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ABSTRACT. We introduced strong M-starshaped metric spaces. For these spaces, we obtained
two fixed-point theorems generalizing a result of W. G. Dotson, and two theorems extending and

subsuming several known results on the existence of fixed points of best approximation.
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1. INTRODUCTION.

Let X be a metric space, T: X—.X. K and D subsets of X, and p € X. T is y-nonexpansive
on D if d(Tz,Ty)<d(r,y) for every z,y € D with d(x,y)<5. T is y-contraction on D if
d(Tx,Ty) < Md(z,y) for some A €[0,1) and for every x,y € D with d(r,y) <v. X is a v-chainable
metric space if for any pair 2,y € X, there exists a finite chain of points ry.ry, + + <, 2, _, 2, in X
with ry=u and x, =y such that d(z,_,.0) <5 for 1=1,2,---,n. The sct of best K-
approximations to p, denoted by By(p), is the set of all 2 € K such that d(z, p) = §(p, K), where
8(p,K) = inf. ¢ gd(z.p).

Brosowski [1] proved that if X is a noimed linear space, T: X—X is nonexpansive with a
fixed point p. A C X with T(K)C K. then T las a fixed point in By(p) provided that By(p) is
nonempty, compact and convex. Singh ([6], Theorem 1) relaxed the convexity of By(p) be
starshapedness. However, Hicks and Humphries ([4], p. 221) showed that the conclusion of
Singh’s result still holds whenever T(K)C K is replaced by T(OK)C K. Subrahmanyam ([8],
Theorem 3) proved that if X is a normed linear space, T: X—X is §(p, K )-nonexpansive with a
fixed point p, K C X with T(K) C K. then T has a fixed point in By(p) provided that K is a
finite-dimensional subspace of X. However, Singh ([7), Theorem 1) showed that the conclusion of
Subrahmanyam’s result still holds whenever the finite-dimensionality of K is replaced by the
following conditions:

(1)  Bg(p) is nonempty. compact and starshaped, and

(i1) T is continuous on By(p).

Recently, Sahab and Khan ([5]. Theorem 3.1) showed that Singh’s second result still holds
whenever X is a strong convex metric space (sce Definition 3.1 below).

Our aim, in this paper. is to establish results extending and subsuming the above best

approximation results. To do this. we introduce M-starshaped and strong M -starshaped metric
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spaces. Convex and starshaped metric spaces of Takahashi (9] are examples of A -starshaped
metric spaces. Then we obtained two fixed-point theorems generalizing a result of W. G. Dotson.
We prove the first using a result of M. Edelstein and the second using Banach’s contraction
principle. Using the first theorem, we established our results on the existence of fixed points of
best approximation.

For later use. we state the following result of M. Edelstein ({3], Theorem 5.2).

THEOREM 1.1. Let D be a complete and 4-chainable metric space. If S:D—-D is 7-
contraction, then S has a unique fixed point in D.
2. FIXED POINTS IN STRONG M-STARSHAPED METRIC SPACES.

DEFINITION 2.1. Let X be a metric space. M C X and I =[0.1].

(a) X is M-starshaped if there exists a mapping W: X x M x - X satisfying

d(z,W(y,q,A)) < Ad(2,y) + (1 — A)d(z.q)

for every x,y € X, all g€ M and all A e 1.
(b) X is strong M-starshaped if it is M-starshaped and W satisfies

d(W(z,q,1),W(y.q,})) < Ad(z,y)

for every z,y € X, all g€ M and all A€ I.
(¢) X is (strong) convex if it is (strong) X-starshaped. X is starshaped if it is {g}-
starshaped for some ¢ € X.

Convex and starshaped metric spaces were introduced by Takahashi [9]. Each normed linear
space X is a strong convex metric space with W defined by W(z,q,A) = Az + (1 — A)gq for every
z,g€ X and all A€ I.

DEFINITION 2.2. Let X be a M-starshaped metric space. A subset D of X is ¢-starshaped
if there exists ¢ € DN M with W(Dx{¢}xI)C D. A g-starshaped subset of a convex metric
space is called starshaped.

THEOREM 2.3. Let X be a strong M-starshaped metric space and DC X. If D is
compact, y-chainable and ¢-starshaped, and T: D—D is y-nonexpansive, then T has a fixed point
in D.

