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1. INTRODUCTION.

If X is a Tys-ordered space (i.e., an ordered topological space which is “completely regular
ordered” in the sense of Nachbin [8]), then X has a largest T;-ordered compactification 8, X which
is called the Nachbin (or Stone-Cech ordered) compactification. This compactification, introduced
in [8], has been investigated in all of our references except [5].

We are interested in determining when $,(X x Y) = §,X x $8,Y, a problem which has not
previously received attention in the literature. The methods used by Glicksberg [5] to solve
the corresponding problem for the Stone-Cech compactification do not appear to be fruitful when
applied to the Nachbin compactification. Therefore, at this preliminary stage of our investigation,
we have focused our attention on the case where X and Y are “totally ordered spaces”, where
a totally ordered space is defined to be a totally ordered set with a convex, T;-ordered topology
(not necessarily the order topology). Our main result, Theorem 5.6, gives a simple condition for
totally ordered spaces X and Y which is necessary and sufficient for 5,(X x Y) = 8,X x B,Y.
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Our solution to the aforementioned problem makes extensive use of the Wallman ordered
compactification w, X, introduced in [2]. In Section 3 we show that for any T3 s-ordered space X,
B,X can be obtained from w,X via a certain quotient construction, and this result is employed
in the proof of our main theorem. We also make use of the fact that w,X = ,X for any totally
ordered space X.

We first prove a preliminary version of our product theorem in Section 4 under the assumption
that the totally ordered spaces X and Y are “strictly first countable”. (A totally ordered space is
defined to be strictly first countable if every neighborhood filter and every maximal closed-convex
filter has a countable filter base.) Surprisingly, the condition which “works” in the strictly first
countable case also “works” in the general case (see Theorems 4.4 and 5.6). If X and Y are
strictly first countable, then 3,(X xY) = 8, X x 8,Y and wo(X X Y) = w,X X w,Y are equivalent
statements. We do not know if this equivalence holds for arbitrary totally ordered spaces X and Y.

2. PRELIMINARIES.

Let (X, <) be a poset. For a non-empty subset A of X, we define d(4) = {y € X : y <
z for some z € A} to be the decreasing hull of A; the increasing hull 1(A) is defined dually.
We shall write d(z) and i(z) in place of d({z}) and i({z}). A set A is increasing (respectively,
decreasing) if A = ¢(A) (respectively, A = d(A)); a set which is either increasing or decreasing is
said to be monotone. For any A C X, A* = {(A) N d(A) is called the convez hull of A, and A is
convez if A = AN,

Let F(X) denote the set of all filters on a set X. We always use the term filter to mean a
proper set filter. If ¥ and § are filters on X such that FNG # 0, for all F € ¥ and G € §, then
F Vv G denotes the filter generated by {FNG : F € ¥, G € §}; if, on the other hand, ¥ and §
contain disjoint sets, we say that ¥V § fails to ezist. A filter ¥ is free if there is no point common
to all the sets in ¥. A filter which is not free is said to be fized; in particular, the symbol £ will
denote the fixed ultrafilter generated by z € X. For any filter ¥ on X, the filter ¥/ generated by
sets of the form {F” : F € ¥} is called the convez hull of 7.

An ordered topological space, or simply an ordered space, is a triple (X, <,7), where (X, <) is
a poset and 7 a convez topology on (X, <) (i.e., 7 is a topology which has a subbase consisting
of monotone open sets). Note that every ordered space is locally convez in the sense that every
neighborhood filter has a base of convex open sets. When there is no danger of confusion, we refer
to the ordered space (X, <,r) simply as X. If X and Y are ordered spaces,amap f: X — Y is
increasing (respectively, decreasing) if z < y in X implies f(z) < f(y) (respectively, f(y) < f(z))
in Y. A continuous, increasing map is called an ordered topological morphism, or more briefly a
morphism. A bijective morphism whose inverse is also a morphism is called an ordered topological
1somorphism, or more briefly an isomorphism. Let CI*(X) (respectively, C D*(X)) denote the set
of all morphisms (respectively, continuous, decreasing maps) from an ordered space X into [0, 1].

An ordered space X is Tj-ordered if i(z) and d(z) are closed sets, for all z € X; X is T;-ordered
if the partial order relation “<” is closed in X X X. An ordered space X is T3 s-ordered (completely
regular ordered in (8]) if the following conditions are satisfied: (1) If z € X, A is a closed subset
of X, and = ¢ A, then there is f € CI*(X) and g € CD*(X) such that f(z) = g(z) = 0 and
fly)vyly) =1,forally € 4; (2) If z £ y in X, there is f € CI*(X) such that f(y) = 0 and
f(z) = 1. The Tss-ordered spaces are precisely those which allow Tj-ordered compactifications
(see (3] and [8]). An ordered space X is normally ordered (see [8]) if, whenever A and B are
disjoint closed sets, with A increasing and B decreasing, there are disjoint open sets U and V,
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with U increasing and V decreasing, such that A C U and B C V. An ordered space which is
both normally ordered and T;-ordered is said to be T,-ordered.

