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Abstract. Sequential fixed-width confidence intervals are obtained for the
scale parameter o when the location parameter 6 of the negative exponen-
tial distribution is unknown. Exact expressions for the stopping time and the
confidence coefficient associated with the sequential fixed-width interval are
derived. Also derived is the exact expression for the stopping time of sequen-
tial point estimation with quadratic loss and linear cost. These are numerically
evaluated for certain nominal confidence coefficients, widths of the interval and
cost functions, and are compared with the second order asymptotic expressi-
ons.

Key words and phrases: Stopping time, exponential distribution, sequential
estimation of scale parameter.

1991 AMS Subject classification code 62L12

1 Introduction and Preliminaries.

Starr and Woodroofe [1] have considered the risk efficient estimation of the scale parameter o
when the location, 6, is zero and studied some of the first order properties of the sequential pro-
cedure. Govindarajulu and Sarkar [2] have considered the risk-efficient estimation of o when 4 is
unknown and studied the second order properties of the stopping time and the regret. Govindar-
ajulu [3] has studied the second order asymptotic properties of the fixed-width interval estimation
procedure for o when 8 is unknown. Mukhopadhyay [4] has considered risk efficient estimation of
the mean of a negative exponential distribution. Here we derive exact expressions for the stopping
time and confidence coeficient of the fixed-width interval estimation procedure and for the stopping
time associted with point estimation with quadratic loss and linear cost, and compare them with
the second order asymptotic expressions.

Let X;,Xs,..., be an i.i.d. sequence of random variables having the density:

f(z:0,0) = 0" exp{—(z — 0)/} for z > 8 and zero elsewhere, (1.1)

where —00 < § < 0o and o > 0.
We wish to estimate o by o, = & where

n

on =3 (Xi— X1,)/(n — 1) and Xy, = min(Xy,...,X,). (1.2)

1=1

From Epstein and Sobel ([5], Corollary 3) we have that
Yo=2n—-1)ou/o d X3(n-1) (1.3)

where xZ denotes a chi-square variable with k degrees of freedom.

2 Fixed-width Confidence Interval Estimation of o.
Let I, = (on — d,0, + d) where 6 = 0, is given by (1.2). Define for z > 0

P(z) = (2#)"% /: exp(—t%/2)dt . (2.1)
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Set (2) =1 —a for 0 < @ < 1/2 and let {z,} be an sequence of constants converging to z. In
particular, if z, is the (1 — a/2)* fractile of the t-distribution with n degrees of freedom, then

zn=2{1+n""Ao+o(n"")} with Ag = (1 + 2%)/4

(see, for instance, Woodroofe [6], p. 993)). Now, for large n (using the asymptotic normality of
(n— 1)1/2(‘771 —0))

P(o € I,) > 1 — a implies that ((n - 1)'/2d/¢7) > Y(z); orn > [P /d*] + 1, (2.2)

where [] denotes the largest integer contained in (-). Since o is unknown, then we resort to the
following sequential rule:

R:N
t

I

N(d) =t +1 where form > 2
inf{n > m:n> 2262/d%}. (2.3)

After stopping at N, the confidence interval for ¢ is given by
Iy = (UN —d,on + d) . (2.4)
The stopping rule (2.3) can be rewritten as
n
t=inf{n > m: S, =) U; < en®L(n)},

=1

where U, are i.i.d. as x2,c = 2d/oz,a = 3/2 and
1 -
L(n) =1+ (5 — Ao)/n + o(n h.

Now, we will state in Theorem 2.1 the gencral result of Woodroofe ([6], Theorem 2.4) which will
be used in the sequal.
THEOREM 2.1 Let F denote the distribution of U;. Assume that

F(z) < Bz®forallz >0

for some B > 0 and a > 0. (If the preceding condition is satisfied for all sufficiently small z, then it
is satisfied for all z with a possibly new B but the same a). Let E|X]| < oo for some r > 2. Also
assume that U; has a densitv f which is continuous a.e. and that some power of the characteristic
function of U, is integrable. If r(2a — 1) > 4 and ma > 3, then

E(t)=)+ %: —BLo - %cxﬂ"rz;f2 +o(1)

as ¢ — 0 where

v

gl U 4 77 = 37 B{(S, — naw)*)

B=(a=1)""p = EU,*= varU and A = (u/c)’.

