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ABSTRACT. Let X be a metric space and let CB(X) denote the closed bounded subsets of X with the

Hausdorff metric. Given a complete subspace Y of CB(X), two fixed point theorems, analogues of re-

sults in 1], are proved, and examples are given to suggest their applicability in practice.
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Let X be a metric space with metric d and let Y be a complete subspace of the space CB(X) of all

closed and bounded subsets of X, with the Hausdorff metric p:

p(A, B) max {supd(x,a),supd(x, B)}. (1)
xeB xeA

In Hicks 1], fixed point theorems for set-valued maps T X ---) CB(X) were proved; and illustrated with

examples. We show that similar results for maps T Y X can be obtained, using essentially the same

techniques as in Hicks ].
THEOREM 1. Let T Y --) X he continuous. Then there is an A Y such that T(A) A iff there

exists a sequence {an}’=o in Y with T(A.) A,,+I (or T(A,,+I A,,) and

Ep(A,,,An+,) < o,,. (2)
n=O

In this case, A A as n --)oo. (In fact, we may let A,,+, A u {T(ACa)}, for each n, for the case

T(An) An+t.)
PROOF. It" T(A) A, then we are done. Conversely, if the given conditions are met, then {a,,}=o

is Cauchy, so let A Y be its limit. Thus T(A,,) ---) T(A). If y A, then

SO

d(y, T(A)) < d(y, T(A,, ))+ d(T(A ), T(A)),

d(A, T(A)) < d(A, T(A. )) + d(T(A ), T(A)).

(3)

(4)
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Since d(,T(A,),T(A)) --){1 and we have d(A, T(A, < p(A,A,+,) {1, it follows that T(A) A.

EXAMPLES
(1) Let X I, with the usual metric. Define T" CB(I) ---) R by

T(A) ctsup(A) + (1 or) inf(A), (5)

where cx [11,1]. Then T is continuous. If A CB(R), then

T(A {T(A)}) T(A) A {T(A)}. (6)

(2) Let X I as in 1, and let r- [{I, oo) -- [(I, oo) be such that r a, where a is the identity on

IR. Define T" CB(N) -- by

T(A) eu-(lsup(A)l) + (1 a),’(linf(A)l), (7)

where a e ({).1). Assuming ," is continuous, so is T. Let Ao CB(I), and for n e IN, let

An+l A, kg[inf{T(A,)},sup{T(At)}].Lk<-n" k<n"

Theorem yields A C3(1) with T(A) A it"

(8)

E k<n{ )}A,max d inf T A d,suPtT(Ak)j,A
n=l kk<n

(9)

DEFINITION. Let (X,d) be a metric space and let Ybe a subspace of (CB(X),p). Let T" Y --> X.

Then T is nice if for each A Y and each x A with d(x,T(A)) d(A,T(A)), there exists a set B Y

with T(B) x.

EXAMPLES

(3) Let X [2, T. CB([2)__> [ defined by

T(A) (inf(proj,(A)),sup(proj,(A))). (10)

Let a > b and A [{ }, al x [0, b] Then T(A)= ({},a), and ({},b) is the only point of A whose

distance from ({),a) equals d(A,T(A)). Let B [0,b] Then T(B) (O,b).
(4) Let X I2, and for A e CB(N2), let T(A) be the center of the circle which circumscribes A.

di ta))Let r d(A,T(A)), and let x A with d(x,T(A)) r. Let B A t. x. a, Then

T(B) x.

THEOREM 2. Let (X,d) be a metric space and let Y be a complete subspace of (CB(X),p), each

member of which is compact. Let T Y ---) X be continuous. Assume that K [0,,,,,) [0,,,,,) is non-

decreasing, K(0) 0, and

p(A, B)<_ K(d(T(A),T(B))) (11)

for A, B e Y. If Tis nice, then there is A e Y such that T(A) e A iff there exists Ao e Y for which
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EK"(d(&, TfA,,))) <

In this case. we can choose {A,,},=, such that T(A,,+,). A, and A -+ A.

PROOF. If T(A)A, then we are done. If AoY satisfies (*), let xlAo with

d(x,.r(Ao)) d(A,,.r(A,,)). Si,,ce ris nice. let At e Y with r(A,)= x,.
Next, let x A with d(x2,T(Al) d(AI,T(A,)), and then let A r with T{A=)= x:. Then

so that

d(r(A, ), r(A= )) d(r(A, ).x=

d(T(A ). A d(x A

<- p(Ao,A,)-< K(d(r<A,,>,r<A,))),
(12)

Thus, since

it follows from (*) that

so that

K(d(T(An),T(A,,+,)) < K2(d(T(An_t),T(An)))
K(K(d(T(A,,_,),T(A,,))))

< K(K2(d(T(A,,_2),T(An_,))))
K3(d(T(A,,_=),T(A,,_,)))

p(A,,. A,,+, < K(d(T(A,, ), T(An+ ))),

]P(A,,,A,,+I) < ,
n=O

and then by Theorem 1, A,, -+ A and T(A) E A. I

(15)

(16)

(17)

K(d(T(A,),T(A))) <_ n=(d(T{A,,),T{A,)))

K=(d(T(&,),&,)).

Now. suppose we have x, A,,_ and A Y with d(x..r(A._,))= d(A._,.r(A._,)) ,
T(An) x Let xn+ A with d(xn+l,T(An) d(a.,r(A.)) and let An+ r with T(An+I)= Xn+ 1.

Then

d(r(a,,), T(A,,+I)) d(r(a,,),xn+2)
d(r(a,,).A.)

r{A.))).
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Note that the conditions oi" theorem 2 force T to be a bijection, l,a both of these theorems, we have

used completeness of the given subspace Y of CB(X) instead of completeness of X. In fact, in theorem 2,

since T is a bijection, we may trade completeness of Y back for completeness of X and use the second

theorem of Hicks ].
THEOREM 3. If (X,d) is a complete metric space and Y is any subspace of (CB(X),p), each

member of which is compact, the,a for any homeomorphism T Y ---> X such that

p(a, B)< K(d(T(A), T( B))), (18)

where K [(Loo) --> [0,0,,) is nondecreasing, with K(0) 0, there is A Y such that T(A) A iff there

exists Ao Y for which (*) holds.

PROOF. If Ao Y satisfies (*), let xo T(Ao). Apply theorem 2 of Hicks [1] to T-l X --4 Y to

obtain a p X such that p T-t(p). Let A T-I(p). Then T(A) p is in A, so we are done. I

[1]
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