Vis Vos wees V. Let A(vi) = A4
Then (v1 - Alv) £ =0fori=1, ..., n. Hence vluj = )\jvuj = Ajvj.

Using Vi s Vyas a basis and thinking of Mps ---s W @S matrices

over this basis we get

Al 0...0
Al 0...0

] = .. . etc.
Al 0...0

so that, in general, trace My = Ai. But, by definition of 7and § , trace
wio = 0 for each p in G, including the case where p is the identity. Hence
all of the Ai are equal to zero and all of the u; are zero.

REMARK. Except for the consideration of the possibilities that the
eigenvalues xi might be in some extension this is the proof of case I,

Theorem 2.7A in Dixon [2].
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(2.5) LEMMA. Under the hypotheses of (2.4) the ring generated by the
linear transformations in G has dimension n2, i.e. it is the full ring of
all linear transformations on VF’

PROOF. (See Dixon, Theorem 2.4B.) The argument goes through without
change except that Dixon requires the field F to be algebraically closed in
order to use Theorem 2.7A. If his Theorem 2.7A is replaced by our Lemma
(2.4) his proof applies here.

(2.6) THEOREM. Let G be a group of non-singular linear transformations
acting irreducibly on a vector space V of dimension n. Suppose that

G' < Z(G) and that Z(G) consists of scalars then [G:Z(G)] = nz.

lop = o\ for some A

PROOF. If o, p e G then o™ 1p lop € Z(G), so o~
in Z(G). Hence trace o = trace p'lcp = A trace 0. If A =1 for all
choices of p then ¢ € Z(G); otherwise trace o = 0. Thus, the trace is zero
for all elements of G not in Z(G).

By (2.5), the ring of all linear transformations on V has a basis
Op» Ops --+» O, in G. For an arbitrary o in G, o = ? a;0;, where

a; € F. Suppose that aj # 0. Then

-1
o= a.0.0; + a.
trace 00 trace [iﬁj 1949 JI]

j is not in Z(G) and

Since o and 95 are independent for i # j, 0;0
has trace zero.

Hence trace 0031 = naj. Note that we cannot have n = 0 mod the
characteristic, for otherwise the trace would be zero for all elements of G,
contrary to Lemma (2.1).

Thus, for each o in G 3 j > o belongs to the coset on(G). By the

independence of the ci’ J is unique. Hence Ops +ees Op2 form a set of

representatives for the distinct cosets of Z(G).
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(2.7) LEMMA. Let V be a vector space over GF(q) where the dimension
of V is the product of distinct primes. Let G be an irreducible group of
linear transformations on V. Suppose that G has a normal subgroup GO
such that: (1) the unique maximal abelian normal subgroup of G0 consists of
scalars; (2) for some prime u, a Sylow u-group S of Fit Gy is non-abelian
and S/Z(S) is abelian; (3) S is faithful on its minimal invariant subspaces.

Then u is one of the primes dividing the dimension and |S/Z(S)| = ul.

PROOF. S is characteristic in G0 and hence normal in G. Hence the
dimension of each minimal S-space divides the dimension of V. Let n be the

nz.

dimension of a minimal S-space. By the previous Theorem, |S/Z(S)|

But n must be a power of u and divide the dimension of V. Hence n = u.

(2.8) LEMMA. In the notation of (2.1) - (2.3) suppose that Fit G0 is
not fixed point free. Then GO includes a subgroup W which is a minimal
non-f.p.f. group with respect to G, where W is a w-group from some prime w.

If wo is the maximal normal subgroup of G included in W but not equal to
W, then wo f{Z(GO) and N/w0 is elementary abelian.

If Fit GO is not fixed point free, it contains an element of prime order
which is not fixed point free. Since Fit G0 is nilpotent, it is a direct
product of its Sylow subgroups so one of the Sylow subgroups of Fit GO is a
non-f.p.f. normal subgroup of G. Indeed G has a minimal non-f.p.f. group
W included in Fit GO, where W is a w-group for some prime w.