Thus applying Theorem 2.1 with 8 = (a—1)"! =2,y = EU; = 2,7 = varU; =4,Lo = 1-Ag )=
WP, B2 =4 and v = £ — T2 'n " E(S, — 3n)*, we obtain

E(r) = (02/d)* + 280 — (3/2) = 3 n ™ E{(S» — 3n)*} (2.5)

n=1

Furthermore, if 2, denotes the (1 — a/2)™ fractile of the t-distribution with n degrees of freedom,
then (since Ao = (1 + 2%)/4))

E(r) - (02/d)? = (2/2) -1 i n U {(Sa = 3n)*} +o(1) as ¢ — 0. (2.6)

Also from Woodroofe ([6], p. 986) we have, after specializing from gamma to x3 density and
performing linear interpolation in his Table 2.1, we obtain
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i n_'E(b',. —3n)t = 1.438.
n=1
So
E(t) = (62/d)* + (2%/2) = 2438 + 0(1) as ¢ — 0. (2.7)
3 Exact Expressions for the Expectation of the Stopping

Time and the Confidence Coefficient.

In this section we derive the exact expressions for the stopping time and the confidence coeflicient
associted with the fixed-width confidence interval estimation and the stopping time associated with
point estimation. Towards this, we need the following lemmas. Throughout this section we assume
that z, = z.

Let A = (¢z/d)? and S, be the sum of i — 1 independent standard negative exponential random
variables and let

b = (1= 1)Y2/AV2 fori>m
1710 fori<m-—1.
Then the joint density of S;,_,,...,S% | is
{(m=2)Ye™ul"2 0 <tupoy < ... < Up_g < 0. (3.1)

Lemma 3.1. Let A,(u) = [;!_, A,—1(v)dv for j > m, where A,(u) = u*~?/(s~2)!,for2 < s < m.
Then

A =5 A, 2 s, (3:2)

By simple calculation the proof follows.
Lemma 3.2. We have, for j > m

P(t>j)=e"" {ZAI = 1)+1}

=3
with
P(t > m) _ /oo e-—u_u_’::i_du
- bm-l (m - 2) '
PROOF. P(t >m) = [° e (':,'.n-_zz) du.

Consider
P(t)]) P(S 1>bl lal—m) 7])

Since the b,’s and the S} are increasing in ¢, by Lemma 1, we have

. bt Uil fum
P(t ” ]) - /’-'J~1=bg-1 o Um=bm ~/um_1=b,.._1 P (S;'l € dul—lv ) S:n—l € dum-l)
o u m—2
- /w—;--b,_l m/u,,._]=b,,.-1 e (r;—z)ldu"‘“ld"m “duyy .
If we define

Ay(u) = /b’_z A, (v)dv
then
Vo= [ e A u)d
P(t>j) /bj_1 e " A,(u)du
= e h14,(b,-) +/b,-: e "A,_1(u)du

after performing integration by parts once. By repeated integration by parts process we obtain the
desired result.
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REMARK 3.1. Notice that P(I > i) =1for 0 <:<m—1sinceb_y=0forr=1,2,...m — 1.
REMARK 3.2. We compute the A, recursively using Lemima 3.1 and compute P(¢ > j) by using
Lemma 3.2 and using the latter one can compute

E(t)=m + f: Pt>j). (3.3)

J=m

An Exact Expression for the coverage Probability.

Here we derive an exact expression for the coverage probability. Towards this we nced the
following eleinentary result.
LEMMA 3.3. Let a(c) = (VA + ¢)2. Then

(n = 1)1 +¢/VA) < buoy
when n < [ny(c)] or when n > [n;(c)] + 1 where
ni(e) = (1/2){(a+4) +ai(a+4)}},
na(c) = (1/2){(a+4) - a}(a+4)}},

and [-] denotes the largest integer contained in (-).
Furthermore,

(i). na(c) < 1+4aifa>1/2,n3(c) > 1+ aifa <1/2, and
(ii). ny(c) > 1+ afor alla.
PROOF. The proof follows from solving the following equation
(n = DAL +¢/VA)? = (n—2)2.

In order to obtain (i) and (ii) solve the corresponding inequalities.
Let bi_y = (s — 1)i"/2/AV/2 i = m.... Then

o0

v = Y Plo-d<o,<o+d,t=n)
= Y P{n-1)(1-2/VX) <Siy <(n=1)(142/VD),
Sty >boam<i<n-—1,8_,< b,._l} . (3.4)

In order to evaluate v we consider the following ranges for the summation variable n.
Case 1. Let n be such that n1/2)\1/2 < (1 — z/+/}), that is

n<(Vi-2) orns[(VA-2)].

In this range the probability of each summand is zero.

Case 2. (1 —z/VX) <n'/?/AV/? < (14 2/VX). That is

Let
=(n-1)(1-2/VA) <8 <(n=1)(1+2/VA), Sy > by, m<i<n—1, Sy b,

P(I,l—vz_x<n‘/2/\1/2<1+z/ﬁ) =P((n-1)(1-2/VX) < S;_y < bpor, Siy > bi,

m<i<n—1).



