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Abstract

Let f : [0,1] x R? — R be a function satisfying Caratheodory's conditions and e(t) €
L'[0,1). Let n € (0,1), & € (0,1),0, 2 0,i = 1,2,-- - ,m=2, with T2 a; = 1,0< 61 < &2 <
- - - < Em-2 < 1 be given. This paper is concerned with the problem of existence of a solution
for the following boundary value problems

z"(t) = f(t,z(1),z'(t)) + e(t),0< t < 1,

#'(0) = 0, z(1) = z(n),

z"(t) = f(t,z(t),z'(t)) + e(t),0< t < 1,

2'(0) = 0, z(1) = Y12 a,2(&,).

Conditions for the existence of a solution for the above boundary value problems are given
using Leray Schauder Continuation theorem.
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1 INTRODUCTION.

Let f : [0,1] x R? — R be a function satisfying Caratheodory’s conditions, e : [0,1] — R be a
function in L'[0,1], a; > 0, & € (0,1),i = 1,2, - - -;m — 2 with Yrla=1,0<b <6<,
< &m-2 < 1 and 7 € (0,1) be given. We study the problem of existence of solutions for the following
boundary value problems

2(t) = f(t,2(2), (1)) + e(t), 0 < t < 1, a
z'(0) = 0, z(1) = z(n), )
"(t) = f(t,z(t),z'(t)) +e(t),0 <t <1, @)

#'(0) =0, z(1) = £27 aiz(&)-

lt’is well-known, (see, e.g. [1]), that if z € C*(0,1] satisfies the boundary conditions in (2), with the
a;’s as above, then there exists an 5 € [£;,€m-2), depending on z € C*[0,1], such that

z(1) = z(n). 3)

Accordingly, it seems that one can study the problem of existence of a solution for the boundary
value p.roblem (2) using the a priori estimates obtained for the three-point boundary value problem
(1), as it was done in [2], (3], [4]. But here the m-point boundary value problem (2) happens to be
at resonance in the sense that the associated linear homogeneous boundary value problem

z(t)=0,0<t<1,
#(0) =0, z(1) = £’ aiz(:),

has z(t) = A, A € R, as a non-trivial solution, since ¥™72a; = 1. The result is that e(t) € L'[0,1]
has to be such that =72 a,[f§* (1—£;)e(s)ds+ J¢.(1=s)e(s)ds] = 0, (in view of the nonlinear Fredholm
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alternative), so even though there exists an n € [£;,6m-2] such that fo'(l—r,)e(s)ds+f,,'(l—s)c(s)ds =
m2a (1 —f.)e(s)ds+f{"(l —s)e(s)ds] = 0, since =272 a, = 1, this 5 is not necessarily the same
1 as in (3). We are, accordingly, forced to study the m-point boundary value problem (2) directly
and obtain results about the three-point boundary value problem (1) as a corollary to the results
for the m-point boundary value probelm. It is.interesting to note that while in the nonresonance
case we had to study the m-point boundary value problem, using the results for the three -point
boundary value problem, it is just the reverse case in the resonance case.
We obtain conditions for the existence of a solution for the boundary value problem (2). using
Mawhin’s version of the Leray Schauder Continuation theorem [5] or [6] or [7]. Recently, Gupta.
Ntouyas and Tsamatos studied the m-point boundary value problem

r(t) = f(t,z(t),2'(t)) + e(t),0 < t < 1, (4)
£'(0) = 0, 2(1) = T7% a,z(&)),

with § € (0,1). 0 < § < & < - - - < &u-2 < 1, a, € R, all a, having the same sign, given, and

Yi%a, # 1, in [3]. The boundary value problem (2) differs from the boundary value problem (4)
in that the associated linear boundary value problem with (2), namely,

"(t)=0,0<t <1, (5)
z'(0) = 0, z(1) = E.";}z a,z(£,),

has z(t) = A, for A € R, as non-trivial solutions, since Y772 a, = 1, while the corresponding linear

boundary value problem associated with (4), namely,

.t”(t)=0,0<t <1, (6)
2'(0) = 0, z(1) = Y72 a,2(¢,),

1=1

with 2,";]2 a, # 1, has z(t) = 0, as its only solution. It is for this reason we call the boundary value
problem (2) to be at resonance. For some recent results on m-point and three-point boundary value
problems we refer the reader to [2], [3], [4], (8], [9], {10], (and [11]).

