

**BEST APPROXIMATION AND FIXED POINTS IN
STRONG M-STARSHAPED METRIC SPACES**

M. A. AL-THAGAFI

Department of Mathematics
King Abdul Aziz University
P. O. Box 30608, Jeddah 21487, Saudi Arabia

(Received January 11, 1994)

ABSTRACT. We introduced strong M -starshaped metric spaces. For these spaces, we obtained two fixed-point theorems generalizing a result of W. G. Dotson, and two theorems extending and subsuming several known results on the existence of fixed points of best approximation.

KEY WORDS AND PHRASES. Best approximation, strong M -starshaped metric spaces, fixed points.

1991 AMS SUBJECT CLASSIFICATION CODES. 41A65, 54H25, 47H10.

1. INTRODUCTION.

Let X be a metric space, $T: X \rightarrow X$, K and D subsets of X , and $p \in X$. T is γ -nonexpansive on D if $d(Tx, Ty) \leq d(x, y)$ for every $x, y \in D$ with $d(x, y) \leq \gamma$. T is γ -contraction on D if $d(Tx, Ty) \leq \lambda d(x, y)$ for some $\lambda \in [0, 1)$ and for every $x, y \in D$ with $d(x, y) \leq \gamma$. X is a γ -chainable metric space if for any pair $x, y \in X$, there exists a finite chain of points $x_0, x_1, \dots, x_{n-1}, x_n$ in X with $x_0 = x$ and $x_n = y$ such that $d(x_{i-1}, x_i) \leq \gamma$ for $i = 1, 2, \dots, n$. The set of best K -approximations to p , denoted by $B_K(p)$, is the set of all $x \in K$ such that $d(x, p) = \delta(p, K)$, where $\delta(p, K) = \inf_{z \in K} d(z, p)$.

Brosowski [1] proved that if X is a normed linear space, $T: X \rightarrow X$ is nonexpansive with a fixed point p , $K \subset X$ with $T(K) \subset K$, then T has a fixed point in $B_K(p)$ provided that $B_K(p)$ is nonempty, compact and convex. Singh ([6], Theorem 1) relaxed the convexity of $B_K(p)$ by starshapedness. However, Hicks and Humphries ([4], p. 221) showed that the conclusion of Singh's result still holds whenever $T(K) \subset K$ is replaced by $T(\partial K) \subset K$. Subrahmanyam ([8], Theorem 3) proved that if X is a normed linear space, $T: X \rightarrow X$ is $\delta(p, K)$ -nonexpansive with a fixed point p , $K \subset X$ with $T(K) \subset K$, then T has a fixed point in $B_K(p)$ provided that K is a finite-dimensional subspace of X . However, Singh ([7], Theorem 1) showed that the conclusion of Subrahmanyam's result still holds whenever the finite-dimensionality of K is replaced by the following conditions:

- (i) $B_K(p)$ is nonempty, compact and starshaped, and
- (ii) T is continuous on $B_K(p)$.

Recently, Sahab and Khan ([5], Theorem 3.1) showed that Singh's second result still holds whenever X is a strong convex metric space (see Definition 3.1 below).

Our aim, in this paper, is to establish results extending and subsuming the above best approximation results. To do this, we introduce M -starshaped and strong M -starshaped metric

spaces. Convex and starshaped metric spaces of Takahashi [9] are examples of M -starshaped metric spaces. Then we obtained two fixed-point theorems generalizing a result of W. G. Dotson. We prove the first using a result of M. Edelstein and the second using Banach's contraction principle. Using the first theorem, we established our results on the existence of fixed points of best approximation.

For later use, we state the following result of M. Edelstein ([3], Theorem 5.2).

THEOREM 1.1. Let D be a complete and γ -chainable metric space. If $S:D \rightarrow D$ is γ -contraction, then S has a unique fixed point in D .

2. FIXED POINTS IN STRONG M -STARSHAPED METRIC SPACES.

DEFINITION 2.1. Let X be a metric space, $M \subset X$ and $I = [0, 1]$.

(a) X is M -starshaped if there exists a mapping $W:X \times M \times I \rightarrow X$ satisfying

$$d(x, W(y, q, \lambda)) \leq \lambda d(x, y) + (1 - \lambda) d(x, q)$$

for every $x, y \in X$, all $q \in M$ and all $\lambda \in I$.

(b) X is strong M -starshaped if it is M -starshaped and W satisfies

$$d(W(x, q, \lambda), W(y, q, \lambda)) \leq \lambda d(x, y)$$

for every $x, y \in X$, all $q \in M$ and all $\lambda \in I$.

(c) X is (strong) convex if it is (strong) X -starshaped. X is starshaped if it is $\{q\}$ -starshaped for some $q \in X$.

