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ABSTRACT. Let K be a non-archimedean non-trivially valued complete field. In this

paper we study Banach spaces over K. Some of main results are as follows:

(1) The Banach space BC((lw)l) has an orthocomplemented subspace linearly homeomorp-
hic to o+

(2) The Banach space BC((co)l) has an orthocomplemented subspace linearly homeomorp-
hic to 1 .
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1. INTRODUCTION.

Throught this paper K is a non-archimedean non-trivially valued complete field
with a valuation | |, and E, F are Banach spaces over K with a non-archimedean norm
denoted by I . Let L(E,F) be the space consisting of all continuous linear maps of
E to F. The dual space of E is E'=L(E,K). The dual operator T'eL(F',E') of TeL(E,F)
is defined as usual. If there exists a linear isometry from E onto F, then E and F
are said to be isomorphic and we denote E~F. For a Banach space E, if there exists
a (ortho)complemented subspace of F which is isomorphic to E, then E is said to be
(ortho)complemented in F. Let S be a topological space and let BC(S) be the Banach

space consisting of all bounded continuous functions S + K with a norm
If1=sup{|[£(s)| : seS} (feBC(S)). (1.1)

Let E" be the second dual Banach space of E and let Jg : E » E" be the natural map.

DEFINITION. If Jg is linearly homeomorphic from E into E", then E is said to
be polar (see [6]).

DEFINITION. A Banach space E is said to be strongly polar if every continuous
seminorm p on E satisfies the following equality (see [71).

p=sup{|f| : feE', [£[sp} (1.2)

These spaces were first introduced by Schikhof [5] for locally convex topologi-
cal spaces over K and were studied by some authors (e.g. [1], [2]).

DEFINITION. Let D be a subspace of E. If every x'eD' has an extension ;'eE',
then D has the weak extension property in E. In addition, if X' can be chosen such
that l;'l=lx'l, then we say that D has the extension property in E.

For any r>0 we put E={x€E : Ixlsr}. Let m denote an arbitrary fixed element of
K with 0<|ﬂ|<1. Other terms will be used as in Rooij [4]. In this paper we deal with
complemented subspaces of BC((E')l) and E". Throught this paper, when we consider a
subset (E'), (r>0) of E', (E')t is assumed to have the weak * topology. In section 2
we show that there exists a Banach space E such that BC((lm)l) is linearly homeomor-

phic to co @ E. And in section 3, we show that there exists a Banach space F such
that BC((co)l) is linearly homeomorphic to 1 @ F:



438 T. KIYOSAWA

2. COMPLEMENTED SUBSPACES OF BC(S).
For every TeL(E,BC(S)), for every seS and for every xeE, let

(bp(s))(x)=(T(x))(s). (2.1)

Then the map Yp(s) is a linear functional on E. Since Iyq(s)IsSITI, vp(s)e(E' ) ypy-
Hence yp is a weak * continuous map from S to (E')q. Conversely, for every weak *

continuous map § : S > (E')r (r>0), let
(Tw(x))(5)=(w(5))(x) (xeE, seS). (2.2)

Then TW(X) is a map from S to K. Since for each xeE
sup{[(Tw(x))(s)| : seS}srixl, (2.3)

Tw(x)eBC(S). Hence T, is a linear map from E to BC(S). By (2.3), IT,bsr. It follows
that TyeL(E,BC(S)).
For the natural map Jg : E » E" and for every xeE, let RE(x) denote the restri-
ction of JE(x) to (E')l, that is,
RE(x)=JE(X)'(E')1- (2.4)
Then Rg is a linear map from E into BC((E')l). Since for every xeE
IRg(x) t=sup{ [ (Rg(x))(x')| : x'e(E");}
ssup{lx"Ixl : x'e(E')q} (2.5)
shxll,
we have IRgIsl and RpeL(E,BC((E')q)).
The next theorem follows from Schikhof ([7].
THEOREM 1. Let E be a strongly polar Banach space and let D be a closed sub-
space of E. Then for each €>0, each feD' can be extended to an feE' with |£(x) |

s(1+e)ufiixt (xeE).