We use the classical spaces C[0,1], C*[0,1], L*[0,1], and L™[0,1] of continuous, k-times contin-
uously differentiable, measurable real-valued functions whose k-th power of the absolute value is
Lebesgue integrable on [0, 1], or measurable functions that are essentially bounded on [0, 1]. We also use
the Sobolev space W2*(0,1), k = 1,2 defined by

Wr0,1) = {z:[0,1]) - Rlx,z' abs. cont. on [0,1] with z” € L*[0,1]}

with its usual norm. We denote the norm in L*[0,1] by || . ||x, and the norm in L*[0,1] by | . Jloo-

2 EXISTENCE THEOREMS.

Let X, Y denote Banach spaces X = C'[0,1] and Y = L'[0,1] with their usual norms. Let Y; be
the subspace of Y spanned by the function 1, i.e.

2={z(t) €Y | z(t) = A, a.e. on [0,1], A € R} )
and let Y; be the subspace of Y such that Y =Y, @ Y;. Let a4, >0, £, €(0,1),i =12, - - -m—2

with ¥7%e, = 1,0< 5 << -- -, < &m-2 < 1, be given. We note that for z(t) € Y we can
write

z(t) = (z(t) - A) + A, ®)
with A = —m:—'my’ Tra /Sl - &)z(s)ds + Je(1 = s)z(s)ds], for t € [0,1]. We define the
canonical pro'jsection operators P:Y - Y;,Q:Y = Y; by

P(z(t)) = z(t) - = 2 (E232ailfg" (1 = &)z(s)ds + (1 — s)z(s)ds]],

=1 al(1-8})
QUa(t) = gmer i [ (1 = €)2(s)ds + & (1 = )z (s)ds],

a,(1-¢

9

for z(t) € Y. We note that if Q(z(t)) = 0, there exists a ¢ € (0,1) such that r(¢) = 0. Clearly,
Q = I - P, where I denotes the identity mapping on Y, and the projections P and Q are continuous.
Now let X3 = XNY,. Clearly X is a closed subspace of X. Let X; be the closed subspace of X such
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that X = X; ®X,;. We note that P(X) C X;, Q(X) C X: and the projections P | X : X — X,
and Q| X : X — X; are continuous. In the following, X, Y, P, Q will refer to the Banach spaces
and the projections as defined and we shall not distinguish between P, P | X (resp. Q, @ | X) and
depend on the context for the proper meaning.

Define a linear operator L: D(L) C X — Y by setting

m-2

D(L) = {z € W'(0,1) | £'(0) = 0, z(1) = }_ a,z(£)}, (10)

1=1

and for z € D(L),

Lz =2". (11)
Let, now, for e € Y;, i.e. e € L'[0,1] with S22 a,[f§(1 — &)e(s)ds + [ (1 — s)e(s)ds] = 0, Ke
denote the unique solution of the boundary value problem
z'(t) =e(t),0 <t < 1,
7' (0) =0, I(l) = :"=-l'2 a,z(f‘),
such that ©27% a,[f§'(1 = &)z (s)ds + f(1 — s)z(s)ds] = 0. Indeed, for t € [0,1],

(Ke)(t) = [ (= s)e(s)ds + 4, (12)

where A = _m[}::r‘z a[f$ ffa ~&)(t—s)e(s)dsdt+ [ f3(1—t)(t—s)e(s)dsdt]]. Accord-

ingly the linear mapping K : Y; — X defined by the equation (12) is a bounded linear mapping
and is such that for

z €Y, KPz € D(L), and LK P(z) = P(z).