Let wo be a maximal normal subgroup of G included in W but not equal
to W. If w is odd, then wo is cyclic, since the Sylow subgroups of odd
order in a Frobenius complement are cyclic. In this case, wc)ff Z(GO)
by Lemma (2.1). If w = 2, then wo is either cyclic or generalized quaternion.
In the latter case c (wo) n G0 is a proper subgroup of GO normal in G and

hence solvable. Thus GO/ C (wo) N G0 is non-solvable. But this factor
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group is isomorphic to a group of automorphisms of a quaternion group and
this automorphism group is solvable. (See Passman [15], pp. 74, 76.)

We conclude that W, is in Z(GO).

0

(2.9) THEOREM. Let G be a group of linear transformations acting
on a vector space V. Suppose that G is irreducible and

(1) The Sylow 2-groups of G/Z(G) are diherdral.

(2) G is non-solvable with a minimal non-solvable normal subgroup GO'

(3) The dimension of V is the produce of distinct primes.

Then either Fit GO is fixed point free so that GO satisfies the
conclusion of (2.3) or Fit Gy contains an elementary abelian group W which
is a minimal non-f.p.f. group with respect to G.

PROOF. The theorem holds if W of (2.8) is non-trivial and NO is
trivial, so suppose wo is non-trivial. We wish to apply (2.7). For this
purpose, we can restrict our attention to a minimal Go-space vl. Note that
the dimension of a minimal Go-space is also the product of distinct primes.

Now all of the minimal Z(Go) spaces in a Gy-space are isomorphic as
Z(Go)-modules. As in Hering [7] Hilfssatz 5, there is a field K so that the
additive group of V, is a vector space over K and the elements of Z(GO)
become scalars.

Now consider the action of W on a minimal W-space in Vl. Again, the
dimension is a product of distinct primes, so (2.7) implies that IN/NOI = w2
and w is one of the primes dividing the dimension of V over F.

Let & = G/C (w). Then 8 induces, by conjugation, a group of auto-
morphisms of ﬁ. That is, there is a homomorphism from E into GL(2,w), since
W is elementary abelian of order wz. The kernel of the homomorphism is the

subgroup of G which centralizes ﬁ. If the subgroup of 80 which centralizes

ﬁ were non-solvable, then 60 would centralize W. We wish to show that this

197
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cannot be the case.

1

The reader may verify that X centralizes ﬁ if A'lo' do e C (W) for all

o in W. (Here A is a pre-image of \.) In particular, if X e GO’ ceW

we must have 3 lo I = v for some v in C (W) 0 Gy Then vl = v L.

But A 1o7!

A eW, sovolewandve W Thus v e Wye Z(Gy).

More particular, let A be an element of G such that |A| is a prime
distinct from w. Then o™ *Ac = Avs Ixv] = A]. Since v e Z(Gy) and |v|
is a power of w this implies that v = 1. That is, if Vichoec (W),
then A commutes with A if |A| is a prime distinct from W.

The subgroup of Go generated by all elements X of prime order # w is
a characteristic subgroup of GO' Call this subgroup GZ° If G2 = GO’ then
GO centralizes W, but W is a non-abelian normal subgroup of GO. This is a
contradiction, so G2 must be a proper subgroup of GO and hence solvable.
But, except for the w-groups, the Sylow sugbroups of GO are included in
Gz, so GO/G2 is a w-group. But if G2 is solvable, GO/G2 must be non-solvable,
so we again get a contradiction. Thus wo must be trivial if W exists and W
must be abelian.

(2.10) LEMMA. Suppose that the Sylow 2-groups in G/Z(G) are dihedral.
Let H be a maximal normal subgroup of G included in Go but not equal to

G Then GO/H is simple and either H = W[c (W) N GO] or W c Z(GO).

0

PROOF. By much the same argument we just used, GO/H is a direct product
of isomorphic simple groups which, however, must be non-solvable this time.
Agroupwithcyclic Sylow 2-groups is solvable. Since H includes Z(Go) the
Sylow 2-groups of GO/H must be dihedral. The direct product of dihedral
groups is not dihedral, so GO/H is simple.

