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ABSTRACT. In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and
prove common fixed point theorems for sequences of fuzzy mappings satisfying certain conditions on
a Banach space. Thus we obtain fixed point theorems for nonexpansive type multi-valued mappings.
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1. INTRODUCTION

Fixed point theorems for fuzzy mappings were obtained by Chang, Heilpern and others [1-5, 7,
9-13, 16]. Especially, Lee and Cho [10] showed that a sequence of fuzzy mappings with the condition
(*) satisfies the condition (**), that a sequence with the condition (**) has a common fixed point and
consequently that a sequence of fuzzy mappings with the condition (*) has acommon fixed point. These
results are fuzzy analogues of common fixed theorems for sequences of g-contractive and g-contractive
type multi-valued mappings [8]. In[11] and [13] Lee et al. also obtained a common fixed point theorem
for sequences of fuzzy mappings which generalize the results in [1] and [10] respectively.

In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and show that a
sequence of fuzzy mappings with the condition (****), which are defined on a nonempty weakly compact
star-shaped subset of a Banach space X satisfying Opial’s condition, has a common fixed point. As
corollaries, firstly we show that similar results are obtained for the conditions (¥), (**) or (***). Secondly
we obtain fixed point theorems for nonexpansive type fuzzy [respectively, compact-valued] mappings
F [resp., f] from K(c X) to W(K) [resp., 2]. Thirdly we show that similar results are obtained for
nonexpansive fuzzy [resp., compact-valued] mappings.

2. PRELIMINARIES

We review briefly some definitions and terminologies needed.

A fuzzy set A in a metric space X is a function with domain X and values in [0,1]. (In particular,
if A is an ordinary (crisp) subset of X, its characteristic function %, is a fuzzy set with domain X and
values {0,1}). Especially {x} is a fuzzy set with a membership function equal to a characteristic
function of the set {x}. The a-level set of A, denoted by A, is defined by

A,={x:Ax)2a} if ae(0,1],

Ay={x:A(x)>0}

where B denotes the closure of the (nonfuzzy) set B.
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W(X) denotes the collection of all fuzzy sets A in X such that (i) A, is compact in X for each o €
[0,1] and (i) A, is a nonempty subset of X. ForA, B € W(X),A c B means A (x) < B(x) foreach x € X.
Let A and B be two nonempty bounded subsets of a Banach space X. The Hausdorff distance
between A and B is
dH(A,B)=mux[sup inflla=>b| ,sup infla —bll] .
a€eA heB beB ueA

DEFINITION 2.1. LetA,B € W(X)and oe [0,1]. Then we define
D(A,B) = supd,(A,,B,) .

We note that D is a metric on W(X) such that D({x},{y})=llx - y|, where x, y € X.

DEFINITION 2.2. Let X be an arbitrary set and ¥ be any metric space. F is called a fuzzy mapping
iff F is a mapping from the set X into W(Y).

A fuzzy mapping F is a fuzzy subset on X x ¥ with a membership function F(x) (y). The function
value F(x)(y) is the grade of membership of y in F(x). In case X =Y, F(x) is a function from X into
[0,1]. Especially for a multi-valued mapping f: X — 2%, X sy 1s a function from X to {0,1}. Hence a
fuzzy mapping F : X — W(X) is another extension of a multi-valued mapping f: X — 2*.

DEFINITION 2.3. Let g be a mapping from a Banach space (X, || +||) to itself. A fuzzy mapping
F:X — W(X) is g-contractive [respectively, g-nonexpansive] if D(F(x),F(y)) <k * [l g(x)-g(y)| for
all x,y € X, for some fixed k,0 <k < I [resp., k = 1].

PROPOSITION 2.4 [9]. Let (X,||*|l) be a Banach space, F : X — W(X) a fuzzy mapping and
x € X, then there exists u, € X such that {u,} c F(x).

DEFINITION 2.5. Let g be a mapping from a Banach space (X, || +||) to itself. We call a fuzzy
mapping F:X — W(X) g-contractive type [respectively, g-nonexpansive type] if for all
x € X,{u,} c F(x) there exists {v,} c F(y) for all y € X such that D({w,},{v,}) <k llgx)-gW)I
for some fixed k, 0 <k <1 [resp., k = 1].