Given a T3 s-ordered space X, there is a largest T;-ordered compactification of X called the
Nachbin (or Stone-Cech ordered) compactification, denoted by 8,X. The standard construction of
B.X involves embedding X in the “ordered cube” [0, 1]°7*(X) where the latter space has the usual
product order and topology. This compactification is characterized by the following well-known

extension theorem (see [3] or [8]).

THEOREM 2.1. If X is a T3 5-ordered space, Y is a compact, T-ordered space,and f : X = Y
is a morphism, then there is a unique morphism f': 3,X — Y such that the diagram

ex (.X
/
X i
Y
f
commutes, where ex : X — 3,X is the canonical embedding.

We next review the construction of the Wallman ordered compactification. Let X be an
ordered space and A ~ X; let D(A) (respectively, I(A)) be the smallest closed, decreasing (re-
spectively, closed, increasing) set that contains A. Let A% = I(A4) N D(A); if A = A2 then A
is called a c-set. One may verify that the collection of all c-sets on X is closed under arbitrary
intersections. It is obvious that c-sets are closed and convex, but not all closed, convex subsets
of X are c-sets. If ¥ € F(X), let D(¥) (respectively, I(¥)) denote the filter on X generated by
{D(F) : F € 7} (respectively, {I(F) : F € ¥}). The filter 2 = I(¥) v D(¥) is generated by sets
of the form FA, for F € 7; if ¥ = ¥4, then ¥ is called a c-filter. One may easily verify (using
Zorn’s Lemma) that every c-filter is coarser than a maximal c-filter.

Let X be a Ti-ordered space, and let w,X be the set of all maximal c-filters on X. A partial
order “<” for w,X is defined as follows: ¥ < § <= I(¥) C G and D(G) C F. We also assign to
w,X the topology with closed subbase C* = {A*: A = A%}, where A* = {F cw,X: A€ F}.
Then w, X, with the order and topology just described, is an ordered space which is compact and
T, (but generally not T-ordered). If px : X — w,X is defined by px(z) = %, for all z € X, then
©x is an isomorphic embedding, and consequently (w,X,yx) is an ordered compactification of
X. Furthermore, we have the following extension property (see [2] or [6]).

THEOREM 2.2. Let X be a Ti-ordered space, Y a compact, T;-ordered space,and f : X —» Y
a morphism. Then there is a unique morphism f: w,X — Y such that the diagram

Yx wox
7
X !
N\ Y
f

commutes.

An ordered space X is defined to be a c-space if 1(A) and d(A) are closed subsets of X when-
ever A C X is a c-set. The next theorem is proved in [6].

THEOREM 2.3. For a T;s-ordered space X, the following statements are equivalent.
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(1) woX is Ty-ordered
(2) w,X = 6,X
(3) X is a Ty-ordered c-space.

3. 5,X AS A QUOTIENT OF w,X.

Throughout this section, X will denote an arbitrary T3s-ordered space and (w,X,) the
Wallman ordered compactification of X.

If f € CI*(X) , then there exists, by Theorem 2.2, a unique morphism f* : w,X — [0,1]
extending f. We define an equivalence relation R on w,X as follows: R = {(¥,§) € w,X x
w,X :  fMF) = fAG), forall f € CI*'(X)}. The set {[F] : ¥ € w,X} of R-equivalence
classes is denoted by w,X/R; let 0 : w,X — w,X/R be the canonical projection map. We en-
dow w,X/R with the quotient topology derived from w,X and o, and with the partial order
[F] <= [§] <= fM(F) £ fA(G) in [0,1], for all f € CI*(X). The set w,X/R, with this order
and topology, is an ordered space which, for convenience, we shall call 4,X. One easily verifies

that o : w,X — u,X is a morphism.
LEMMA 3.1. p,X is a compact, Ty-ordered space.

PROOF. Obviously, u,X is compact. We recall (see [8]) that an ordered space is T;-ordered
<=, whenever z £ y, there are disjoint neighborhoods U and V of z and y, respectively, such
that U is increasing and V is decreasing.

For each f € CI*(X), define f' : p, X — [0, 1] by f'([F]) = fN(F), for all [F] € u,X; it is
easy to verify that f' is a well defined morphism, and therefore {f' : f € CI*(X)} C CI*(r.X).
If [¥] £r [G], there is f € CI*(X) such that fA(¥) £ fA(§) in [0, 1], and hence f'([F]) >
78 in [0, 1. Let f((F) — F1((G) = ¢ > 0, and let U = (f)~((([]) - /3,1)) and
V = (£)71([0, f'(|G]) + £/3)). Then U and V are disjoint open nieghborhoods separating {¥] and
[G]) such that U is increasing and V decreasing. Therefore u,X is T;-ordered. 1

By Theorem 1.2, there is a unique morphism & : w,X — B,X such that the diagram
e w,X
/

le
N BX

e

X

commutes. Also, for any f € CI*(X), there is a unique f € CI*(8,X) such that f = foe. Note
that fA = f o g, since these maps agree on the dense subspace p(X) of w,X, and hence on w,X.