A norm | Hp on E is said to be polar if
i tp=sup{|f| : feE', [£[sN Mp}. (2.6)

We recall that if E is polar, then there exists a polar norm i lp on E such that it
is equivalent to the original norm | | (see [1, p.75]), and so there exists a real
number d (d21) such that for every xeE Ix1Sixlpsdixh.

THEOREM 2. Let E be a polar Banach space. Then there exists a real number c
(c>1) satisfying the following (1) and (2).

(1) For each finite-dimensional subspace D of E and for each feD' there exists an
extension feE' such that IEKSclfl.

(2) For each finite-dimensional subspace D of E there exists a projection P : E + D
with NPlsc.

PROOF. (1) Since feD', it is trivial that fe(D,| Ip)'. Let €>0 be an arbitrar-
ily given real number and put c=(1+e)d. By Theorem 2.1 in Garcia [1], there exists
an extension fe(E, | Ip)' such that Iflps(l+e)nflp. Then we have that Nfl/ds(1+e)lfll.
(2) Using again Theorem 2.1 in [1], there exists a projection P : E » D such that
IPlpsl+e. It follows that [PIsdiPlpsc.

THEOREM 3. If E is a polar space, then RE is a linear homeomorphism. And if

the norm on E is polar, then Ry is a linear isometry.
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PROOF. In section 1, it is proved that for all xeE
IRg(x)IsixI. 2.7)

Note that for every x'eE', x'#0, there exists an integer m with |ﬂ|m+15ux'l5|ﬂ|m.
then

[]———— s[v| ™|x" ) |=| (™" )(x) |
"X'" (2-8)

=[(Rg(x)) (v ™x ") | SIR(x)1.
From (2.7) and (2.8) it follows that
[7[1IgGOISIRE(x) IS X . (2.9)

Since E is polar, JE is a homeomorphism, so is RE' Next, if the norm § I of E is

polar, then for all xeE we have

Ixl=sup{|x'(x)| : x'eE', Ix'lsl}
(2.10)
=sup{|x'(x)| : x'e(E'){}=IRg(x)}.
Therefore Rg is a isometry.
COROLLARY 4. (1) For any strongly polar space E, Rg is a linear isometry.
(2) For any topological space S, RBC(S) is a linear isometry.

THEOREM 5. For every TeL(E,BC(S)), there exists a TeL(BC((E')l),BC(S)) such
that ToRE=T. In particular, if ITI=1, then T satisfies ITI=1.

PROOF. At first, we notice that (E'), is supposed to carry the weak * topol-
ogy. To show theorem, we may assume that [TISl. Then Yr is a weak * continuous map
from S into (E')l. Define

T : BC((E');) » BC(S), (2.11)

by
T(£)=fop,, (feBC(E')1)). (2.12)
For every xeE and for every seS, we have

(T(Rg(x)) (s)=(Rg(x)) (Wp(s))=(vp(s)) (x)=(T(x))(s). (2.13)
Then T“RE=T. Further,

- sup{[£(bp(s))| : seS}
ITI=sup{ T : £feBC((E');)}
s1. (2.14)

Hence if ITI=1, then
1=ITISIToRGASATHIRGISITISI. (2.15)

The proof is complete.

LEMMA 6. Let E, F and X be Banach spaces. Let A : E + X be a linear homeomor-
phism onto X and H : E + F be a linear homeomorphism into F. If there exists an Ae
L(F,X) such that AoH=A, then the closed subspace H(E) of F is complemented. In par-
ticular, if A and H are linear isometries and IKI=1, then E is orthocomplemented in
F.

PROOF. Put P=HoA™loA : F » H(E)<F. Then P is a projection onto H(E). If A and
H are linear isometries and IKI=1, then IPIS1. Hence P is an orthoprojection.

