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ABSTRACT. In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and
prove common fixed point theorems for sequences of fuzzy mappings satisfying certain conditions on
a Banach space. Thus we obtain fixed point theorems for nonexpansive type multi-valued mappings.
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1. INTRODUCTION
Fixed point theorems for fuzzy mappings were obtained by Chang, Heilpern and others 1-5, 7,

9-13, 16]. Especially, Lee and Cho 10] showed that a sequence of fuzzy mappings with the condition

(*) satisfies the condition (**), that a sequence with the condition (**) has a common fixed point and

consequently that a sequence of fuzzy mappings with the condition (*) has a common fixed point. These

results are fuzzy analogues ofcommon fixed theorems for sequences ofg-contractive and g-contractive

type multi-valued mappings [8]. In 11 and 13] Lee et al. also obtained a common fixed point theorem

for sequences of fuzzy mappings which generalize the results in and 10] respectively.

In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and show that a

sequence offuzzy mappings with the condition (****), which are defined on a nonempty weakly compact

star-shaped subset of a Banach space X satisfying Opial’s condition, has a common fixed point. As
corollaries, firstly we show that similar results are obtained for the conditions *), **) or ***). Secondly
we obtain fixed point theorems for nonexpansive type fuzzy [respectively, compact-valued] mappings
F [resp., f] from K(c X) to W(K) [resp., 2K]. Thirdly we show that similar results are obtained for

nonexpansive fuzzy [resp., compact-valued] mappings.

2. PRELIMINARIES
We review briefly some definitions and terminologies needed.

A fuzzy set A in a metric space X is a function with domain X and values in [0,1 ]. (In particular,
if A is an ordinary (crisp) subset of X, its characteristic function Za is a fuzzy set with domain X and

values {0,1 }). Especially {x} is a fuzzy set with a membership function equal to a characteristic

function of the set {x}. The c-level set of A, denoted by A, is defined by

A,={x’A(x)>o} if e (0,1],

A0= {x "A(x) > 0}

where B denotes the closure of the (nonfuzzy) set B.
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W(X) denotes the collection of all fuzzy sets A in X such that (i) A, is compact in X for each o e

[0,1 and (ii) A is a nonempty subset ofX. For A, B e W(X), A c B means A (x) < B (x) for each x e X.
Let A and B be two nonempty bounded subsets of a Banach space X. The Hausdorff distance

between A and B is

dn(A, B) max sup inf a bl] sup ]nfAll a bl]
LaeA bB beB

DEFINITION 2.1. Let A,B W(X) and ot [0,1]. Then we define

D (A B sup dn(Aa B,)

We note that D is a metric on W(X) such that m({x},{y})=llx-Yll, where x,y
_
X.

DEFINITION 2.2. Let X be an arbitrary set and Ybe any metric space. F is called a fuzzy mapping
iff F is a mapping from the set X into W(Y).

A fuzzy mapping F is a fuzzy subset on X x Y with a membership function F(x) (y). The function

value F(x) (y) is the grade of membership of y in F(x). In case X Y, F(x) is a function from X into

[0,1]. Especially for a multi-valued mappingf:X 2x, )(;-x)is a function fromX to {0,1 }. Hence a

fuzzy mapping F X .- W(X) is another extension of a multi-valued mapping f: X 2x.
DEFINITION 2.3. Let g be a mapping from a Banach space (X, to itself. A fuzzy mapping

F :X W(X) is g-contractive [respectively, g-nonexpansive] ifD(F(x),F(y)) < k I[g(x)-g(y)ll for
all x, y X, for some fixed k, 0 < k < [resp., k ].

PROPOSITION 2.4 [9]. Let (X, 11) be a Banach space, F :X .-- W(X) a fuzzy mapping and

x e X, then there exists ux X such that {u} c F(x).

DEFINITION 2.5. Let g be a mapping from a Banach space (X, to itself. We call a fuzzy

mapping F:X W(X) g-contractive type [respectively, g-nonexpansive type] if for all

x e X,{ux} cF(x) there exists {vv} cF(y) for all y X such that D({ux},{v,,})<k [[g(x)-g(y)[[

for some fixed k, 0 < k < [resp., k ].
REMARK. When g is an identity, a g-contractive [respectively, g-contractive type,

g-nonexpansive, g-nonexpansive type] fuzzy mapping Fis said to be contractive [resp., contractive-type,

nonexpansive, nonexpansive type].

