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ABSTRACT. We prove that every probabilistic normed space, either according to the original
definition given by Serstnev, or according to the recent one introduced by Alsina, Schweizer and

Sklar, has a completion.
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1. INTRODUCTION.

As is well known, a real or complex nornied linear space admits a completion, namely, given
a normed linear space (V, || - ||), there exists another linear space (V) || - ||") such that V' is
isometric to a dense subspace of V.

It was proved by Mustari (2], Sherwood ([7], [8]) and Sempi (5] that a probabilistic metric
space has a completion. Here we answer in the positive the natural question of whether a
probabilistic normed space has a completion. In fact, there are two definitions of probabilistic
normed space ( = PN-space): the original one by Serstnev ([6], but see [3] for a presentation in
agreement with our notation), and a more recent one by Alsina, Schweizer and Sklar (see [1]).
The proof will be given in both cases. For the notation and the concepts used we refer to the
book by Schweizer and Sklar [3]; we shall write d.f. for distribution function.

According to éerstnev, a PN-space is a triple (V,v,7), where V is a real linear space; 7 is a
triangle function ([3], section 7.1), i.e., a binary operation on A%, the space of distance
distribution functions, that is commutative, associative and nondecreasing in each variable and
which has the d.f. ¢, as identity, i.e.,

(a) VF,GeA*t 1(F,G)=r1(G,F)

(b) VF,G,HeA* +(F,7(G,H)=r(r(F,G),H)

(c) VHEA*F<G= r(F,H)<7(G.H)

(d) VFeA* 1(F,e)=F.

Here ¢ is the d.f. defined by 0. ifz<0

1, ifz>0

ee) =
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v is the probabilistic norm, i.e., v is a map from V into A% that satisfies the following
conditions:

(N.1) v(p) = ¢y, if, and only if, p =9, where 9 is the null vector of V;

(N2)VzeR,,a€R, witha#0 v(ap)z)=v(p)z/|al)

(N3)VpgeV  v(p+4q) 2 lv(p),v(g))

In both definitions the triangle function is assumed to be continuous.

The space A* can be metrized by different metrics ([9], [3], 4], [10]), but we shall use here
the modified Lévy metric d, (3].

2. MAIN RESULTS.

THEOREM 1. Every PN-space (V,v,7) has a completion. viz. is isometric to a dense linear
subspace of a complete PN-space (V',V/, 7).

PROOF. Only the steps needed to complement the treatment in [7] and [8] will be given.
Now V' is the set of equivalence classes of Cauchy sequences of elements of V. In order to prove
that V’ is a linear space, let p’ and ¢ be elements of V' and let {p,} and {g,} be Cauchy
sequences of elements of V with {p,} € p" and {¢,} € ¢. Since V is a linear space, one has, for
every n €N, p, + ¢, €V. We wish to show that it is possible to define a sum of p’ and ¢ in such
a way that p'+ ¢ € V". Since (V,%,7), with F(p,q): = v(p — q) is a probabilistic metric space ([3],
Theorem 15.1.2), one has, if n and m are large enough,

FHPn+ s P+ 4m) = Y(Pr+ 9n) = (P + 4m))

=V((Pn— Pm) + (40— ¢m))  (because of (N.3))
2 1(v(pn = Pr)s Y30 — )]
Taking into account Lemma 4.3.4 in [3], one has
d(F(Pn + @ P + ), €0) < AL 7[U(P = Prn)s ¥(2n — m)); €0)
= d(1[F(Prs Pm)s F(dny Gm)}s €0)-

The continuity of both d; and 7 ensures that, when both m and n tend to infinity,
F(Pp + Gy P+ Gm) — €o- Thus {p, +¢,.} is a Cauchy sequence and, as a consequence, it belongs
to an element of V', which will be denoted by r. Then we define p’+ ¢ = r". This definition does
not depend on the elements of p” and ¢ selected, for, if {p,},{p;} € p" and {q,.},{¢};} € ¢, then

F(pp + G P+ G) = V(D0 — Py @0 — 40) 2 T[V(Pa — P1)s (40 — 43)] = T[F(Prs P1), F (9 47));

so that
d(F(pn+ ¢n Pr+ an)60) < dp (T[‘:T(p", Pr)s F(gn, ‘I;)Leo)
Since both d;, and T are continuous we obtain F(p,, + ¢,,, P& + ¢5)) = €0, i€, {Pn +4n} ~ {Ph+ ¢ }-
Thus the sum defined above is a good definition, which immediately satisfies the properties of an
abelian group.
For every a €R, and for every Cauchy sequence {p,} of elements of V, also {a p,} is a
Cauchy sequence of elements of V. This is obvious if a = 0. If a # 0, one has, for every z > 0,

F(apn aPm)(@) = vap, — aPm)(€) = ¥(Pa — Pm)(z/ | a])