REMARK. When g is an identity, a g-contractive [respectively, g-contractive type,
g-nonexpansive, g-nonexpansive type] fuzzy mapping F is said to be contractive [resp., contractive-type,
nonexpansive, nonexpansive type].

LEMMA 2.6. Let A,Be W(X). Then for each {x} c A, there exists {y} c B such that
D({x}.{yh<D(A,B).

PROOF. If {x} c A, thenx € A,. By compactness of B;, we canchoose ay € B}, i.e.,{y} B,
such that | x — y|| <d,(A,,B,). By the facts D({x},{y})=llx -yl and d,(A,,B,) < D(A,B), we have
D({x},{yH<D(A,B).

PROPOSITION 2.7. Let g be amapping from a Banach space (X, || *|}) toitself. If F : X — W(X)
is a g-nonexpansive [respectively, g-contractive] fuzzy mapping, then F is g-nonexpansive type [resp.,
g-contractive type].

PROOF. It can be easily proved by Lemma 2.6.

3. COMMON FIXED POINTS FOR FUZZY MAPPINGS

For a mapping g of a Banach space X into itself and a sequence (F,);"_, of fuzzy mappings of X into
W(X) we consider the following conditions (*), (**), (***) and (****).

(*) there exists a constant K with 0<k <1 such that for each pair of fuzzy mappings
F,F:X = WX), D(F,(x),F,(y)<k-lgx)—gy)l forallx,y e X.
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(**) there exists a constant k with 0<k <1 such that for each pair of fuzzy mappings
F,F,: X —» W(X) and for any x € X, {u,} C F,(x) implies that there is {v,} c F,(y) for all y € X with
D({u b {v. <k gtx)~gOl.

(***) for each pair of fuzzy mappings F,,F,: X = W(X), D(F,(x),F,(y)) £llg (x)—g(y)]l forall
x,ye€ X.

(****) for each pair of fuzzy mappings F,, F,: X — W(X), and forany x € X, {u.}  F,(x) implies
that there is {v,} c F,(y) forall y € X with D({u,},{v.})<llg(x)-gl.

It is easily proved that the condition (*) [respectively, (***)] implies the condition (**) [resp.,
(***%)] by Lemma 2.6, but the following example shows that the converses do not hold in general.
EXAMPLE 3.1. Let g be an identity mapping from a Euclidean metric space ([0, ),| *|) to itself.
Let (F,)"_, be a sequence of fuzzy mappings from [0, ) into W([0, =<)), where F,(x) : [0,0) — [0,1] is
defined as follows;
1, z=0,

if x=0, F,(,\r)(z)={0 2 %0

l, 0<z<x/2,
otherwise, F,(x)(z)={1/2, xR<z<ix,
0, z>ix.
Then the sequence (F,);"_, satisfies the condition (****), but does not satisfy the condition (***).

In this section we show that a sequence of fuzzy mappings with the condition (****), which are
defined on a nonempty weakly compact star-shaped subset K of a Banach space X which satisfies Opial’s
condition, has a common fixed point using a common fixed point theorem due to Lee and Cho [10], and
consequently a sequence of fuzzy mappings with the condition (*), (**) or (***) has a common fixed
point. As corollaries we obtain fixed point theorems for nonexpansive type fuzzy [respectively,
compact-valued] mappings F [resp., f] from a nonempty weakly compact and star-shaped subset K of
a Banach space X which satisfies Opial’s condition to W(X) {resp., 2*].

The results for the nonexpansive compact-valued mappings are the case of replacing convexity
with star-shapedness in Theorem 3.5 due to Husain and Latif [8].