LEMMA 3.2. For 7,5 € w, X, (¥,6) € R < &(F) =¢(9).

PROOF. If (¥,6) € R, then fA(F) = fA(G), for all f € CI*(X), and hence f(&(¥)) =
f(e(9)) for all f € CI*(X). This implies &F) = &(§), since B, X is Tss-ordered and hence
CI'(B.X) = {f : f € CI*(X)} separates points in 3,X. Conversely, if & F) = &§), then
MF) = f(&(F)) = F(e(8)) = fA(9) for all f € CI'*(X), which implies (¥, §) € R. |

THEOREM 3.3. For any T3 s-ordered space X, 3,X and p,X are isomorphic.
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PROOF. Let e* : u,X — (3,X be defined by e*([¥]) = &(¥), for all ¥ € w,X.
o w, X35 pX
X / \&e Je
N BX

e

It follows from Lemma 3.2 that e* is a well-defined bijection. Since p,X has the quotient
topology induced by o and € = e* o ¢ is continuous, e is continuous. Since u,X is compact and
B.X is Ty, e* is a homeomorphism.

To check that e* is an order-isomorphism, let [#] <z [§]in g, X. Then,for all f € CI*(X), f(¥)
< f7(§) in [0, 1], and hence F((7)) < F(2()), for all £ € CI*(X). Thus &(7) < &(§) in A.X,
and consequently e*(c(¥F)) = e*([F]) < e*([§]) = e*(0(G)). This argument is reversible, and
consequently both e* and (e*)~! are increasing maps. 1

4. A PRELIMINARY PRODUCT THEOREM.

Compactifications of totally ordered spaces are studied in [1] and 7], and we begin this section
by summarizing some relevent results from (7]. We define a totally ordered space X to be a T,-
ordered space whose partial order is a total order (i.e., if z,y € X, thenz < yory < z). Itis
easy to show that a totally ordered space is a Ty-ordered c-space in which the c-sets are precisely
the closed, convex sets. Consequently, by Theorem 2.3, the compactifications wo X and 8,X of a
totally ordered space X exist and are equal. Furthermore, every T;-ordered compactification of a
totally ordered space is itself a totally ordered space.

For a totally ordered space X, we use the equivalence of 3,X and w,X to describe the com-
pactification points of 3,X as maximal c-filters. It is shown in [7] that, in a totally ordered space
X, the maximal c-filters are precisely the convex hulls of ultrafilters; the non-convergent maximal
c-filters on X are called singularities. Given a singularity ¥, let 1 = U{F' : F € ¥}, where F'
denotes the set of upper bounds of F, and ! = U{F! : F € 7}, where F! is the set of lower
bounds of F. The convex sets ¥1 and 7! partition X, and so exactly one of these sets is in 7. If
F' € 7 (respectively, F! € F) we say that 7 is a decreasing (respectively, increasing) singularity.

A totally ordered space X is strictly first countable if every neighborhood filter and every
singularity has a countable filter base. If ¥ is an increasing singularity with a countable filter
base, then there is a strictly increasing sequence z; < 3 < z3 < --- in X such that ¥ is the
convex hull of the filter of sections of (z,); similarly, each decreasing singularity with a countable
filter base is likewise derived from a strictly decreasing sequence in X.

If X and Y are totally ordered spaces, then X x Y (with the product order and product
topology) is a Tss-ordered space, but not generally a c-space. For instance, it is shown in [4]
that if X is the real line with the usual order and topology and Y is any totally ordered space
whose underlying poset is the real line, then X x Y is a c-space <= the topology for Y is the
usual topology. Thus, in general, w,(X x Y) fails to be T-ordered and hence w,(X x Y) and
B,(X x Y) are non-equivalent compactifications (see Theorem 2.3). The next two lemmas are due
to Margaret A. Gamon.

LEMMA 4.1. If X and Y are totally ordered spaces, A a c-set in X, and B a c-set in Y, then
AxBisacsetin X xY.

PROOF. It is clear that {(A x B) = i(A4) x i(B). Since totally ordered spaces are c-
spaces, i1(A) and d(A) are both closed, and so i(4) = I(A) and d(A) = D(A). Therefore,
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i(A x B) = I(A) x I(B) is a closed, increasing set containing 4 x B, and hence i(A x B) =
I(AxB) = I(A)xI(B). Similarly, D(Ax B) = D(A)x D(B), and therefore I(4Ax B)ND(Ax B) =
(I(A) x I(B)) n (D(A) x D(B)) = (I(A)n D(A)) x (I(B)nD(B)) = AxB. Thus AxBisa
c-setin X x Y. 1

LEMMA 4.2. Let X and Y be totally ordered spaces, and let ¥ be a singularity on X and
G a singularity on Y such that either both are increasing singularities or both are decreasing

singularities. Then ¥ x § is a maximal c-filteron X x Y.