Also H = H[e(H) N Gyl so GO/H is isomorphic to a group of outer

automorphisms induced on H by conjugation. This group of automorphisms
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ieaves W invariant; the subgroup acting as inner automorphisms of W is
induced by W[ c (W) n GO]. The outer automorphisms of H which act as inner
automorphisms of W will be a normal subgroup. But GO/H is simple so this
normal subgroup is either trivial or is the whole thing.

Suppose that every element of GO/H corresponds to an inner automorphism
of W. Then every element of GO belongs to W[ C(W) n GO]. But W[ ¢(W) n Go]
is solvable unless ¢ (W) n G0 is non-solvable. In the latter case W EEZ(GO)-

Otherwise, the group of outer automorphisms induced on W is isomorphic to
the group of outer automorphisms induced on H so GO/H z GO/W[c (W) n GO].
Hence H = W[ c(W) N GO] in this case.

3.  TRANSLATION PLANES OF ODD ORDER AND DIMENSION

The results of Theorems (2.3) and (2.8) have implications for translation
planes because of the following result of Hering [9], Theorem 1.

(3.1) LEMMA. Let I be a translation plane of order qd with kernel
GF(q), where q and d are odd. Let G be a subgroup of the linear translation
complement and let G be the induced permutation group on L. - i.e. G is the
factor group of G modulo the scalars. Then the Sylow 2-groups in G are
cyclic or dihedral.

REMARK. Groups with cyclic Sylow 2-groups are solvable. (See Burnside
[1], p. 326, Theorem II.)

Another result of Hering is pertinent. (See [9] Theorem 2.)

(3.2) LEMMA. Under the assumptions of (3.1), let G(%) be the subgroup
of G stabilizing a component 2. Then G(%) is solvable.

(3.3) LEMMA. Suppose that W of (2.8) is abelian and non-trivial, and
G is irreducible. Then I (as a vector space) is a direct sum Vi@ ees OV

of homogeneous W-spaces. G induces a transitive permutation group on

Vl, s, VK; W is not faithful on Vi’ i 1, «»+, k, and k is odd.
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PROOF. If W, is trivial, W is elementary abelian by (2.9). Thus if
X € W and the subspace V(\) pointwise fixed by A is non-trivial, then W
leaves V(A) invariant. Hence W is not faithful on its minimal spaces.
Since eaéh homogeneous space is a direct sum of minimal spaces that are
isomorphic as W-models, W is not faithful on its minimal spaces.

The rest of the Lemma follows from Clifford's Theorem. (See [4].)
Furthermore k must divide the dimension 2d of Il as a vector space.

Let w(vi) be the subgroup of W which fixes V. pointwise. Note
that the fact that W is abelian and Vi is a homogeneous W-space implies
that each element of W which is not f.p.f. on Vi is in w(Vi). Furthermore
a fixed point free w-group must be cyclic and W is elementary abelian so
N/N(Vi) is cyclic of order w. Thus if w(vi) = w(vj) then Vi and vj must
be isomorphic as W-modules. But this is not the case if Vi’ Vj are
homogeneous W-spaces. .

Let Vi* be the subspace pointwise fixed by N(Vi). Then Vi* is a
direct sum of homogeneous W-spaces. If w(vl), w(vz), «++ are distinct
subgroups (not necessarily disjoint) then we must have Vi* = Vi, But Vi*
must be a subplane or a subspace of a component of the spread.

If Vi* = & for some component %, then & is invariant under W. If
W leaves just one or two components invariant then G must fix or interchange
these two and cannot be non-solvable. If W has 3 invariant components
every non-f.p.f. element of W must fix a subplane pointwise.

Hence Vi is a subplane and has even dimension. This implies that k
is odd, since 2d = k dim Vl.

(3.4) THEOREM. Let G be a non-solvable and irreducible subgroup of
the linear translation complement of a translation plane II of order qd with

kernel GF(q), where q and d are odd. If W of (2.8) is non-trivial, then
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NO must be non-trivial.