THEOREM 7. Let E be of countable type. Then Rp(E) is complemented in BC((E');)
Especially, cq is orthocomplemented in BC((ln)l).
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PROOF. If E is finite-dimensional, then the assertion of this theorem is clear.
Hence we may assume E is infinite-dimensional. Since E is of countable type, E is a

polar space. Then by Theorem 3 the map Rg : E » BC((E')I) is a linear homeomorphism

into BC((E')). Further, since E is infinite-dimensional, for an infinite compact
ultrametrizable space S, E is linearly homeomorphic to BC(S) (see [4, p-190]). Let
Hy : E > BC(S) be a linear homeomorphism onto BC(S). By Theorem 5, there exists an

ﬁoeL(BC((E')l),BC(S)) such that EOORE=H0. Hence by Lemma 6, RE(E) is complemented in
BC((E')l). If E=cg, then the above Hj can be taken as a linear isometric from cg

onto BC(S). Since cy is strongly polar, by Corollary 4, the map Rco is linearly is-

ometric. Hence by Theorem 5, there exists an ﬁoeL(BC(((co)')l). BC(S)) with l§0|=1.
Thus, by Lemma 6, Rco(co) is orthocomplemented in BC(((CO)')l). Since (co)'~lw,
BC(((cO)')1)~BC((1m)1). Hence c is orthocomplemented in BC((lm)l).

The following corollary follows immediately from Theorem 7.

COROLLARY 8. Let E be of countable type. Then there exists a Banach space X
such that BC((I“)]_) and E @ X are linearly homeomorphic.

Since ¢y is linearly isometric to some BC(S), the second part of Theorem 7 is
a special case of the following corollary.

COROLLARY 9. For any topological space S, let E=BC(S). Then E is orthocomple-
mented in BC((E')).

PROOF. Let I : E » BC(S) be the identity. Then there exists an feL(BC((E')l),
BC(S)) such that IeRg=1 and ITI=1Ti=1. By Corollary 4, Rp : E » BC((E');) is linea-
rly isometric. Put P=REoI-lof. Then P is an orthoprojection of BC((E');) onto Rg(E).
Hence E is orthocomplemented in BC((E');).

COROLLARY 10. The Banach space BC((cn);) contains an orthocomplemented sub-

0’1 P

space linearly homeomorphic to 1°. In particular if K is spherically complete, then
the Banach space BC((cO)l) contains an orthocomplemented subspace linearly isometric
to 17,

PROOF. Suppose that K is not spherically complete. Applying the extended ver-
sion of Corollary 9 to S=N (N denotes the set of all natural numbers) and observing
that E=1" and E'~cg, we can obtain this corollary. Furthermore, if K is spherically
complete, then so is lw; it follows easily that the second part holds.

3. COMPLEMENTED SUBSPACES IN SECOND DUAL SPACES.

Let TeL(E,F'). Then T determins a map

¢p : F > E' (3.1)

defined by (¢T(y))(x)=(T(x))(y) (xeE, yeF). Clearly, ¢p is linear and N¢rUSITH.
Hence OTeL(F,E'). Let D be a closed subspace and let D! be the annihilator of D in
F', i.e. DI={x'eF' : x'(d)=0, deD}. A subset A of E is said to be compactoid if for
every €>0, there exists a finite subset X of E such that AcBe + Co(X), where Be=
{x€E : lIxlSe} and Co(X) is the absolutely convex hull of X. Let TeL(E,F). If T(El)
is compactoid in F, then T is said to be compact. A Banach space E is said to be (0)
-space if every TeL(E,cq) is compact.

PROPOSITION 11. Let E, F be Banach spaces and let D be a closed subspace of F.
Then for every TeL(E,D!), there exists a TeL(E",DY) such that TvJE=T and ITI=ITI.

PROOF. Let Jp: : E' > E" be the canonical 6ap. Define an operator
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T:E"»Dt (3.2)

by (T(x"))(y)=(Jg: (op(y))(x") (yeF, x"€E"). For every x"eE", T(x") is a linear fun-
ctional on F and IT(x")ISITINx"H, so T(x")eF'. For every yeD and for every xeE,

(¢T(y))(x)=(T(x))(y)=0. (3.3)

Hence (T(x"))(y)=0. This means that T(x")eDl. It follows that TeL(E",DL) and TIS

ITH. Further, for every xeE and for every yeF,

((To3g) () (9)=(Ig 1 (0p(y)) (Ig(x))

=(Jg(x)) (e7(¥)) (3.4)
=(¢p(y))(x)
=(T(x))(y).
Hence TeJp=T. Therefore we have
ITUSITIIIGISITI. (3.5)

Thus we complete the proof.