PROOF. Assume that ¥ and § are both increasing singularities on X and Y, respectively.
By Lemma 4.1, F x Gisa c-filteron X xY. Let X' = {z € X: £ X Finw,X} and Y’ =
{veY: g = Ginw,Y} be totally ordered subspaces of X and Y, respectively. Let ¥' and g’
be the restrictions of ¥ and § to X' and Y, respectively. It is easy to verify that ¥' and §' are
increasing singularities on X' and Y’, respectively, and that ()1 = (§')1 = 0 . It is also easy to
verify that ¥ x § is a maximal c-filteron X x Y <= ' x §'is a maximal c-filter on X' x Y.
Therefore we shall assume, without loss of generality, that ¥ and § are increasing singularities
on X and Y, respectively, such that ¥1 = Gt = 0.

Let X be a c-filter on X x Y such that ¥ x § C ¥. Let H € { be a convex set, and let
(a, b) € HN (F x G), where F € F and G € G. Forany c € X and d € Y such that a < ¢ and
b < d, we must have (c, d) € H, since otherwise i(c) x i(d) would be a member of ¥ x G disjoint
from H. This implies that i(a) x #(b) C H. But i(a) x ¢(b) € F x §,and so ¥ C ¥ x §. It follows
that ¥ = ¥ x G, and consequently ¥ x § is a maximal c-filter on X x Y. 1

In general, the conclusion of Lemma 4.2 is not valid if one of the singularities is increasing and
the other decreasing. Indeed, the next lemma establishes that if ¥ is an increasing singularity
on X and G a decreasing singularity on Y, both with countable filter bases, then ¥ x § is not a
maximal c-filteron X x Y.

LEMMA 4.3. Let X and Y be totally ordered spaces. Let (z,) be a strictly increasing se-
quence in X and (y») a strictly decreasing sequence in Y. Let S = {(Z2n-1, Y2n-1) : n € N} and
T = {(Z2n, y2n) : n € N}. Then there is g € CI*(X x Y) such that g(i(S)) = 1 and ¢(d(T)) = 0.

PROOF. Choose z, € X such that z, < z;. (In case z; is the least element of X, replace the
original sequence (z,) by (z!,), where z}, = £,11.) Since X and Y are both T}-ordered spaces, we
can apply Theorem 1, page 30, [8] to obtain, for each n € N, a function fi,-1 € CI*(X) such
that fon-1(a) =0 if @ < 2,2 and fon-1(d) = 1 if b > 73,1, and another function f, € CI*(Y)
such that f3,(c) =0 if ¢ < y2, and f3,(d) = 1if d > yzn-1.

We next define a family of functions in CI*(X x Y) as follows:

Hi(z, y) = (fHi(z)f2(¥)) A1
Hy(z, y) = [Haz, y) + fs(z)fu(y)] A1
Hin(z, y) = [Han-2(z, ¥) + fana(z) fan(¥)] AL

For k € N, we define S*~! = {(z34-1, y2n-1) : n < k} and T?* = {(z2n, y2n) : n < k}. It is
easy to verify that Hy,(d(T?*)) = 0 and Hyi(s(S?*71)) = 1.
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Finally, let
9(z, y) = lim [(Hzn(z, y) + fon+1(2) f2ns2(y)) A 1]

n-s00

It is clear that g is an increasing map from X x Y into [0, 1] such that g(z, y) =1 if (z, y) €
1(S) and g(z, y) = 0 if (z, y) € d(T). By considering the possible cases, one may also verify that
for every (z, y) € X x Y, g(z, y) is the infimum of the constant function 1 and a finite sum of
continuous functions. Thus g € CI'(X X Y), as desired. 1

In the proof of the next theorem we will need some additional notation. Let X and Y be
totally ordered spaces, and consider the following diagram:

e Bo(X xY) 0/ w(XxY)
Xxy / Lo XxY K7
 BXxBY U\, woX X w,Y

where, in the notation of Section 2, e = exxy, 0 = ex X ey, © = pxxy, and ¥ = px X py are the
canonical embedding maps. Since w,X = §,X and w,Y = 8,Y, 8, X x .Y = w,X X w,Y is a
compact, T;-ordered space, and ¢' and ¥ are the unique, continuous, increasing extension maps
whose existence is guaranteed in Theorems 2.1 and 2.2.

Observe that 8,(X x Y) = B,X x B,Y (respectively, w,(X X Y) = w,X x w,Y) <= o
(respectively, ¥) is an injective map.

THEOREM 4.4. If X and Y are strictly first countable, totally ordered spaces, then the
following statements are equivalent.
(1) woX X w,Y = w,(X xY).
(2) BoX X BY = Bo(X x Y).
(3) If either X or Y has an increasing (or decreasing) singularity, then the other space con-
tains no strictly decreasing (or strictly increasing) sequence.