LEMMA 2.6. Let A,B e W(X). Then for each {x} cA, there exists {y} B such that

D({x},{y}) < O(A,B).

PROOF. If {x } c A, then x e A. By compactness of B, we can choose a y e B, i.e., {y } c B,

such that [[x-yl[ <dn(A,B). By the facts D({x},{y})=llx-yl[ and dn(A,B)<D(A,B), we have

O({x},{y}) < O(A,B).

PROPOSITION 2.7. Let g be a mapping from a Banach space (X, to itself. IfF X W(X)

is a g-nonexpansive [respectively, g-contractive] fuzzy mapping, then F is g-nonexpansive type [resp.,

g-contractive type].
PROOF. It can be easily proved by Lemma 2.6.

3. COMMON FIXED POINTS FOR FUZZY MAPPINGS

For a mapping g of a Banach space X into itself and a sequence (F,)*__ of fuzzy mappings ofX into

W(X) we consider the following conditions (*), (**), (***) and (****).

(*) there exists a constant K with 0_<k < such that for each pair of fuzzy mappings

F,,Fj :X W(X),D(F,(x),Fj(y)) <k IIg(x)-g(Y)ll for all x,y e X.
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(**) there exists a constant k with 0<k <1 such that for each pair of fuzzy mappings

F,,F: :X ---> W(X) and for any x X,{u} F,(x) implies that there is {v,} cFj(y) for all y X with

D({u},{v,}) < k IIg(x)-g(y)ll.

(***) for each pair of fuzzy mappings F,,F: :X --> W(X), D(F,(x),Fj(y)) <llg(x)-g(y)ll for all

x,yX.

(****) for each pair of fuzzy mappings F,,F X ---> W(X), and for any x X, {u} c F,(x) implies

that there is {v,} cF(y) for all y X with O({u},{v,})< [[g(x)-g(y)ll.

It is easily proved that the condition (*) [respectively, (***)] implies the condition (**) [resp.,
(****)] by Lemma 2.6, but the following example shows that the converses do not hold in general.

EXAMPLE 3.1. Let g be an identity mapping from a Euclidean metric space ([0, "), "1 to itself.

Let (F,)= be a sequence of fuzzy mappings from [0, oo) into W([0,)), where F,(x) [0,,,,,) --> [0,1] is

defined as follows;

1, z=O,
if x=O, F,(x)(z)=

0 z:O,

O<z <x/2,
otherwise, F,(x)(z)= 1/2, x/2 <z <- ix,

[0, z >ix

Then the sequence (F,)*__ satisfies the condition (****), but does not satisfy the condition (***).

In this section we show that a sequence of fuzzy mappings with the condition (****), which are

defined on a nonempty weakly compact star-shaped subset Kof a Banach spaceX which satisfies Opial’s
condition, has a common fixed point using a common fixed point theorem due to Lee and Cho 10], and

consequently a sequence of fuzzy mappings with the condition (*), (**) or (***) has a common fixed

point. As corollaries we obtain fixed point theorems for nonexpansive type fuzzy [respectively,

compact-valued] mappings F [resp., f] from a nonempty weakly compact and star-shaped subset K of

a Banach space X which satisfies Opial’s condition to W(X) [resp., 2x].
The results for the nonexpansive compact-Valued mappings are the case of replacing convexity

with star-shapedness in Theorem 3.5 due to Husain and Latif [8].