PROOF. Suppose that W, is trivial, so that (3.3) holds. Let G(Vl)
be the stabilizer of V1 in Gl’ The index of G(Vl) in G is equal to k,
so a Sylow 2-group of G(Vl) is a Sylow 2-group of G.

Let é?v ) be the induced group on V1 - i.e. é?v ) may be identified
with the factor group obtained by taking G(V ) modulo the subgroup fixing Vi
pointwise. Then N is a normal subgroup of order w in G(V ), and all of the
minimal ; spaces in V1 are isomorphic as ;-modu1es. As in Hering [7],
d?v ) EEPL(s,qt) and the subgroup centra]izing‘; is isomorphic to

G(V )n GL(s,q ) for some s, t such that st = dim V Thus the index of

1°
(N) n G(V ) divides t and is not divisible by 4.
Hence the index of G(Vl) N ¢ (W) in G(Vl) is not divisible by 4. Let S
be a Sylow 2-group of G(Vl). As pointed out at the beginning of the proof,
S is then a Sylow 2-group of G. Hence S/S N C (W) is a Sylow 2-group of
G/c (W) and its order is 1 or 2. This implies that G/C (W) is solvable.
Hence Gy/Gy N C (W) is solvable. This is a contradiction since Gy N C (W)
is solvable and Gg is non-solvable. We conclude that Wy must be non-trivial.
(3.5) THEOREM. Let I be a translation plane of order qd with kernel
GF(q), where q and d are odd. Let G be a subgroup of the linear translation
complement. Suppose that G is non-solvable and irreducible with a minimal normal
non'-solvable'G0 and that d is the product of distinct primes. Then either
Gy ¥ sL(2,u) for some odd u or Eb = As'or Ay. Here Eb = 6o/2(6;).
PROOF. This is a consequence of (3.4), (2.9), and (2.3), except for the
possibility that we might have G, = PSL(2,u). But PSL(2,u) contains an
elementary abelian group of order 4 in which all three involutions are

conjugate. In a translation plane of odd order and dimension all three

involutions would be affine homologies. This cannot happen.
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It may be worth while to take a look at some aspects of the ways that
G0 = SL(2,u) can act on a translation plane. One possibility is that u is
a power of the characteristic p and that the p-elements are affine elations.
If G0 contains affine homologies of prime order greater than 5 then a result
of the author [13] shows that GO contains affine elations. The group generated
by these elations will be normal in Go and, in fact, equa) to GO.

(3.6) LEMMA. Suppose that Gy = SL(2,u), u > 3, is a normal subgroup of
the linear translation complement. Suppose that u is prime and that r is
a prime factor of u(u + 1). Then, if GO contains a non-f.p.f. element X of
order r, at least one of the following holds:

(a) For some component 2, G(&) > SL(2,3) and r = 3.

(b) For some component & fixed by A, G(&) is reducible on 2.

(c) For some component % fixed by A, G(2) is not faithful on 2.

PROOF. If X is not fixed point free, then )} fixes some component %
and is not fixed point free on 2. If (c) does not hold, we may assume that
G(2) is faithful on %.

Then G(2) » G(2) N Gy and G(2) N Gy is a solvable subgroup of G,
since G(&) is solvable. If r > 3, < X > will be characteristic in the
maximal solvable subgroup of G0 which contains A so that < A > will be
normal in G(2). The subspace of £ which is pointwise fixed by A will
then be invariant under G(%) so that G(%) is reducible on %.

If r =2, X is the unique involution in GO. For a plane of odd
dimension i.e., d is odd, a non-f.p.f. involution in the translation comple-
ment is a homology. This would come under conclusion (c); actually it cannot
happen since the axis of the homology would be invariant under the non-solvable
group Go.

If r = 3, we have the possibility (a) with SL(2,3) characteristic in
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Gy M G(2).

(3.7) COROLLARY. If r divides u + 1, the conclusions of (3.6) hold
even if u is not prime.