ESTIMATION OF SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION 387

Case 3. n1/2/)\1/2> 1 +:/\/X<=>Tl> (\/X+z)20rn2 [(\/X‘{'z)z] + 1.

P(I,n"2\12 5 1 4 VX)) =P (n-1)(1- SIVA) S Si <=1 (142/VA),

Sry>boyym<.:<n-— 1) .

So
T=Entn (3.5)
where (V3+2)?]
7= ) P((n=1)(1=2/VX) <S5y < basy
n=max{m,[(vVA-z)2]+1}
Sy >boy,m<i<n-— 1) R (3.6)
and

P((n-1(1- z/VX) < S
n=1+[{(VA+2)?]
3.7)
* < r < - l) . (
S(n—l)(1+2/\/x) vSt—l >b"’l’m'_z =n

Furthermore, we can write

T2 =

[(VX+2)?]
m = 3 {P(Si-1>(n=1) (1= 2/V),

n=max{m,[(VA~-z)2]+1}

S, > bt,m 5i5n-1) ~ P(t >n)}

and
oo
m = > {PSiz2(n-1)(1-2/VA),8, > bgm<i<n—1

n=1+{(V +2)?]
~P (S > (n—=1)(1 4 2/VA), S0y > bogym i <n—1) } .

So

n+n = Y P(Sa>(-D(1-2/VA),SL > bam<i<n—1)

n=max{m,[(VA~2)2]+1}

-y P(S;>(m=1)(142/VA),5, > boyym<i<n—1)
n=1+[(V2+2)?]

[(V+2)?]
- 3 P(t>n)
n=max{m,[(VA~z)2]+1}
= T\ —T,—T; (say). (3.8)

If a(—z) > 1/2, then from Lemma 3.3 we have that n,(—z) > 1+a(—z) and ny(—2) < 14+a(-2).
Hence we can write

oo
Tl =
n=max{m, 1+[a(-2)]}
[r1(=2)] 0
n=max{1+[a(-2)], m}] n=[ny(-2)]+1
[n1(=2)]

_ ) P (St > (=1 (1=2/V3), 51 > by, m<i<n—1)
n=max{1+[a(-z)], m}

+ ). Pit>n-1). (3.9)

n=1+[n; (-2)]
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Note that if ny(—z)] < max{l + a(—z).m} then the contribution from the first summation is
zero, and the lower limit in the second summation should be max{1 + a(—=z),m}. This will be
further elaborated under “special case”. Also, since 1 + a(z) < n,(z), we can write

T, = > P(Sia>m-1)(1+2VR),S, > boam<i<n—1)
n=1+[(VA+z)?]
[n1(2)] oo
= X + X
n=14[(VA+2)?] n=1+[ni(2)]
[n1(2)]
= Y P(Sia>m=1)(1+2/VA), Sty > b, 1 <n—1)
n=1+[(V+2)2]

+ Y Pit>n-1). (3.10)
n=1+[n; (z)]
Thus
[n1(=2)]
y = ) P(Sii>(m=1)(1-2/VA),S, > b,m<i<n—1)
n=max{m,1+[a(-2)]}
[r1(2)]
- Y P(Sia>(r-1)(1+2/VA),S5L, > ba,m<i<n—1)
n=1+[a(2)]
[m1(2)]-1 [a(2)]
+ Y Pt>n)- 3 P(t >n). (3.11)
n=(n1(~2)] n=max 1 +a(-2)]}
Special Case. If [ny(—2)] < max{m,1 + [a(—z)]}, then one can write
T, = z P(t > Tl) .
n=max{m—1,[a(-z)]}
Hence
[r1(2)]
Y= - > P(S:_1 >(n—l)(1+z:/\/X),S:‘_1 >b._1,m§i§n—l)
n=1+[a(2)]
[r1(2)]-1 [a(2)]
+ 3 P(t>n)— > P(t > n). (3.12)
n=max{m-1,[a(-2)]} n=max{m,1+[a(-2)]}

Again, the last two terms will simplify to

[r1(2)]-1
P(t > max{m —1,[a(—=2)]})+ Y. P(t>n). (3.13)
n=1+{a(z)]

Also, as noted in the proof of Lemma 3.2, since the b,’s and the S} are increasing in ¢, we have

P(Siy>(m-1)(1£2/VX),5, > by, m<i<n—1)

m—2

/oo —Up—1 /um /“m um—l d d
= e " AUy -1 * " AUp—
up_1=(n—1)(1£2/VX) bn—2 bm—1 (m—2)1 " ! -l

o0
= e "1 AL (Up—1)dupn_
in1=(n=1)(1£2/V/3) (tn1)dtn-s

— =B {z": Al(Bn-1) + 1} , where B,y = (n—1) (1 £2/VA) , (3.14)