PROOF. (1) = (2). For totally ordered spaces X and Y, 3,X = w,X and B,Y = w,Y. Thus
wo(X X Y) = B.X x B,Y, and the latter space is Ty-ordered. By Theorem 2.3, w,(X x Y) =
Bo(X X Y) = B,X x B,Y.

(2) = (3). Assume X has an increasing singularity § and that Y contains a strictly decreasing
sequence (y,). Note that § is a compactification point in 8,X = w,X. If (yn) converges to y,
in Y, then we define v = (§,py(v)); if (yn) fails to converge in Y, let X be the decreasing
singularity in Y which is the convex hull of the filter of sections of (y»), and let v = (G, ¥). In
either case, v is a compactification point of 3, X x §,Y.

Next, let (z,) be a strictly increasing sequence in X obtained by choosing a denumerable,
nested filter base {G, : n € N} for § and choosing z, € Gy, for all n € N, such that z; < z; <
z3 <---. Then clearly § is the convex hull of the filter of sections of the sequence (z,).

Consider the filter ¥ of sections of the sequence (z,, yn) on X xY; let 7 be the filter generated
by the subsequence (zzn-1, y2n-1) and 7, the filter generated by the subsequence (zz,, yzn). If
S = {(£2n-1, Y2n-1) :n € N} and T = {(Z2n, Y20) : n € N}, then S € 7 and T € %. Regardless
of whether or not (y,) convergesin Y, o(¥) (and hence also o(¥2)) converges to 7 in §,X x 8,Y.

Let M; and M; be maximal c-filters on X x Y such that 72 C M; and 72 C M,. By Lemma
4.3, there is ¢ € CI*(X x Y) such that g(i(S)) = 1 and ¢(d(T)) = 0. Since g~*({1}) € M, and
97'({0}) € Mg, it follows that g(M;) converges to 1 and g(M:) converges to O in [0, 1]. Using
Theorem 3.3, we identify So(X x Y) with the quotient space po(X x Y); thus we regard the
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R-equivalence classes [M,| and [M,] (defined in the second paragraph of Section 3) as elements
of Bo(X x Y). Since g"(M1) # g*(Mz) (where ¢" € CI'(wo(X x Y)) is the unique extension
of g € CI'(X x Y)), [Mi] and [M;] are distinct equivalence classes (i.e., distinct elements in
Bo(X x Y)). But o(M,;) and o(M;) are both finer than ¢(F2), so both of these filters converge
to v in Bo(X x Y). Thus o'([M,]) = 0'([M:2]), and consequently o' is not injective.

(3) = (1). If neither X nor Y has a singularity, then X and Y are both compact, and so
X xY =weX X wpY = wo(X xY).

Assume that woX X woY contains a compactification point v = (¥,G). We will show that
\—I’__l('y) is a singleton in wo(X x Y), implying that W is injective. There are three possible cases
to consider. If ¥ is a singularity in X and § a singularity in Y, then Condition (3) and the
assumption of strict first countability for X and Y imply that ¥ and § are either both increas-
ing singularities or both decreasing singularities. By Lemma 4.2, ¥ x § is a maximal c-filter on
X xY. Thus ¥'

singularity and § = py(y) for some y € Y, then one easily verifies that ¥ x § is a non-convergent

(7) = {F x G} is a single compactification point in we(X x Y). If F is a

maximal c-filter on X x Y, and TIl_.l('y) = {F x y} is again a singleton compactification point
in w,(X xY). The same reasoning applies if § is a singularity in ¥ and ¥ = px(z) for some z € X.

We conclude that the quotient map W : w,(X X Y) — w,X X woY is injective, and therefore
wo(X XY) =w, X x w,Y. 1

If X is the real line with any convex, T;-ordered topology and Y is any strictly first countable,
totally ordered space, it follows from the preceding theorem that 8,(X x Y) = 8,X x B, Y iff
Y is finite. If N is the set of natural numbers with the usual order and the discrete topology,
Bs(N x N) = BN x BN follows by Theorem 3.4; note that NV x N is not pseudo-compact and
thus B(N x N) # BN x BN. If, on the other hand, N* is the set of negative integers with
their usual order and the discrete topology, 8,(N x N*) # 8,N X B,N*. Indeed, it is easy to see
that 8,N x B, N* has cardinality R,, whereas it can be shown that §,(/N x N*) has cardinality 27",

5. THE PRODUCT THEOREM.

Throughout this section, the symbols X and Y will represent arbitrary totally ordered spaces.
Our main theorem (Theorem 5.6) establishes that Condition (3) of Theorem 4.4 (stated in slightly
different terms) is necessary and sufficient for 8,(X x Y) = 8,X X 3,Y in the general case. The
proof of Theorem 5.6 is based on five rather technical lemmas, for which we need some additional
notation and terminology.