REMARK. The cases where u is not prime or where G contains affine
homologies of order 3 or 5 were handled in the Kallaher-Ostrom paper [12]
under the assumption that a certain p-primitive divisor of qd - 1 (which
turned out to be u) divided the order of the group induced on & by G(2).
Note that when (3.6) holds and there are no affine perspectivities, the orders
of the non-f.p.f. elements in G0 will divide u - 1 if G(%) is irreducible.

Let G(2)* denote the group induced on & by G(2) - i.e. G(&)* is the
factor group modulo the subgroup which fixes & pointwise. If G(2)* has a
normal subgroup whose order is a prime g-primitive divisor of qd - 1, then
G(2)* has an abelian irreducible normal subgroup. In this case
G(Q)*%%Il(l,qd). This is what happened in the Kallaher-Ostrom paper but
this situation may arise without reference to primitive divisors. Hence we
prove the following Lemma.

(3.8) LEMMA. Suppose that G(%)* is isomorphic to a subgroup of
rL(l,qd) and contains an element o* such that (a) |o*| is prime. (b) o*
fixes at least one point # 0 on &. Then |o*| divides d.

PROOF. PL(l,qd), in its action on a vector space of dimension d over
GF(q) has a cyclic normal fixed point free subgroup of order qd -1 and
index d.

REMARK. In the Kallaher-Ostrom paper [12}, Theorem 6.1, it turned out
that d divides u - 1. A subgroup of a Frobenius complement whose order is
the produce of two distinct primes must be cyclic. SL(2,u) has a subgroup
of over u(u - 1) which is not fixed point free for u > 5. Putting this

together with (3.6), it appears that an important subcase for the possible
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action of SL(2,u) is the one where the orders of the non-fixed point free
elements divide u - 1. In the context of (3.8), especially if d is prime,
we again arrive at a situation where d divides u - 1.

(3.9) LEMMA. If u 1is not a power of p, if p and d are both odd,
and if d divides u -1 then d = %(u - 1) or d = %(u - 1).

PROOF. By Harris and Hering [6] u < 2(2d) + 1. (The vector space has
dimension 2d.) Thus d > %(u - 1) and d # u - 1 if u and d are both odd.

(3.10) LEMMA. If d = %(u - 1) then G, = SL(2,u) is absolutely

0
irreducible; if d = %(u - 1) then either GO is absolutely irreducible or has
an absolutely irreducible representation of dimension d over some extension
of GF(q).

PROOF. By Harris and Hering, the dimension of any representation
(irreducible or not) is at least %(u - 1).

(3.11) THEOREM. Let I be a translation plane of order qd and kernel
GF(q). Suppose that the linear translation complement of G of I has a
normal non-solvable sugbroup Gy isomorphic to SL(2,u) and that

(a) q and d are odd.

(b) d divides u - 1.

(c) For each component 2, G(2) is irreducible.

(d) G, contains no affine homologies or elations.

(e) G0 N G(&) has no normal subgroup isomorphic to SL(2,3).

(F) (I6gls p) = 1.

Then either u + 1 is a power of 2 and d = %(u - 1) or %(u + 1) is an odd
prime and d = %(u - 1).

PROOF. If (|Gyl» p) = 1 and if G, is absolutely irreducible, it has

a complex representation of dimension 2d = (u - 1) and the representation

we are using can be obtained from the complex representation. (See Dixon [2].)
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In the other case, G0 is reducible over a field extension but GO can be
obtained from a complex representation of dimension u - 1.

Suppose that u + 1 has an odd prime factor r. Let A be an element of
order r in GO. Under the hypotheses, it follows from (3.7) that A is fixed
point free.

Let 0 be a complex rth root of 1. Then the character of A has the

r-1

form 2 + ale toeee+ ar—le where a; is the multiplicity of the eigenvalue

@1, so that a . are non-negative integers. If e is the dimension of

0’ al, ..

the complex representation, a, + 3y +oeee + a._1 < e First, suppose e = u 5 1.