Following Nguyen [14] we define: LetX, Yand Zbe any nonempty sets,andA € AX)and B € KY)
where AX) is the collection of all fuzzy sets in X. If f: X — Y, then the fuzzy set f(A) is

defined via the extension principle by f(A) € KY) and f(A) (y) = sup A(x).
xe o)

If f: X XY — Z, then the fuzzy set f(A, B) is defined via the extension principle by f(A,B) € AZ)
and f(A,B)(z)= sup [min{A(x),B(y)}].

e f @
PROPOSITION (NGUYEN). Letf: X xY — Z andA € AX)and B € KY). Then a necessary
and sufficient condition for the equality [f(A,B)],=f(A4,By) for all e [0,1] is that for all

z€ Z, sup [min{A(x),B(y)}]is attained.
(x,v)ef"(z)

A subset K of a Banach space X is said to be star-shaped if there exists a point v € K such that
tv+(1-t)x e K forallx e K and 0 <t < 1. The point v is called the star center of X.
THEOREM 3.2[10]. Let g be a nonexpansive mapping from a complete metric linear space (X,d)

to itself. If (F,)"_, is a sequence of fuzzy mappings of X into W(X) satisfying the condition (**), then
there exists a point x € X such that {x} c ", F,(x).
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PROPOSITION 3.3. Let K be a nonempty bounded star-shaped subset of a Banach space X and
& a nonexpansive mapping from X into itself. If (F,)" , is a sequence of fuzzy mappings of K into W(X)
satisfying the condition (****), then there exist a sequence (x,)7_, in K and a sequence (1,)”_, in X

n=1
satisfying {u,} c F,(x,) for all i € N such that | x, ~u,|| = 0asn — oo,

oo

PROOF. Let x, be the star-center of K. Choose a real sequence (k,)"_, such that 0 < k, <1 and

n=1
k, =0 as n =0, Then for each x € K, k,x,+ (1 —k,)x € K. Define a fuzzy mapping F of K

1

into W(X) by setting F"(x) = k,{x,} + (1 —k,)F,(x) forall i € N, then by Proposition 3.3 in [14] it follows

that [F)'(x)], = k,x+ (1 —k,) [F,(x)] foralli € Nandeach € [0,1]. Now we show that foreachn € N,
(F!)., is a sequence of fuzzy mappings satisfying the condition (**). If we let {u,} < F"(x) for each
x € K, we get u, =k, x,+ (1 -k,)v, for some v, € K such that {v.}  F,(x). Since (F,)]_, satisfies the
condition (****), thereexistsa{v,} F/(y)forally € Ksuchthat]v,—v,|| <|lg(x)—gO)I <lx—-y].
Put  u, =kx,+(1-k,)v,, clearly by definition of F,(y) we get {u}cF'(y) and
=yl =01 =k) = vl (1 =k,) I g(x) =g (W <(1=k,) | x - y| which proves that (F]')"_, is a
sequence of fuzzy mappings satisfying the condition (**). The common fixed point theorem for a
sequence of fuzzy mappings due to Lee and Cho [10] i.e., Theorem 3.2 guarantees that for each fixed
ne N, (F')"_, has a common fixed point in K, say {x,} c F'(x,) € W(K) for all i € N. From the
definition of F'(x,) there exists a {u,} < F,(x,) such that x, = k,x,+ (1 —k,)u, for all i € N and each
fixed n € N. Thus |[x, —u,ll =l kxo(1 —k)u, —u,ll =k,|xo—u,]]. By the definition of W(K),
{u,} € F.(x,) € W(K) implies u, € K. Thus {]Ju, —x,| } is bounded. So by the fact that k, — 0 as
n — oo, we have || x, —u,| > 0asn — oo,

We use the following notion due to Opial [15]. A Banach space X is said to satisfy Opial’s condition

oo
nlp=1

[15] if for each x € X and each sequence ( weakly convergent to x,

lim I I > lim
x —
noeln Y n—oo

I, —xli

forall y #x.

PROPOSITION 3.4. Let K be a nonempty subset of a Banach space X which satisfies Opial’s
condition and F a g-nonexpansive type fuzzy mapping of K into W(K). Let (x,);_, be a sequence in K
which converges weakly to an element x € K. If (y,)7_, is a sequence in X such that {x, — y,} € F(x,)
and converges to y € X, then {x -y} c F(x).