Let ¥ be an increasing singularity on X and ¢ an ordinal number. Recall that ¥ is also a
compactification point in w,X = §,X. We say that ¥ has order £ if there is a strictly increasing
net (za)a<¢ on X such that the net (£a)a<¢ in B, X converges to ¥, and ¢ is the least such ordinal.
The order of a decreasing singularity on X is defined dually. If £ is the order of any singularity
on X, then clearly ¢ is an infinite ordinal and the least ordinal of its cardinality. In a strictly first
countable, totally ordered space, every singularity has order w, the least infinite ordinal.

Next, let y € Y. If no strictly increasing net in Y converges to y, we say that y has left order
0. If for some ordinal £, there is a strictly increasing net (ya)a<¢ converging to y in Y and £ is
the least such ordinal, we say that y has left order £. The right order for y is defined dually.

fzeYandy<zletfyzl={a€Y:y<a<z}, [y,2) ={a€Y:y<a<z} and
(y,2)] ={a€Y:y<a<z} IfyeY has left order p > 0 and (ya)a<, is a strictly increasing
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net converging to y, we denote by V,(y) the filter on Y generated by {[ya,y] : A < p}; Ve(y) is
called the left neighborhood filter at y, and we set V,(y) = g in case p = 0. Likewise, if y has right
order £ > 0 and (2)a<¢ is & strictly decreasing net converging to y, the right neighborhood filter
V,(y) is generated by {[y,za] : A < €}; again we set V,(y) = y if £ = 0. Furthermore, if £ > 0
we denote by V/(y) the filter on Y generated by {(y,2x] : A < £}. Note that V,(y) N V,(y) is the
usual neighborhood filter at y.

We shall also need additional interval notation pertaining to singularities. If ¥ is an increasing
singularity on X and z € X is such that £ < 7 in w,X, we define [z,7) = {a€ X :z < ain
X and @ X 7 in w,X} and (z,¥) = [z, F)\{z}. In case § is a decreasing singularity on Y and
y€Yissuchthat § < yinw,Y,let (§,y) ={a€Y:a<yinY and § < a in w,Y} and let
(G,v) = (G,v]\{y}. If 7 has order ¢ and (za)r<¢ is a strictly increasing net such that (Za)a<e
converges to ¥ in w,X, then each of the sets {[zr,F) : A < £} and {(zA, F) : A < £} is a filter
base for ¥. Likewise, if § has order n and (ya)a<n is a strictly decreasing net in Y such that
(9n)a<n converges to § in w,Y, then each of the sets {(§,yr] : A < n} and {(G,yr) : A < n} are
filter bases for §.

LEMMA 5.1. Let ¥ be an increasing singularity on X of order ¢ > w, let § be a decreasing sin-
gularity on Y of order n > w, and assume that every strictly increasing sequence on X and every
strictly decreasing sequence on Y is convergent. If £ and M are maximal c-filters on X x Y, both
finer than ¥ x G, then for all f € CI*(X xY), f(L)and f(M) converge to the same limit in [0, 1].

PROOF. Suppose there is f € CI*(X x Y) such that f(L) converges to a, f(M) converges to
b,and a # b in [0, 1]. Let U and V be disjoint neighborhoods of a and b, respectively, and choose
closed sets L € £ and M € M such that f(L) C U and f(M) C V. Then, choose the following
pointsin X x Y :

(@0s00) € LN((z0,F) X {G,¥0))
(cords) € MnN((as, F) x (§,b0))
(a1,1) € LN ((er, F) x(G,d,))

€ Mn ((al,?') X (g,bl))

(cl’dl)

Continuing in this way we obtain sequences (an,bs) in L and (¢n,dn) in M such that

A <€ <1< €1 < v <@ <cp <
by>do>by>dy> - >by>dn>

Under the assumptions of the lemma, the sequence a,,c,,a;,c¢;,+ -+ converges to some z, in X,
and the sequence b,,d,,b;,d;, - - converges to some y, in Y. Thus (z,,y,) € L N M, contrary to
the fact that f(L) N f(M) = ¢. 1

LEMMA 5.2. Let ¥ be an increasing singularity of order £ > w on X, and let y € Y have right
order n > w. Assume that every strictly increasing sequence on X and every strictly decreasing
sequence on Y is convergent. If £ and M are maximal c-filters on X x Y, both finer than ¥ x V!(y),
then for all f € CI*(X x Y), f(£) and f(M) converge to the same limit in [0, 1].

PROOF. The proof of Lemma 5.2 is essentially identical to that of Lemma 5.1. 1
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LEMMA 5.3. Let 7 be an increasing singularity on X of order ¢ > w and let y € Y have left
order n > 0. If M is a maximal c-filter on X x Y finer than ¥ x V,(y), then M = ¥ x .

PROOF. Let (y,),<, be a strictly increasing net on Y converging to y; thus Ve(y) has a filter
base {|{y,,y] : u < n}. Note that ¥ has a filter base of the form {[z4, F) : A < £}, where (zA)a<¢
is a strictly increasing net in X.