DEFINITION 1 :- A function f : [0,1] x R* — R satisfies Caratheodory’s conditions if (i) for
each (z,y) € R?, the function t € [0,1] — f(t,z,y) € R is measurable on [0,1], (ii) for a.e. t € [0,1),
the function (z,y) € R* — f(t,z,y) € R is continuous on R?, and (iii) for each r > 0, there ezists
a,(t) € L'[0,1] such that | f(t,z,y) |< a,(t) for a.e. t € [0,1] and all (z,y) € R? with VzT+ §2 < r.

Let f: [0,1] x R* = R be a function satisfying Caratheodory’s conditions. Let N:X — Y be
the non-linear mapping defined by

(Nz)(t) = f(t,z(t),z'(t)), t € (0,1],
for z(t) € X.
For e(t) € 11, ie. e(t) € L'[0,1] with Y72 a;[f8 (1 — &,)e(s)ds + fg_(l — s)e(s)ds] = 0, the
boundary value problem (2) reduces to the functional equation
Lz = Nz +e, (13)
in X, with e(t) € Y, given.

THEOREM 2 :- Let f : [0,1] x R? — R be a function satisfying Caratheodory’s conditions.
Assume that there exist functions p(t), q(t), r(t) in L'(0,1) such that

1f(t 21, 22)] < p(t) |za] + g(2) |22] + r(2) (14)
for a.e. t € [0,1] and all (z1,22) € R?. Also let a; > 0, ¢ € (0,1), i = 1,2, - - -;m — 2 with
Yrtai=1,0<b6 <& <o <Emoa<] be given, and assume that for every z(t) € X,

(Qz)(t).(QNz)(t) 2 0, fort € [0,1). (15)

Then for e(t) € Y3, i.e. e(t) € L'[0,1) with "7 a,[JE (1 — &)e(s)ds + Je(1 = s)e(s)ds] = 0, given,
the boundary value problem (2) has at least one solution in C*[0,1)] provided

llplly + llall, <1. (16)
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PROOF:- We first note that the bounded linear mapping K : Y; — X, defined by the equation
(12) is such that the mapping K'PN : X — X maps bounded subsets of X into relatively compact
subsets of X, in view of Arzela-Ascoli Theorem. Hence K PN : X — X is a compact mapping.

We, next, note that z € C'[0,1] is a solution of the boundary value problem (2) if and only if z
is a solution to the operator equation

Lr =Nz +e

Now, to solve the operator equation Lz = Nz + e, it suffices to solve the system of equations

Pz = KPNz + e, (17)
QAV.T =0,

z € X, e, = Ke (note that since e € Y}, Pe = ¢, Qe = 0). Indeed, if z € X is a solution of (17)
then z € D(L) and

LPr =Lz =LKPNz+ Le; = PNz + ¢,
@QNz =0,

which gives on adding that Lz = Nz + e.
Now, (17) is clearly equivalent to the single equation

Pz 4+ QNz — KPNz = ¢, (18)

which has the form of a compact perturbation of the Fredholm operator P of index zero. We can,
therefore, apply the version given in ({5], Theorem 1, Corollary 1) or ([6], Theorem IV.4) or ([7]) of
the Leray-Schauder Continuation theorem which ensures the existence of a solution for (18) if the
set of all possible solutions of the family of equations

Pz +(1 = NQz + AQNz — AKPNz = Jey, (19)

A € (0,1), is a priori bounded, independently of A. Notice that (19) is then equivalent to the system
of equations

Pz = AKPNz + Aey,
(1=-X2)Qz+ AQNz =0.

Let, now, z(t) be a solution of (20) for some A € (0,1). We see on multiplying the second equation
in (20) and using (15) that (1 — A)((Qz)(t))? < 0 for every t € [0,1]. Hence (Qz)(t) = O for every
t € [0,1) and accordingly there exists a ( € (0,1) such that z({) = 0. Since, now, z'(0) = 0 it follows
that || z {|o< || 2’ |lo< || 2" ||1. Also since Qz = 0, we have QNz = 0. It follows that z € D(L),
ie, z € W2(0,1) with 2’(0) = 0, z(1) = ¥™7%a,2(&) and z”(t) = Af(t,z(t),z'(t)) + Ae(t).
Accordingly, we get that

(20)

l="ll, = AMIf (2, 2(8), 2'(2)) + e(t)]l;
< plly lizllo + ligly 12"l + NIl + llell,
< lelly + Nalt) =1 + lirlly + Hlell,

It follows from the assumption (16) that there is a constant ¢, independent of A € (0,1) and z(t),
such that
"l < e

It is now immediate from || = ||o< || 2’ [|w< || 2” |1 that the set of solutions of the family of
equations (20) is, a priori, bounded in C'[0,1] by a constant, independent of A € (0,1).