Convex and starshaped metric spaces were introduced by Takahashi [9]. Each normed linear space X is a strong convex metric space with W defined by $W(x, q, \lambda) = \lambda x + (1 - \lambda)q$ for every $x, q \in X$ and all $\lambda \in I$.

DEFINITION 2.2. Let X be a M -starshaped metric space. A subset D of X is q -starshaped if there exists $q \in D \cap M$ with $W(D \times \{q\} \times I) \subset D$. A q -starshaped subset of a convex metric space is called starshaped.

THEOREM 2.3. Let X be a strong M -starshaped metric space and $D \subset X$. If D is compact, γ -chainable and q -starshaped, and $T:D \rightarrow D$ is γ -nonexpansive, then T has a fixed point in D .

PROOF. For each positive integer n , let $\lambda_n = \frac{n}{n+1}$ and $T_n x = W(Tx, q, \lambda_n)$ for all $x \in D$. By the γ -nonexpansiveness of T on D , each T_n satisfies

$$d(T_n x, T_n y) = d(W(Tx, q, \lambda_n), W(Ty, q, \lambda_n)) \leq \lambda_n d(Tx, Ty) \leq \lambda_n d(x, y)$$

for every $x, y \in D$ with $d(x, y) \leq \gamma$. Note that D is q -starshaped and $T:D \rightarrow D$. So each T_n is a γ -contraction selfmap of D . Since D is γ -chainable, Theorem 1.1 shows that each T_n has a unique fixed point $x_n \in D$. By the compactness of D , there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ with $\lim_{i \rightarrow \infty} x_{n_i} = x_0 \in D$. Since

$$d(T x_{n_i}, x_{n_i}) = d(T x_{n_i}, W(T x_{n_i}, q, \lambda_{n_i})) \leq (1 - \lambda_{n_i}) d(T x_{n_i}, q)$$

for all i , then $\lim_{i \rightarrow \infty} d(T x_{n_i}, x_{n_i}) = 0$. Now, the γ -nonexpansiveness of T on D implies its continuity, and hence x_0 is a fixed point of T . \square

The following is a result of Dotson ([2], Theorem 1).

COROLLARY 2.4. Let X be a normed linear space and $D \subset X$. If D is compact and starshaped and if $T:D \rightarrow D$ is nonexpansive, then T has a fixed point in D .

PROOF. For every $\gamma > 0$, D is γ -chainable and T is γ -nonexpansive. \square

THEOREM 2.5. Let X be a strong M -starshaped metric space and $D \subset X$. If D is compact and q -starshaped and if $T: D \rightarrow D$ is nonexpansive, then T has a fixed point in D .

The proof of Theorem 2.5 is similar to the one given for Theorem 2.3; however, we use Banach's contraction principle instead of Theorem 1.1. Note that Corollary 2.4 follows also from Theorem 2.5.

3. BEST APPROXIMATION IN STRONG M -STARSHAPED METRIC SPACES.

LEMMA 3.1. Let X be a strong M -starshaped metric space, $K \subset X$ and $p \in X$. If $B_K(p)$ is q -starshaped, then $B_K(p)$ is $\delta(p, K)$ -chainable.

PROOF. For $x, y \in B_K(p)$, let

$$x_0 = x, \quad x_1 = W\left(x, q, \frac{1}{2}\right), \quad x_2 = W\left(x_1, q, \frac{1}{2}\right), \quad x_3 = y.$$

Since $B_K(p)$ is q -starshaped, then x_0, x_1, x_2, x_3 belong to $B_K(p)$. Now, the strong M -starshapedness of X implies that

$$d(x_0, x_1) = d\left(x, W\left(x, q, \frac{1}{2}\right)\right) \leq \frac{1}{2} d(x, q) \leq \delta(p, K),$$

$$d(x_1, x_2) = d\left(W\left(x, q, \frac{1}{2}\right), W\left(x_1, q, \frac{1}{2}\right)\right) \leq \frac{1}{2} d(x, x_1) \leq \delta(p, K),$$

$$d(x_2, x_3) = d\left(W\left(x_1, q, \frac{1}{2}\right), y\right) \leq \frac{1}{2} d(x_1, y) \leq \delta(p, K).$$

Therefore $B_K(p)$ is $\delta(p, K)$ -chainable. \square

LEMMA 3.2. Let X be a M -starshaped metric space, $K \subset X$ and $p \in X$. Then $B_K(p) \subset \partial K \cap K$.