FollowingNguyen 14] we define: LetX, YandZbe any nonempty sets, andA if(X) and B .q(Y)

where .q(X) is the collection of all fuzzy sets in X. Iff: X ---) Y, then the fuzzy set f(A) is

defined via the extension principle by f(A) J(Y) and f(A) (y) sup A (x).
/-I(y)

Iff:X Y --> Z, then the fuzzy setf(A,B) is defined via the extension principle byf(A,B) .Z)

and f(A,B)(z)= sup [min{A(x),B(y)}].
(x, v) f-I(z)

PROPOSITION (NGUYEN). Letf: X Y ---> Z and A .q(X) and B .9(Y). Then a necessary

and sufficient condition for the equality [f(A,B)],=f(A,B) for all ct [0,1] is that for all

z Z, sup [min{A (x), B(y)}] is attained.
(x, v) f-(z)

A subset K of a Banach space X is said to be star-shaped if there exists a point v K such that

tv + (1 t)x K for all x K and 0 < < 1. The point v is called the star center of K.
THEOREM3.2 10]. Let g be a nonexpansive mapping from a complete metric linear space (X,d)

to itself. If (F,)*__ is a sequence of fuzzy mappings of X into W(X) satisfying the condition (**), then
there exists a point x X such that {x } c7’_- F,(x).



816 B. S. LEE, D. S. KIM, G. M. LEE AND S. J. CHO

PROPOSITION 3.3. Let K be a nonempty bounded star-shaped subset of a Banach space X and
g a nonexpansive mapping from X into itself. If (F,)= is a sequence of fuzzy mappings of K into W(X)
satisfying the condition (****), then there exist a sequence (x,,),__ in K and a sequence (u,,),__ in X
satisfying {u,,} c F,(x,,) for all e N such that Ilx,,- u,,ll

PROOF. Let x0 be the star-center of K. Choose a real sequence (k,,),__, such that 0 < k,, < and

k,,-- 0 as n --)oo. Then for each x e K, k.x + (1-k,,)x K. Define a fuzzy mapping F[’ of K
into W(X) by setting F;’ (x) k,, {x0} + k,,)F, (x) for all N. then by Proposition 3.3 in 14] it follows

that [F’(x)], k,.o + (1 k,,) [F,(x)], for all N and each o: [0,1 ]. Now we show that for each n N,
is a sequence of fuzzy mappings satisfying the condition (**). If we let {u,} c F’(x) for each(F,),__,

x K, we get ux k,xo + (1 -k,,)vx for some v K such that {v} F,(x). Since (F,)7=, satisfies the
condition (* * * *), there exists a { v, } c Fj(y) for all y K such that vx v, < g (x) g (y)l] < x y II.
Put u, =k,,xo+(1-k,,)v, clearly by definition of Fj(y) we get {u,.} cFj’(y) and
u-y,l[ =ll(1-k.)(v,,-v,,)ll _< (1-k,,)llg(x)-g(y)ll -< (1-k.)llx Yll which proves that (FI"),__,’ isa

sequence of fuzzy mappings satisfying the condition (**). The common fixed point theorem for a
sequence of fuzzy mappings due to Lee and Cho 10] i.e., Theorem 3.2 guarantees that for each fixed
n N, (FI"),__,** has a common fixed point in K, say {x,,} F,"(x,,) W(K) for all N. From the
definition of F’,’(x,,) there exists a {u,,} c F,(x,,) such that x,, k,,x0+ (1 -k,,)u,, for all N and each
fixed n N. Thus x. u.II kxo(1 k)u,, u,,ll k.II x0- u.ll. By the definition of W(K),
{u,,} F,(x,,)e W(K) implies u,, K. Thus {llu.-x011 } is bounded. So by the fact that k,, -0 as
n -- , we have x. -u.II 0 as n --We use the following notion due to Opial 5]. A Banach spaceX is said to satisfy Opial’ s condition

5] if for each x X and each sequence (x,,)’__, weakly convergent to x,

lim lim
x. y > x,, x

n --- n -for all y :: x.
PROPOSITION 3.4. Let K be a nonempty subset of a Banach space X which satisfies Opial’s

condition and F a g-nonexpansive type fuzzy mapping of K into W(K). Let (x,,)__, be a sequence in K
which converges weakly to an element x K. If (y,,)’=, is a sequence in X such that {x. y.} F(x.)
and converges to y X, then {x-y} F(x).