From character table (see Dornhoff [3]) the character of A is equal to -1.

r-1 _ r-1 2 1

But 1 + 0 e+ 0 0. Thus ag+a@+eeeta 10" =0+ 0% +eeet 0" 50

1.,

ag + (a1 - 1)0 +eee+ (ar_l)e But A is fixed point free and thus has

no eigenvalues = 1. Hence a, = 0 in this case. But Q,---, Or-l are linearly
independent over the integers since the polynomial 1 + x +ese + xr'1 is
irreducible over the integers. Hence ay T Ay, T e =a g0 1 and
= se=u-1 ~utl
2 + oeeet a1 =r- l=e= > and r 5 -

Now suppose e = u - 1. Then the character of A has the form -(0' +07M).

r-1 _ i -i : - : .
Hence ag + O oot a._10 = -0 . Again a, 0 since A is f.p.f.

If we take the subscripts al, a2, etc., mod r, we may write

i i r-1
310 +eeet (a; +1)0 +eeet (2, +1)0° +a, 40 0

if i = 0. This has no solutions for non-negative a;-

Suppose i = 0, so

r-1 _ _ 2 . ... r-1
3,0 +eeeta 10 =-2=2(0+0" +eec+0 )

(a1 - 2)0 +eee+ (ar_l‘z)e"'l =0 implies

a =32=...=ar-1=2
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o)
ag et a._q = 2(r -1) =u-1
then

r-1=4 54} , r=4 ; 1 as before.

Recall that, by (3.9) d = %(u - 1) or %(u - 1). If r exists, so that
%(u + 1) is odd, then u - 1 = 0 mod 4 so that if d is odd, d cannot be equal
to %(u - 1). Thus if %(u + 1) is prime, d = 4(u - 1).

If r does not exist, so that u + 1 is a power of 2, then 4%(u - 1) is
not integer so that d = %(u - 1) in this case.

We can use (3.11) to make a slight improvement in Theorem 6.1 of [12].
In the following corollary, u is a prime p-primitive divisor of qd - 1 where

p is prime and q = pk

. G has the usual meaning of this paper and G0 is a
minimal non-solvable normal subgroup of G. Here and earlier in this paper
when reference is made to the group induced on % by G(2), it should be under-
stood that the subgroup fixing £ pointwise has been factored out. We
continue to assum q and d are both odd.

(3.12) COROLLARY. Suppose that, for each component %, the order of the
group induced on 2 by G(2) is divisible by u and that G0 exists and is

non-trivial. Suppose that I is non-Desarguesian. Then at least one of the

following holds.

(@) u=13,d=3,q=3, GO = SL(2,13)

(b) u=2d+1,q=p, u+1isa power of 2 and Gy = SL(2,u).
(c) u=2d+1, q=p, pdivides d and Gy = SL(2,u).

(d) u=7,d=3,q=pand G = Ay

PROOF. In Theorem (6.1) of [12], it is shown that, under the present

hypotheses we have case (a) or (d) or G, = SL(2,u) q = p, u =2d + 1.
0
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Condition (d) of (3.11) is also satisfied if G, = SL(2,u). (It is not clear

0
from the statement of Theorem (6.1) but the possibility that Gy might contain
affine elations is disposed of by Lemma (6.3) of [12].)

In Theorem (6.1) of [12], G is assumed to be generated by its Sylow
u-groups and the conclusion is that G = GO' Thus G0 N G(&) is faithful

d_q.

for each 2 and its order is divisible by the p-primitive divisor u of q
This implies that G(%) c:rL(l,qd) and that condition (e) of (3.11) is met.
If (|GO|, p) =1and u =2d + 1, we get case (b) of the conclusion of
our corollary from (3.11).
If p divides |GO| Lemma (3.6) tells us that, under present circumstance
p must divide u - 1. But u -1 =2d and p is odd so p must divide d.
REMARK. The factor group G/GO('(GO) is isomorphic to a group of outer
automorphisms of Gy. If G » Gy = SL(2,u) where u is a prime, the outer
automorphism group is trivial, so that G is isomorphic to Go(v(Go). If
Gy is irreducible, then ¢ (GO) must be fixed point free.
REMARK. Later work of Kallaher and the author has shown that case (d)

of (3.12) does not happen.
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