This completes the proof of the theorem.//
REMARK 1:- We remark that the Theorem 2 remains valid if we replace (15) by the condition

(Qz)(t).(QNz)(t) < 0, for t € [0,1]. (21)

for every z € X.
REMARK 2:- We remark that the condition (15) can be replaced by the condition

ftzr,z2)z1 2 0, (22)



BOUNDARY VALUE PROBLEM AT RESONANCE 709

for almost all ¢ € (0,1) and all (z;,r;) € R?. Indeed, condition (15) was used to show, in the proof
of Theorem 2, that if z(t) is a solution of (20) for some A € (0,1) then there exists a { € (0,1) such
that z(¢) = 0. We, now, show that (22), implies that if r(t) is a solution of (20) for some X € (0,1)
then there exists a ¢ € (0,1) such that z(¢) = 0. Indeced, suppose that z(t) # 0, for all ¢t € (0,1).
We may, infact, assumne without any loss of generality that z(t) > 0, for every t € (0,1). It then
follows from (22) that f(t.z(t),z'(t)) > 0. for a.e. t € (0.1). Hence Qz > 0 and QNz > 0. Now the
second equation in (20) gives that (1 — A\)(Qz)? + M(QNr)(Qr) = 0, so that we get (Qr)? <0, a
contradiction. Accordingly, there must exist a { € (0,1) such that z(¢) = 0.

THEOREM 3 :- Let f : [0.1] x B2 — R be a function as in Theorem 2. Assume that the functions
p(t), q(t), r(t) m (14) are in L*(0,1). Leta, >0, € € (0,1), 1 =1,2, - - - m —2 with " %a, = 1,
0<bi<ba<--- <€na <1 be given.

Then for e(t) € L?[0,1] with ¥77% q, fg‘ e(s)ds = 0, given, the boundary value problem (2) has
at least one solution 1n C'[0.1] provided

22 23
Z(2 ol + llgll) < 1. (23)

PROOF:- The proof is similar to the proof of Theorem 2, except now one uses the inequalities
[z [l2< 2|2 [l2< % || ||z for an « € W?22(0,1) with z(¢) = 0, for some { € (0,1) and z'(0) = 0
(see, Theorem 256 of [12]) to show that the set of solutions of the family of equations (19) is a priori

bounded in C'[0,1] by a constant independent of A € (0,1).//

THEOREM 4 :- Let f: [0,1] x R? — R be a function as in Theorem 2 (respectively, Theorem 3).
Let n € (0,1) be given. Then for e(t) € L'[0,1] (resectively. e(t) € L*[0,1]) with [7(1 — n)e(s)ds +
[ (1 = s)e(s)ds = 0, given, the three-point boundary value problem (1) has at least one solution in
C'[0,1] provided

llpll, + llall, < 1, (24)
(respectively, %(% llpll, + llgll,) < 1).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with
m=3anda,=1,6 =19.//

THEOREM 5 :- Let f : [0,1] x R? — R be a function as in Theorem 2 (respectively, Theorem 3).
Then for e(t) € L'[0,1] (resectively, e(t) € L?*[0,1]) with [j(1 — s)e(s)ds = 0, given, the boundary
value problem
() = f(t,z(t),2'(1)) + e(t), 0< t < 1,
2(0) = 0, 2(0) = 2(1),

has at least one solution in C'[0,1] provided

”P"l + "‘I"l <1, (25)
(respectively, 2(2|pll, + llqll,) < 1).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with
m=2anda;=1,§ =0.//
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