PROOF. Since F is a g-nonexpansive type fuzzy mapping, there exists a {v,,} c: F(x) such that

IIx,, -y,, v,,ll < g(x,,) g(x) <_ IIx,,-xll. It follows that "----m X,, y,, --V.II < "-’-r--" X,, --xlI. Since every

weakly convergent sequence is necessarily bounded, limits in the proceeding expression are finite. Since

(v.)’__ is a sequence in a compact subset [F(x)], of X for each ct [0,1], there is a subsequence of

(v.)’=, also denoted by (v.)’.,, converging to v [F(x)], for each e [0,1]. Hence {v} c:F(x),
therefore

lim
(!1 x. (y + v)ll -II (Y,, + v,,) (y + v)ll

lim lim
x,, (y + v)ll + (-II Y,, + v,, y v

noo

lim

Thus we have shown that ’’-2-m x,, xll -> ’T-- x,, (y + v)ll.
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Since (x,)’= converges to x weakly, Opial’ condition implies thatx y + v, sox y v [F(x)],

for each o [0,1 ]. Hence {x y } c F(x) and the proposition is proved.
REMARK. From the above proof it follows that the weak limit of fixed points of a

nonexpansive-type fuzzy mapping F defined on a nonempty subset K of a Banach space X satisfying

Opial’s condition, in particular for a Hilbert space is also a fixed point of F.

THEOREM 3.5. Let K be a nonempty weakly compact star-shaped subset of a Banach space X

which satisfies Opial’s condition. If (F,)7__t is a sequence of fuzzy mappings of K into W(K) satisfying

the condition (****), then (F,)’__ has a common fixed point.

PROOF. Since K is weakly compact, it is a bounded subset of X. By the Proposition 3.3 there

exist a sequence (x,,)*= in K and a sequence (u,)’= in X satisfying {u,} c F,(x,) for all N such that

x, u, ----> 0 as n ---> *,,. Put y, x, u,. K being weakly compact, we can find a weakly convergent

subsequence (x,,,), _-, of (x,),= t. Let xo be the weak limit of the sequence (x,.). v Clearly Xo K and

we have y,,, x,,, u,,, {u,,} c F,(x,,) for all N. Then it follows that y,,, ---> 0 and by Proposition 3.4

there exists a fixed point xo X such that {x0} F,(xo) for all N.
THEOREM 3.ti. Let K be a nonempty weakly compact star-shaped subset of a Banach space X

which satisfies Opial’s condition. If (F,)7__ is a sequence of fuzzy mappings ofK into W(K) satisfying

the condition (*), (**) or (***). then (F,)*= has a common fixed point.

PROOF. It is proved by the fact that the condition (***) [respectively, (*)] implies the condition

(****) [resp., (**)].

If we put F, F for all N in Proposition 3.3, then the sequence of fuzzy mappings (F,)’= (F)

in the condition (****) is a sequence of g-nonexpansive type fuzzy mappings. Thus we obtain the

following corollary for g-nonexpansive type fuzzy mappings.
COROLLARY 3.7. Let K be a nonempty weakly compact star-shaped subset of a Banach space

X which satisfies Opial’s condition. Then each g-nonexpansive type fuzzy mapping F K --> W(K) has
a fixed point.

COROLLARY 3.8. Let K be a nonempty weakly compact star-shaped subset of a Banach space
Xwhich satisfies Opial’ condition. Then each nonexpansive type, compact-valued mappingf: K 2x

has a fixed point.

PROOF. Define F K .--) W(K) by F(x) %-tx) then F is a nonexpansive-type fuzzy mapping. By
Corollary 3.7 there exists a point x e X such that {x} cF(x)=%itx)i.e.,x

_
f(x).

Corollary 3.8 is a generalization of the following theorem due to Husain and Latif [8].
THEOREM 3.9. Let Kbe a nonempty weakly compact convex subset of a Banach space X which

satisfies Opial’s condition. Then each nonexpansive type, compact-valued mapping f: K 2x has a

fixed point.
COROLLARY 3.10. Let Kbe a nonempty weakly compact star-shaped subset of a Banach space

X which satisfies Opial’s condition. Then each nonexpansive fuzzy mapping F K W(K) has a fixed

point.

COROLLARY 3.11. Let Kbe a nonempty weakly compact star-shaped subset of a Banach space
X having a weakly continuous duality mapping. Then each nonexpansive-type fuzzy
mapping F :K -- W(K) has a fixed point.

PROOF. If a Banach spaceX admits a weakly continuous duality mapping, then it satisfies Opial’s
condition [6].
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