PROOF. Since F is a g-nonexpansive type fuzzy mapping, there exists a {v,} < F(x) such that

Iim

| X, = ¥n = vall S;5Z0x, — x|l Since every

hm

I x, =y, — vl <hg(x,) g <llx,—x]|. It follows that —
weakly convergent sequence is necessarily bounded, limits in the proceeding expression are finite. Since
(v,);_, is a sequence in a compact subset [F(x)], of X for each a. € [0,1], there is a subsequence of
(v);.,» also denoted by (v,)7_,, converging to v € [F(x)], for each a.€ [0,1]. Hence {v} C F(x),
therefore

lim m
-y =Vl = — Y =V,—(y+V)+(y+V
TSl vl = G Y v )+ )
;
> (fx, = (y + ) =y + V) = (0 + V)
n— oo
li lim
>y, - (y+V)l + Hy,+v, =y =vl)

n—oo n — o

lim
= —-(y+
" —lx =G+

lim hm

Thus we have shown that —— || x, —x|| 2 -—Zllx,—(y +V)I.
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Since (x,);_, converges to x weakly, Opial’s condition implies thatx = y + v,sox -y =v € [F(x)],
for each a € [0,1]. Hence {x —y} < F(x) and the proposition is proved.

REMARK. From the above proof it follows that the weak limit of fixed points of a
nonexpansive-type fuzzy mapping F defined on a nonempty subset K of a Banach space X satisfying
Opial’s condition, in particular for a Hilbert space is also a fixed point of F.

THEOREM 3.5. Let K be a nonempty weakly compact star-shaped subset of a Banach space X
which satisfies Opial’s condition. If (F,)”_, is a sequence of fuzzy mappings of K into W(K) satisfying
the condition (****), then (F,)"_, has a common fixed point.

PROOF. Since K is weakly compact, it is a bounded subset of X. By the Proposition 3.3 there
exist a sequence (x,);_, in K and a sequence (,);_, in X satisfying {u,} < F,(x,) for all i € N such that
Il x,—u,l > 0asn — oo Puty, =x,—u, Kbeingweakly compact, we can find a weakly convergent
subsequence (x,,), _, of (x,);_,. Let x, be the weak limit of the sequence (x,,)’ _,. Clearly x,€ K and
we have y,, =x,, —u,,,{u,} c F,(x,) for all i € N. Then it follows that y,, — 0 and by Proposition 3.4
there exists a fixed point x, € X such that {x} < F,(x,) forall i € N.

THEOREM 3.6. Let X be a nonempty weakly compact star-shaped subset of a Banach space X
which satisfies Opial’s condition. If (F,)]_, is a sequence of fuzzy mappings of K into W(K) satisfying
the condition (*), (**) or (***), then (F,);"_, has a common fixed point.

PROOF. It is proved by the fact that the condition (***) [respectively, (*)] implies the condition
(****) [resp., (**)].

If we put F, = F for all i € N in Proposition 3.3, then the sequence of fuzzy mappings (F,)"., = (F)
in the condition (****) is a sequence of g-nonexpansive type fuzzy mappings. Thus we obtain the
following corollary for g-nonexpansive type fuzzy mappings.

COROLLARY 3.7. Let K be a nonempty weakly compact star-shaped subset of a Banach space
X which satisfies Opial’s condition. Then each g-nonexpansive type fuzzy mapping F : K — W(K) has
a fixed point.

COROLLARY 3.8. Let K be a nonempty weakly compact star-shaped subset of a Banach space
X which satisfies Opial’s condition. Then each nonexpansive type, compact-valued mapping f : K — 2¥
has a fixed point.

PROOF. Define F : K — W(K)by F(x) = ) 4, then F is a nonexpansive-type fuzzy mapping. By
Corollary 3.7 there exists a point x € X such that {x} c F(x) =y, i.e., x € f(x).

Corollary 3.8 is a generalization of the following theorem due to Husain and Latif [8].

THEOREM 3.9. Let K be a nonempty weakly compact convex subset of a Banach space X which
satisfies Opial’s condition. Then each nonexpansive type, compact-valued mapping f: K — 2* has a
fixed point.

COROLLARY 3.10. Let X be a nonempty weakly compact star-shaped subset of a Banach space
X which satisfies Opial’s condition. Then each nonexpansive fuzzy mapping F : K — W(K) has a fixed
point.

COROLLARY 3.11. Let X be a nonempty weakly compact star-shaped subset of a Banach space
X having a weakly continuous duality mapping. Then each nonexpansive-type fuzzy
mapping F : K — W(K) has a fixed point.

PROOF. If aBanach space X admits a weakly continuous duality mapping, then it satisfies Opial’s
condition [6].
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