Choose a c-set M € M such that [z,, F) X [yo,y] 2 M. For each A < £ and p < 7, there is
(@nurdaw) € M O ([Za, F) X [Yu,y]). Let (a,b) € M be arbitrary; we shall show that (a,y) € M.
If b = y there is nothing more to show, so assume the contrary, and choose ordinals p < n and
7 < € such that b < y, and a < z,. Then (a,b) < (a,b;,) < (ar,,bs,), and so by convexity of M,
(a,b,,) € M. Since y, < b;, (a,y,) € M. Indeed this reasoning implies that (a,y,) € M for
all u < n such that p < u. Since M is closed, (a,y) € M. Using again the convexity of M, we
deduce that [a, F) x {y} C M and that [a, F) € F. Thus ¥ x § > M, and since both are maximal
c-filters, equality holds. 1

LEMMA 5.4. Let ¥ be an increasing singularity on X of order £ > w, and let y € Y have
right order 7 > w. If £ # n and M is a maximal c-filter on X x Y finer than 7 x V;(y), tnen
M=Fxy.

PROOF. Let (z))s<¢ be a strictly increasing net in X such that {{z,,7) : A < £} is a filter
base for 7. Let (y,)u<q be a strictly decreasing net in Y converging to y such that {[y,v,]: 4 < n}
is a filter base for V,(y). Let M € M be a closed, convex set such that M C [z,, F) X [y, |-

CASE 1. n < £ If 0 < X < n, choose (ay,by) € M N ([za, F) X [y,yx]) such that (ax)acn
is strictly increasing in X and (by)a<y, is strictly decreasing in Y. Next, choose ordinal p such
that n < p < €, and choose (a,,b,) € M N [z,,F) X [y,y.] such that a) < a,, for all A < n. Let
A ={Xx < n:by <b,}. Using the convexity of M, (ax,b,) € M, for all A € A and (a,,b,) € M
implies that (a,,by) € M, for all A € A. Since (bx)rea converges to y in ¥ and M is closed,
(ap,y) € M. This reasoning leads to the conclusion that [a,, ) x {y} C M, and hence ¥ xy = M.

CASE 2. ¢ < 1. For each A < 5, choose (ay, b)) € M N [z,, F) X [y,yx] such that (by)acy is
strictly decreasing; thus (ba)a<, converges to y in Y. For each A < 7, let u, be the least ordinal
such that ay < z,,. Note that {u) : A < n} C {p: p < £}. Considering the net (z,,)acn, We
observe that since each p < ¢, there is some p € {u) : A < p} such that the term z, occurs |n|
times in the net (z,,)a<q, Where || is the cardinality of 7.

Now choose a point (a,b) € M such that a > z,. Then a > a,, for all A < p such that p = pu,.
If A={)X<n:p=pu} then |A| = |n| and (br)rer converges to y in Y. We shall show that
(a,y) € M. Assuming b # y, let A' = {\ € A : by < b}; then |A'| = |n| and (bs)rear converges to
y in Y. Using the now familiar argument based on M being closed and convex, we deduce that
(a,y) € M. This argument can again be extended to show [a, F) x {y} C M, where [a,7) € 7,
and consequently M = ¥ X y. 1

LEMMA 5.5. Let ¥ be an increasing singularity on X of order £ > w, and let y € Y haveright
order £. If M is a maximal c-filter on X xY finer than ¥ x V,(y), thenfor all f € CI*(XXY), f(M)

and f(F X y) converge to the same limit in [0, 1].

PROOF. Assume 7 has filter base {[z), ) : A < £} as in the preceding proof. Suppose there
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is f€CI'(X xY) and M > 7 x V,(y) such that f(F x y) converges to a € [0, 1] and f(M)
converges to some point in [0, 1] other than a. Since M # ¥ x g, it follows that M > ¥ x V/(y).
We shall obtain a contradiction by constructing a maximal c-filter £ > ¥ x V/(y) such that, for
each L € £, f(L) intersects every neighbhorhood of a in [0, 1]. It follows that f(L) converges
to a in [0, 1] and hence, by Lemma 5.2, f(M) converges to a, a contradiction.

Let {U, : n € N} be a nested neighborhood base for a € [0, 1], where each U, is a closed
interval. Since f(F x y) converges to a and £ > w, we can find p < £ such that [z,,¥) € ¥ and
[, F) x {y} S C,where C =N{U,:n€ N}isacsetin X xY. Let A={X:p <A< £} Let
(y2)r<¢ be a strictly decreasing net convergingto y in Y. For each A € A, there is ) < £ such that
(z»,2) € C, for all z € [y,y,,]. Choose a strictly decreasing net (y,,)aea such that y,, € (y,y,,)
for all A € A; then (y,,)rea converges to y and (zx,yn,)area is a net in C. Let K be the filter of
sections of the net (zx,yn,)aen, and let £ be any maximal c-filter finer than K2 = I(K) N D(K).
Since C is a c-set, C € K2 and hence C € L. Thus f(L) converges to a in [0, 1]. Since each set
of the form (z,, F) X [y, y,], for p < &, contains an element of the net (zx,yn,)rea, K is finer than
the c-filter ¥ x V,(y), and consequently £ > K2 > F x V,(y). To complete the proof, it remains
to show that £ # F x y, and therefore that £ > ¥ x V!(y).