PROOF. For each positive integer n, let A\, = =2~ and T,z = W(Tz,q,A,) for all z€ D.

n+1
By the y-nonexpansiveness of T on D, each T, satisfies

d(T,x,Ty) = d(W(Tx,q,2,),W(Ty,q,,)) < Xod(Tz, Ty) < A d(z,y)
for every z,y € D with d(z,y) < 7. Note that D is g-starshaped and T: D—D. So each T, is a v-

contraction selfmap of D. Since D is y-chainable, Theorem 1.1 shows that each T,, has a unique
fixed point z, € D. By the compactness of D, there exists a subsequence {zn‘} of {z,} with

lim,_,oo:c,,’ =zy € D. Since

d(T‘Tn“‘Tn') = d(T:l'"t,I/V(T.l'"', q, An')) < (1 - ’\n')d(TIn'f Q)

for all ¢, then lim,dmd(Tr,,l,z,,')=0. Now, the ~-nonexpansiveness of 7" on D implies its
continuity, and hence z is a fixed point of 7. O

The following is a result of Dotson ([2], Theorem 1).

COROLLARY 2.4. Let X be a normed linear space and D C X. If D is compact and

starshaped and if T: D—D is nonexpansive, then T has a fixed point in D.
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PROOF. For every 7 > 0. D is y-chainable and T is ~4-nonexpansive. O

THEOREM 2.5. Let X be a strong M-staishaped metric space and D C X. If D is compact
and g-starshaped and if T: D— D is nonexpansive, then T has a fixed point in D.

The proof of Theorem 2.5 is similar to the one given for Theorem 2.3; however, we use
Banach's contraction principle instead of Theorem 1.1, Note that Corollary 2.4 follows also from
Theorem 2.5.

3. BEST APPROXIMATION IN STRONG M-STARSHAPED METRIC SPACES.

LEMMA 3.1. Let X be a strong M-starshaped metric space, K C X and p € X. If Bg(p) is
¢-starshaped, then B (p) is é(p, K')-chainable.

PROOF. For z.y € By(p). let

Tp=2, I = U'(I, q. %) Lry = W(y, q %) , T3 =Y.
Since Bpg(p) is ¢-starshaped. then ug.ay,0, 04 belong to Bp(p). Now, the strong M-

starshapedness of X implies that

d(zg, 1y) = d(r, W(l'. q. %)) < % d(z,q) < é(p, K),

d(z,,2,) = d(W(x, q, %), VV(y, q %)) < % d(z,y) < é(p, k),

Ay = d(W(y. 4. §)v) < 3 dtyog) < 60 1),
Therefore By(p) is é(p, X)-chainable. O
LEMMA 32. Let X be a M-starshaped metric space, K C X and pe€ X. Then
By(p) COKNK.
PROOF. Let y € Bi(p) and let A\, =

nill- 1 for each positive integer 7. Then

d(p» lV(.U# p, ’\n)) S ’\nd(p»y) < 6(1)7 I\')

which implies that W(y, p,),) ¢ K for every n. Since

d(y, Wy, p,An)) < (1= A)d(y.p) = (1 - X.)é(p, )
for all n, then lim,_ W(y,p,A,) =y. So each neighborhood of y contains at lcast one W(y, p,A,.),
hence y € K. O

THEOREM 3.3. Let X be a strong M-starshaped metric space, T: X—X, K C X, and
p€ X a fixed point of T. If By(p) is compact and g¢-starshaped, T(K) C I, and T is §(p, K)-
nonexpansive on By(p)U {p}, then T has a fixed point in By(p).

PROOF. Let y€ By(p). Then Ty € K and, by the §(p. K)-nonexpansiveness of T on
By(p)U{p}, d(Ty,p) <d(y,p). Thus Ty € By(p) and so T: Bg(p)—Bg(p). Now, Theorem 2.3,
with D = Bg(p), and Lemma 3.1 show that T has a fixed point in Bg(p). O

THEOREM 34. Let X be a strong A -starshaped metric space, T:X—X,K C X, and
pEM a fixed point of T. If Bg(p) is compact and g-starshaped, T(OK NK)C K, and T is
8(p, K )-nonexpansive on B (p) U {p}, then T has a fixed point in By(p).

PROOF. Let y € Bg(p). Then y € K NN by Lemma 3.2. Since T(JK NK) C K, then
Ty e K. Now, the §(p, K)-nonexpansiveness on Bg(p)U {p} implies that Ty € By(p). Therefore
T:By(p)—Bg(p). Now, Theorem 2.3. with D = B(p), and Lemma 3.1 show that T has a fixed
point in By (p). O
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COROLLARY 3.5. Let X be a strong couvex metric space, T: X=X, N C X, and p€ X a
fixed point of T. If B,(p) is compact and starshaped, TOKNK)C K. aud T is §(p.K)-
nonexpansive on B(p)U {p}, then T has a fixed point in By (p).

All best approximation results mentioned in section 1 follow from Corollary 3.5. Moreover,
if T(OK NK) C K is replaced by T(K) C K iu Corollary 3.5. we will have Sahab and Khan result
(5], Theorem 3.1) and it will follow from Theoiem 3.3. Note that their assumption for the

continuity of 7 ou B (p) is implied by the §(p, ')-nonexpansiveness of T on B, (p)U {p}.
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