1=3

after performing integration by parts repeatedly. If B,_1 < b,-2, then

P(Siy>Ba1,S>bym<e<n—1)=P (S, >by,m<i<n—1)=Pt>n—1).
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Remark 3.3. For numerical computations, we define
Ak(bl“l) = "‘k(l’.;-l)e-‘b’_1

and
Di(j — 1) = Ax(B,-,)e B

where
By = (j—1) (1 £2/VA),
Table 3.1: Exact Values of Et and the Confidence Cocfficient for Various Values of A and m.

z A A2 g/d m =4 m=38 m=10
Et ECC* Et ECC Et ECC
3.84 196 1.0 5.21 1.000 9.23 1.000 10.09 1.000
864 294 1.5 7.97 0999 14.30 1.000 11.47 0.999
1.96 15.37 3.92 20 1264 0.778 23.75 0933 15.44 0.997
24.01 490 2.5 19.58 0.741 37.65 0.897 22.16 0.897
34.57 5.88 3.0 29.00 0.766 55.77 0.922 31.58 0.847
47.06 6.86 3.5 40.92 0.802 77.66 0.946 43.57 0.860
6.63 2.58 1 6.73 1.000 8.27 1.000 10.69 1.000
1492 386 1.5 1231 0920 10.23 0.999 15.13 1.000
16.52 5.15 2.0 21.74 0810 14.62 0.997 24.31 1.000
2.575 41.44 6.44 25 3548 0.836 21.56 0.843 38.10 0.911
59.68 7.72 3.0 5344 0.880 31.09 0.830 56.13 0.929
81.22 9.01 3.5 7527 0.914 43.15 0.850 77.96 0.950

* ECC = Exact Confidence Coefficient

and compute Ai(b;-1) and Di(j — 1) recursively after rewriting (3.2) and (3.15) in terms of Ax(bj—1)
and Di(5 — 1), and hence evaluate P(t > j) and the probabilities

P(Sj_y > Bjo, Siy > biogym < i< j - 1),

Remark 3.4. In the sequential rule, we can replace z by a sequence {2,} converging to z. For
instance z, could be the (1 — a/2)* quantiles of Student’s t-distribution with n degrees of freedom.
In the latter case

z=z{1+1+2) (%) +o(i™)} .,

Then b;-; will be an increasing sequence provided ¢ > 2. This is satisfied because we can always
choose m > 2 or 3 (see the definition of b;_1).

The first order asymptotic value of Et is A and the second order asymptotic value for Et (using
Theorem 2.1) is given by

Et — X =—1.50 — 1.438 + o(1) = —2.988 + o(1).

From Table 3.1, we infer that the asymptotic values for Et are close to the true values when
o/d > 1.5. The surprise is that the exact confidence coefficient decreases with o/d for a while and
increases from there on, but still falling short of the nominal confidence coefficient. When o/d = 1,
the actual confidence coefficient exceeds the nominal confidence coefficient. It seems one should
take at lease 10 for m in order for the exact confidence coefficient to be reasonably close to the
nominal value.
i stimation of o.
4 Point E R here o, is given by (1.2) be given by
Let the loss incurred in estimating o by 0n WhELE Tn
Ly =(0a—0)+cn.

Then Bl = o¥n—1)" + cn = Balc) (say) - (4.1)
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Setting 913, (r)/On = 0. we obtain
n=o/c/*+1. (h.2)

Since ¢ is unknown, we resort to the following sequential rule. The stopping time N = + 1
where for m > 2

Il

in[‘{n >m:n> a,,/("/l}
inf{n >m: S, | S"(”“l)/ﬁ}J:a/c‘”, (1.3)

where 4 is the optimal fixed-sample size required when ¢ is known and S:_, is the sum of n — 1
standard exponential random variables. Thus

Il

Pt>j)=PS_>a—1)/v,i=m,...,)) (4.4)
and from Remark 3.2 we have -
Et=m+ Y P(t>)). (4.5)
J=m
Hence, one can readily evaluate Et for various values of v after evaluating P(t > j) using Lemma
3.2 with b,_y = ¢(2 — 1)/7. These are tabulated in Table 4.1 for some value of m.

Table 4.1:  Et for Some Selected Values of m.
3T 1.0 05 01 005 001

Et m=+4 4.00 4.07 935 19.02 99.66
m =8 8.00 8.00 10.42 19.42 99.69
m =10{10.00 10.00 11.26 19.55 99.69

Towards the second order asymptotic results, from Govindarajulu and Sarkar [2] we have
Et=v4037 —1+40(1) = —0.626 + o(1) . (4.6)

From Table 4.1 we infer that the asymptotic values for Et are very close to the exact values for
v > 10.
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