PROOF. Let $y \in B_K(p)$ and let $\lambda_n = \frac{n}{n+1}$ for each positive integer n . Then

$$d(p, W(y, p, \lambda_n)) \leq \lambda_n d(p, y) < \delta(p, K)$$

which implies that $W(y, p, \lambda_n) \notin K$ for every n . Since

$$d(y, W(y, p, \lambda_n)) \leq (1 - \lambda_n) d(y, p) = (1 - \lambda_n) \delta(p, K)$$

for all n , then $\lim_{n \rightarrow \infty} W(y, p, \lambda_n) = y$. So each neighborhood of y contains at least one $W(y, p, \lambda_n)$, hence $y \in \partial K$. \square

THEOREM 3.3. Let X be a strong M -starshaped metric space, $T: X \rightarrow X$, $K \subset X$, and $p \in X$ a fixed point of T . If $B_K(p)$ is compact and q -starshaped, $T(K) \subset K$, and T is $\delta(p, K)$ -nonexpansive on $B_K(p) \cup \{p\}$, then T has a fixed point in $B_K(p)$.

PROOF. Let $y \in B_K(p)$. Then $Ty \in K$ and, by the $\delta(p, K)$ -nonexpansiveness of T on $B_K(p) \cup \{p\}$, $d(Ty, p) \leq d(y, p)$. Thus $Ty \in B_K(p)$ and so $T: B_K(p) \rightarrow B_K(p)$. Now, Theorem 2.3, with $D = B_K(p)$, and Lemma 3.1 show that T has a fixed point in $B_K(p)$. \square

THEOREM 3.4. Let X be a strong M -starshaped metric space, $T: X \rightarrow X$, $K \subset X$, and $p \in M$ a fixed point of T . If $B_K(p)$ is compact and q -starshaped, $T(\partial K \cap K) \subset K$, and T is $\delta(p, K)$ -nonexpansive on $B_K(p) \cup \{p\}$, then T has a fixed point in $B_K(p)$.

PROOF. Let $y \in B_K(p)$. Then $y \in \partial K \cap K$ by Lemma 3.2. Since $T(\partial K \cap K) \subset K$, then $Ty \in K$. Now, the $\delta(p, K)$ -nonexpansiveness on $B_K(p) \cup \{p\}$ implies that $Ty \in B_K(p)$. Therefore $T: B_K(p) \rightarrow B_K(p)$. Now, Theorem 2.3, with $D = B_K(p)$, and Lemma 3.1 show that T has a fixed point in $B_K(p)$. \square

COROLLARY 3.5. Let X be a strong convex metric space, $T: X \rightarrow X$, $K \subset X$, and $p \in X$ a fixed point of T . If $B_K(p)$ is compact and starshaped, $T(\partial K \cap K) \subset K$, and T is $\delta(p, K)$ -nonexpansive on $B_K(p) \cup \{p\}$, then T has a fixed point in $B_K(p)$.

All best approximation results mentioned in section 1 follow from Corollary 3.5. Moreover, if $T(\partial K \cap K) \subset K$ is replaced by $T(K) \subset K$ in Corollary 3.5, we will have Sahab and Khan result ([5], Theorem 3.1) and it will follow from Theorem 3.3. Note that their assumption for the continuity of T on $B_K(p)$ is implied by the $\delta(p, K)$ -nonexpansiveness of T on $B_K(p) \cup \{p\}$.

REFERENCES

1. BRODOWSKI, B., Fixpunktsätze in der approximations-theorie, *Mathematica (Cluj)* **11** (1969), 195-220.
2. DOTSON, JR., W.G., On fixed points of nonexpansive mappings in nonconvex sets, *Proc. Amer. Math. Soc.* **38** (1973), 155-156.
3. EDELSTEIN, M., An extension of Banach's contraction principle, *Proc. Amer. Math. Soc.* **12** (1961), 7-10.
4. HICKS, T.L. and HUMPHRIES, M.D., A note on fixed-point theorems, *J. Approx. Theory* **34** (1982), 221-225.
5. SAHAB, S.A. and KHAN, M.S., Best approximation in spaces with convex structure, *Bull. Inst. Math. Acad. Sinica* **17** (1989), 59-63.
6. SINGH, S.P., An application of a fixed point theorem to approximation theory, *J. Approx. Theory* **25** (1979), 89-90.
7. SINGH, S.P., Applications of fixed point theorems in approximation theory, *Applied Nonlinear Analysis* (Ed., V. Lakshmikantham), Academic Press, New York (1979), 389-397.
8. SUBRAHMANYAM, P.V., An application of a fixed point theorem to best approximation, *J. Approx. Theory* **20** (1977), 165-172.
9. TAKAHASHI, W., A convexity in metric spaces and nonexpansive mappings, *Kodai Math. Sem. Rep.* **22** (1970), 142-149.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru