Internat. J. Math. & Math. Sci. 617
VOL. 18 NO. 3 (1995) 617-620

ON THE DETERMINATION OF OPTIMAL TIME HORIZON
IN A CONTROL PROBLEM IN NATURAL RESOURCE ECONOMICS

RAMESH C. KUMAR
and
FADLE M. NAQIB

Department of Economics
University of Waterloo
Waterloo, Ontario, N2L 3Gl
CANADA

(Received August 20, 1993 and in revised form December 18, 1993)

ABSTRACT. This paper is concerned with issues relating to the determination of optimal time
horizon in a typical control problem of optimal extraction of an exhaustible natural resource. The paper
extends the recent Highfill-McAsey results to cover all strictly concave utility functions.
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1. INTRODUCTION.
In a recent article in this Journal, Highfill and McAsey [1] study the following optimal control
problem which they describe as "the first problem in the economics of exhaustible natural resources."

T
Maximize J = / Ul(q(t))e ®dt
0

(qg(®))
subject to z(t)= —qt), qt)>0
z(0) = zg given
z(T)>0 free
T>0 free

where z(t) is the remaining (in ground) stock of an exhaustible, natural resource at time t; g(t) is the
instantaneous extraction rate, T the time (planning) horizon and U(.) a non-negative, strictly concave
utility function which is discounted over time at rate 6 > 0.

The authors prove two distinct results. While the main thrust of their analysis is directed toward
demonstrating that the strict concavity of the utility function alone may not be sufficient for ensuring the
existence of an optimal solution for arbitrarily chosen 0 < zy < oo, and that the additional requirement of
"asymptotic non-linearity" will suffice (Example 2.3 and Theorem 3.1), it is their other result (Theorem
2.2) which is perhaps of greater significance for economists. Specifically, this result is concerned with
the determination of the optimal time horizon and purports to prove that optimal T' < oo if and only if
gi_r’r(x) U’(g) < oo. The proposition that an elementary property of the utility function is sufficient for
determining whether the optimal planning horizon ought to be finite or infinite, without ever invoking
economic concepts of impatience and time-discounting of utility, is certainly not well established in the
literature even though the problem has been considered before by Vousden [2] in a different context.
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Highfill and McAsey have clearly made an important and useful contribution Their analysis however is
confined to the special case of strictly concave, non-negative utility function that also satisfies the
requirement that U(0) =0 This restriction is certainly appropriate if the control problem above is
viewed strictly as a "cake-eating problem" - and this is not uncommon in the literature - with the obvious
stipulation that no cake implies no utility Given that economic theory demands no such restrictions. it
precludes two situations where the issue of the determination of optimal planning horizon can be fruitfully
investigated the case where the utility function may assume negative values over a range and the
situation where U (0) may not be zero Such situations can arise even in the context of the "first control
problem" if either we allow for the possibility that utility is derived not from the direct consumption of the
resource stock (the "cake") but from that of another good in whose production the exhaustible resource
is an input, or consider the case where an account is taken of utility arising from the fixed consumption of
one or more other commodities The utility functions U(g) = Ln(q); ¢ > 0 and U(g) = a + (g +b)",
a>0, b>0, 1>n>0, both extensively used in economics, illustrate these possibilities The purpose
of this paper is to extend the Highfill-McAsey analysis to cover all strictly concave utility functions.

In the next section, we begin by arguing that the size of the terminal extraction rate and the
corresponding value of the utility function are both crucial in determining the duration of the planning
horizon. We then present three results that, in addition to confirming Highfill-McAsey result, extend the

analysis as mentioned above

2. THE OPTIMAL TIME HORIZON.
The necessary condition for the maximization of the Hamiltonian function, H(, ).

H(t;z,q,A = e %U(q(t)) — A(t)q(t) 2.1)

of the control problem of Section 1 is
= A(t); q(t) >0

<A®);  q)=0 (22

e *U'(q(t))

where A(t) is the co-state variable associated with the state z(t). In addition to (2 2) and the state

equation z (t) = — g(t), the necessary conditions for solving the control problem include
. 6H
A)=-—=0 23
=-+ @3)

which in conjunction with (2.2) implies that the optimal A(t) is a positive constant, say ), and that g(t)
declines continuously with time, and the transversality condition:

[H=X¢),.7 =0 (2.4)

where
T
#(T) = Xo - / a()dt .
0

Chiang [3] may be consulted for the derivation of the condition. In the context our problem (2.4) implies
e TU(¢(T)) =0 25)

which may be used to infer about the magnitude of optimal ¢(7"). It is obvious that if optimal T’ < oo,
the above condition can be satisfied only if U(g(T)) = 0. On the other hand, if optimal T is infinite,
(2.5) will be satisfied whenever |U(g(T'))| < oo. Clearly then the values of both the optimal ¢(T) and
U (q(T)) are crucial for whether optimal T is finite or not. These are in turn determined by the type of
the utility function one considers. All strictly concave utility functions belong to one of the three types
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depicted in the following diagram Highfill and McAsey have considered Type I functions The two
examples of Section | refer respectively to Types I and I11

o
(

4} RSN R R}

NPE T

NEF 11

/

PROPOSITION 2.1. If an optimal solution to the control problem of Section 1 exists for a
strictly concave utility function which also satisfies U/(0) = 0, then optimal T < oo if and only if
ling)U "(g) < o0
q=

Figure 2 1

PROOF. We first demonstrate that the condition U(0) = 0 ensures that optimal ¢(T) =0
regardless of the magnitude of optimal T For T finite (2 5) implies that U(q(T)) = 0. In view of the
condition, it immediately follows that g(T') = 0 For the case of infinite optimal T, assume, if possible
that optimal ¢(7)) > 0 Equation (2 5) then implies that U’ (¢(T')) < oo whence e *TU'(¢(T)) = A =0,
which clearly contradicts (2.2) Therefore ¢(T') = 0

We now show that if ,!1% U'(g) = oo, then ¢(T) = 0 cannot be optimal for any finite T.

Assume, if possible, that this is the case Consequently H(q(T)) = H(0) = 0 is optimal. Now since
Iiﬂ) U’(q) = oo, we can always construct an alternative admissible path with ¢q(T) > 0 but sufficiently
:mall such that e %TU'(¢(T)) > X  In addition, the strict concavity of U(q) ensures that
U(q(T))) > U'(q(T)))q(T), that is, average utility is greater than marginal utility. Combining the two
inequalities yields H(q(T")) > H(0) = 0, which is a contradiction for it implies that H(0) is not optimal.

To complete the proof we show next that if 31_13{1) U'{q) < 0o, T => 0o cannot be optimal. Once
again, assume the contrary. Since optimal ¢(t) declines continuously to zero, there must exist a ¢t < oo,
but sufficiently large, such that along the optimal path q(t) > 0 and e %U’(¢(T)) < A. But this
contradicts the necessary condition (2 2)

This confirms the Highfill-McAsey result, highlighting the exact role of the condition U (0) = 0.

PROPOSITION 2.2. If an optimal solution to the control problem of Section 1 exists for a Type
IT utility function, then optimal T' < oo with optimal ¢(T") =¢ > 0 where § is the unique g satisfying
U@ =0

PROOF. Assume if possible that an optimal path exists with T = oo. Denote the optimal
extraction rate by ¢*(¢). It follows that G*(t) <0V t>0and that &131’0 g (t) = 0. Now choose T" such
that ¢*(T") =¢ ClearlyT* < oo Consider now an arbitrary T € (T oo) and definite the extraction
path g(t) = ¢*(t) + («*(T)/T) ¥ t € (0T} where, by definition, z*(T) = 7o — f; ¢"(t)dt. Clearly, the
path is feasible and has the property U(q(t)) > U(q™(t)) Vt € [0T] Since U{g*(t)) < 0V te[T 00),
this in turn implies

T T o 00
/0 Ulg(t))e *dt > /0 U(gx(t))e ®dt + /7 Ul(gx(t))e ®dt = /0 U(gx(t))e ®dt .
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Clearly this contradicts that g™(¢) is optimal with T = co Next, since optimal T' < 0o, the transversality
condition ensures that optimal ¢(T') =73

PROPOSITION 2.3. (i) Ifan optimal solution to the control problem of Section 1 exists for a
Type III utility function, optimal T is always infinite (i) If gi_rg U'(q) < oo, however, there exists a

T < oo such that along the optimal path z(T") = 0

PROOF. (i) Since U(g(t)) > 0 always, unboundedness of the optimal time (planning) horizon is
obvious from (2 5) (ii) Choose T~ such that U’(0) = Ae *T" Since U'(q) < 0o ¥ ¢ >0, sucha T"
exists and 0 < T™ < co Now define the linear transformation V' (¢) = U(gq) — U(0) Clearly V(q) is a
non-negative, strictly concave utility function such that V(0) =0, oo > V'(q) = U’(¢) > 0, and
V"(q)=U"(q) <0V ¢>0 Now if we replace U(q) by V(q) in the control problem of Section I,
Proposition 2 1 ensures that the optimal planning horizon for the new problem is T and the optimal
extraction rate until T is exactly the same as that of the original problem Clearly then 2(T™) = 0.

The intuitive explanation of the preceding proposition lies in distinguishing between the extraction
and planning horizons While T is the planning horizon, extraction horizon is the period during which a
positive amount of the resource is extracted As long as positive additions to the utility stream are
possible - as is indeed the case with Type III utility function - there can be no limit to the length of the
planning horizon On the other hand, positive extraction may last only as long as the present value of
benefits from extraction (which decline continuously) is at least as large as the cost or shadow price, A, of
extraction If the utility function is such that this is possible only for a finite period of time, then
extraction must come to a half after a finite period of time

Before concluding, we must note that Vousden [2] also puts forward similar results But the
proofs presented here are considerably different and, we believe, much simpler.
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