If L = 7 x gy, then each S € KA contains a set of the form F x {y} for some F € ¥.
Let S = K4, where K € K has the form K = {(z,yn,) : A > u} for some p € A. Ifa
set of the form F x {y} C KA for some F € 7, then there is an ordinal § > u such that
[zs,F) C F; thus [z;,F) x {y} C KA. Let ¢ be any ordinal such than § < ¢ < £. Then
D={(z,2): 2> z}U{(z,2) : 2 > y,.} is a c-set in X X Y containing K, and therefore K2 C D.
But [z;5,z.) x {y} "D =0, and so [z5, F) x {y} € K. The assumption that £L = ¥ X y is hereby
contradicted, and the proof of the lemma is complete. 1

THEOREM 5.6. Let X and Y be totally ordered spaces. Then fo(X xY) = B.X X BY <—
the following condition (*) is satisfied: (*) If either X or Y contains an increasing (or decreasing)
singularity of order w, then the other space contains no strictly decreasing (or strictly increasing)
sequence.

PROOF. If B,(X x Y) = B,X x B,Y, the proof that (2) => (3) in Theorem 3.4 establishes
condition (*).

Conversely, assume (*) and consider the diagram

P w(XxY) 5 B(XxY)

XxY /
N\ IR o
Y BXXBY

To show B,(X xY) = 8, X x 8,Y, it is sufficient to show that (¢')~!(a) is a singleton for each
compactification point a in 8,X X 8,Y. Two cases must be considered.

CASE 1. a = (¥, 9), where ¥ and § are singularities on X and Y, respectively. If ¥ and § are
either both increasing or both decreasing, it follows by Lemma 4.2 that (0')~!(a) is a singleton.
So, without loss of generality, assume that ¥ is an increasing singularity of order £ and G is a
decreasing singularity of order n. If £ = w, then the existence of a decreasing sirgularity on Y
implies the existence of a strictly decreasing sequence in Y, contrary to condition (*). Thus there
is no loss of generality in assuming £ > n > w; we also assume, in view of (*), that every strictly
increasing sequence on X converges in X and every strictly decreasing sequence on Y converges
inY.

The preceding observations allow us to conclude, using Lemma 5.1, that if £ and M are in
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¥~!(a), then for all f € CI'(X x Y), f(L£) and f(M) converge to the same limit in [0, 1]. Thus,
by Theorem 3.3, &(L) = (M) in B,(X x Y); in other words, (¢')~!() is a singleton.

CASE 2. o = (7,3), where one member of this pair is a singularity and the other a fixed
ultrafilter. Without loss of generality, we assume that 7 is an increasing singularity of order
€ > w,and G =y, where y € Y has left order p > 0 and right order > 0.

We first observe that 7 X g is a maximal c-filter on X x Y and obviously ¥ x § € ¢~!(a).
To complete the proof, it is sufficient to show that if M is any maximal c-filter on X x Y finer
than ¥ X (Vr(y) N Ve(y)), then f(M) and f(F x g) converge to the same limit in [0, 1] for all
f € CI'(X xY); then the desired conclusion that (6')~!(a) is a singleton follows, as in Case 1, from
Theorem 3.3. Furthermore, since V,(y) and Vy(y) are both c-filterson ¥, M > 7 x (V. (y) N Ve(y))
implies either M > 7 x V,(y) or M > F x V(y).

If M is a maximal c-filter finer than ¥ X V,(y), it follows by Lemma 5.3 that M = ¥ x ¢, and
the conclusion is trivial. We thus assume, for the remainder of the proof, that M > 7 x V,(y). If
n = 0, then again M = 7 x y and the proof is complete. If n > w, we observe that Y contains
a strictly decreasing sequence; thus by condition (*), £ > w, and furthermore every strictly in-
creasing sequence on X must converge. The existence of the increasing singularity ¥ on X also
implies that every strictly decreasing sequence on Y must converge. We now apply Lemmas 5.4
and 5.5. f { # n, then M = 7 x g, and if £ = n > w, then f(M) and f(F x y) have the same
limit in [0, 1] for all f € CI*(X x Y). Thus, under all circumstances, (¢')~!(a) is a singleton,
and the proof of the theorem is complete. ]

For totally ordered spaces X and Y, one can show that if X x Y is pseudo-compact, then
neither X nor Y has a singularity of order w. Thus it follows by Theorem 5.6 that if X x Y is

pseudo-compact, G X X B,Y = B,(X x Y). The converse is false, as we showed at the end of
Section 4.
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