The following corollary is immediate from Proposition 11.

COROLLARY 12. Let E and F be Banach spaces. For every TeL(E,F'), there exists
a TeL(E",F') such that TeJg=T and ITI=ITI.

PROOF. In Proposition 11, put D={0}. Then D'=F'.

PROPOSITION 13. Let E be a Banach space and let D be a closed subspace of E.
If D is linearly homeomorphic (resp. isometric) to some dual space and is compleme-

nted (resp. orthocomplemented) in E, then Jp(D) is complemented (resp. orthocomple-
mented) in E". In particular, if K is not spherically complete and D is of countable
type and complemented in E, then JE(D) is complemented in E".

PROOF. Let D be a complemented closed subspace of E, linearly homeomorphic to
a dual Banach space F'. By Lemma 4.23, (ii) and (iii), in Rooij (4], Jp is a homeo-
morphism and there exists a projection of D" onto JD(D), so there is a QeL(D",D)
with QeJp=Ip (= the identity map of D). As D is complemented in E, there is a proj-
ection P : E > D. Then JpeQeP"eL(E",Jg(D)). As

" - "
(QoP") 0 Jg=Qe(P" o J)=Q=(JpoP) (3.6)
=(QoJp) o P=IoP=P,
for xeD we have
(JgoQeP") (J5(x))=Jg(P(x))=J5(x), (3.7)

so JgeQeP" is the identity on Jp(D). Thus JpoQeP" is a projection of E" onto Jg(D).
If D is orthocomplemented in E" and linearly isometric to F', we obtain I1QIS1l and
IPI<1, whence IJEoQoP"ISI. In particular, if K is not spherically complete and D is
of countable type, then D is linearly homeomorphic to (1“)' or Kn, where n is some
positive integer. Hence by the first assertion of this proposition, we can complete
the proof.

COROLLARY 14. Suppose K is not spherically complete. Let E be an infinite-di-
mensional polar space which is not a (0)-space and let F be an infinite-dimensional

Banach space of countable type. Then there exists a Banach space X such that E" is

linearly homeomorphic to F @ X.
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PROOF. By hypothesis, there exists an infinite-dimensional complemented sub-
space D of E which is of countable type (see [6, p.23]). It follows from Proposit-
ion 13 that there exists a subspace X of E'" such that E"=JE(D) @ X. Since E is a
polar space, JE is a linear homeomorphism. Therefore, JE(D) is of countable type.
Hence Jp(D) and F are linearly homeomophic, so E" is linearly homeomorphic to F @ X.

COROLLARY 15. The subspace Jp(E) of E" has the extension property in E".

PROOF. For every continuous linear x' : Jg(E) »+ K the function ;'=JEc(x'°JE)
is a continuous linear function E" + K extending x' and with Ix'ISIx'l, hence TUE
fx'n.

The following comment was given by the referee: From the proof of Corollary 15
we obtain a sort of '"simultaneous extension', a linear isometry x'w x' of (JE(E))'
onto E'" that assigns to every continuous linear function JE(E) + K an extension E"

+ K. Further, the following question was asked by him: Under what circumstances is

there an orthoprojection of E" onto (the closure of) Jg(E)?
COROLLARY 16. Let D be a closed subspace of E. If Jp has an extension T from
E into D". Then D has the weak extension property in E. In particular, if ITI=Jpl,

then D has the extension property in E.
PROOF. By Corollary 12, for every feD', there exists an feD" such that ?°JD=f
and Ifi=1fl. Put g=foT. Then geE' and g|D= f. Hence D has the weak extension prope-

rty in E. If ITH=IJDH, then by Corollary 12, for every xeE

[g(x)[=] (FoT)(x) [SHENUTHNXN (3.8)

=1EnnIpnaxasiEnx.

Hence it holds that IglSIEI=IfNsigl.
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