= ‘Ef(p,,, Pn:)(l'/ | a I )

and this tends to 1, for every z >0, as n and m tend to infinity, i.e., F(ap,,ap,,) — €. Thus
{ap,} is a Cauchy sequence; let us denote by u’ the element of V’ to which it belongs. Then we
define ap’ = «". This is again a good definition; in fact, let {p,},{p:} € p. Then

F(ap.,aps)(z) = v[a(p, — P)I(z) = v(p. — P:)(l—zT) = F(pp, p:)(ﬁ)v
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which tends to 1 for all z > 0 when n—oo, whence {ap,} ~ {ap}}. Therefore it is immediate to
conclude that V" is a linear space. All that is left to show is that the distance d.f. & derives from
a probabilistic norm v" on V". For every p € 17, set, if {p,} € p’ with p,, € V for every n €N

v(p): = F(p, V) = lim,, F(p,, V) = lim,, v(p,). (21)
Thus
F(p'¢) = limy, H(pa.ga) = lim, v(pa— ¢a) = v(p'— q).
It is now an easy task to verify that v” does indeed fulfill conditions (N.1), (N.2) and (N.3). )
We now turn to the proof of the analogous result for PN-spaces according to the definition

given in [1]. This latter differs from the one given above in that condition (N.2) is replaced by

the weaker one

(N2)  VpeV v(—p)=v(p)
and a new one is added:
(N4)  Vae[0,1VpeV v(p) < 7[v(ap),v((1-a)p)}

Then a PN-space is a quadruple (V,v,7,7"), where V, as above, is a real linear space, 7,7"
are continuous triangle functions and v:V—A* is a map such that conditions (N.1), (N.2'), (N.3)
and (N.4) are satisfied.

The last part of this note is entirely devoted to PN-spaces according to this latter definition.

LEMMA 2. Let (V,v,7,7%) be a PN-space and let h and k be two real constants such that
0 < h <k; then

Vp,geV  F(kp,kq) < F(hp,hq),

where F(p,q): = v(p —q).
PROOF. There is A €[0,1] such that h = A\k. Then

F(kp, kq) = v(kp — kq) = v[k(p - g)] <
< k(P — )l (1 = Nk(p - )] <
< P Mk(p — q)), €0) = vM(p — g)] = v[h(p — ¢)] = F(hp, hq). o

THEOREM 3. Every PN-space (V,v,7,7%) has a completion, viz. is isometric to a dense
linear subspace of a complete PN-space (V',v/,7,7*).

PROOF. Exactly as in the proof of Theorem 1, one can prove that if both p” and ¢ belong
to V’, then p'+¢ € V. However, one can no longer use the same proof of the fact that if a €R
and p’ € V” then ap € V', because recourse was made to property (N2) which now may well not
hold.

Now assume a €R and p'€ V", let {p,} € p" and consider the sequence {ap,}. As a first
step, we shall prove that it is a Cauchy sequence in V. This is obviously true for a =0 and
a =1. Because of (N.2), it suffices to consider only the case @ > 0. Now assume that {ap,}is a
Cauchy sequence for « = 0,1, - - - ,k—1(k €N). Then

q(kpm kpm) = V[k(pn - pm)] = 7'[1/(}7,. - pm)’ V[(k - 1)(pn - pm)]] =
= T[q(pm pm),‘.f((k - l)pm(k - l)pm)]'
Since 7 is continuous and

nI}'nn—loco g(pm pm) =nI£:,—L>o G‘F((k - l)pm(k - l)pm) =&
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it follows that also {ap,} is a Cauchy scquence for every a€Z . If a is positive, but not

integer, therc exists k € Z | such that k <a <k +1. Lemma 2 now gives

F((k+ 1)p, (b +1)p,,) < Flappap,) S Fhkpakp,);

hence it is immediate to conclude that {ap,} i~ a Cauchy sequence for every a € R, . Thus there
exists an element «’ € V” such that {ap,} € " Let us define u"= ap’ In order to check that this
is a good definition, let {p,}~{py}. If a€[0,1], it follows from Lemma 2 that
F(pn ;) < Flap,, ap)); since, by assumption F(p,, ph)—=eo, also Flap,,apl)e,. fa=kel,,

as above, one has

F(kpokp}) = vk(po — p2)] 2 Hu(pa = p2) (k= 1)(po — p3)]| =
= 1F (P 23) F((h = 1)p,, (k= 1)p3)}

The same argument as above yields {kp,} ~ {kp;} for every k € Z . Again, from this it is easy
to obtain that, for every a € R one has {ap,} ~ {apL}.

Therefore V” is a linear space. Only couditions (N.2") and (N.4) remain now to be proved.
Proceeding as above, let p"€ V” and let {p,} be a Cauchy sequence of elements of V that belongs
to p; then {—p,} € — p" Since v is defined by (2.1), one has, on account of (N.2’), which holds
for v,

V(= p) = lim, v( - p,) = lim, v(p,) = v(p).

Moreover, for every a € [0,1], one has, becausc 7* is continuous,

v(p) = lim, v(p,) < lim, 7{v(ap,),¥((1 - a)p,)]
= r'[v(ap),v((1 - «)p)} o
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