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ABSTRACT. In this note, we carry out investigations related to the mixed
impact of ordering and topological structure of a locally convex solid
Riesz space (X,1) and a scalar valued sequence space A, on the vector
valued sequence space A (X) which is formed and topologized with the help
of A and X, and vice versa. Besides,we also characterize o -matrix trans-
formations from c(X), &8~ (X) to themselves, cs(X) to c(Xx) and derive neces-
sary conditions for a matrix of linear operators to transform ¢l (X) into a

simple ordered vector valued sequence space a(X).
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1. INTRODUCTION.

In the direction of generalizing the Kéthe theory of perfect sequence
spaces [13], [16], the concept of a vector valued sequence space (VVSS)
or a generalized sequence space defined with the help of a scalar valued
sequence space (SVSS) was introduced by Pietsch [21], who also used
these spaces in the study of absolutely summing operators and nuclear
spaces, cf. [20], [22]. Moreover, the topological properties of VVSS which
are defined by using the seminorms generating the topology of a locally
convex space and a SVSS and have been found useful in the study of
r-nuclearity, A-bases, operators of X-type, absolutely A-summing operators,
(4], [5], (see also [14] and [15] for bases theory and its applications
related to nuclearity etc. in locally convex spaces) and completeness of
the space via their mixed structure [9], are sufficiently explored now

{41, (8], [18], [24]. However, if the underlying locally convex space and
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the SVSS have additional structure of ordering, it is natural to inquire
the mixed impact of the topology and the order structure on the VVSS.
This study when X has an order structure, was taken up by Walsh [27]
for certain type of VVSS, who applied these spaces to study K-absolutely
summing and majorizing operators introduced for Banach lattices in [25].
In the present paper, we carry out investigations related to this mixed
impact of ordering and topological structure of the locally convex solid
Riesz spaces and the SVSS on thé VVSS and vice-versa. Besides, we also
continue our study of o-matrix transformations initiated in [10] for parti-
cular ordered VVSS introduced in [11].

2. PREREQUISITES.

In this section, we mention the salient features of Riesz spaces,
locally convex solid Riesz spaces, scalar and vector valued sequence
spaces required for our present work. However for unexplained terms in
these theories, the reader is urged to look into [1], [17], [19], [26].

Throughout the sequel, X denotes a Riesz space ordered by the cone
K. The notations x t (resp. xaH are used for an increasing (resp.
decreasing) net {x } in X and Xt x (resp. X, + x) provided x 't and
sup x_ = x (resp. x,+ and inf x_ = x).

A net (x(Jl } in X order converges to X, written as )gu—(o—)-) x, if

there exists a net (yu) in X with Yot o and lxol - x| < y, for each a;

and it converges relatively uniformly to x, if there exists u € K such

that for any e > o, there exists a € A satisfying the condition Ixa—xl

< e u, a > @ where u is known as the regulator of convergence.

A sequence {xn) in X is said to be order-Cauchy (respectively, relatively

uniformly Cauchy) if there exists some sequence Yn + 0 in X such that

lxm-xkl <y, for all mk > n (resp. for any e > o, there exists k e N
such that |xn-xm| < eu for n,m > k); accordingly, X is order-Cauchy
complete [[3],[12]] (resp. uniformly complete) if every order-Cauchy (resp.

relatively uniformly Cauchy) sequence is order convergent (resp. relatively

uniformly convergent) in X.

Relating the above concepts of convergence and completeness, we have
the following well known result contained in [1], [19], [3].

PROPOSITION 2.1. (i) In a o-order complete Riesz space X with the
diagonal property, the order, and uniform convergence coincide for sequ-
ences; (ii) every order complete Riesz space is uniformly complete; and
(iii) every o-order complete Riesz space is order-Cauchy complete.

We now equip X with a locally convex topology T generated by the
family ) of Riesz seminorms p's, i.e., p(x) < p(y) for |x|< |y| in X,
so that (X, 1 is a locally convex solid (l.c.s.) Riesz space. We refer
[1] for various terms and results on the theory of locally convex solid
Riesz spaces. However, we say a Riesz seminorm p on X is,

(i) o-Lebesgue if p(xn) + o for any sequence X + 8 in X; (ii) Lebesgue
if p(xa) * o for any net {x } in X which decreases to @ in X;
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(iii) pre-Lebesgue if for any disjoint order bounded sequence (xn) in X,
p(xn) + o; and (iv)o-Fatou (resp. Fatou) if p(x_ ) * p(x) (resp. p(x,) ¢
p(x)) whenever o Sxp ot x (resp. o < x, t x).

We denote the family of all linear operators from a Riesz space X to
another Riesz space Y, by J£(X,Y) and the subspace of [(X,Y) consisting
of all order bounded operators by .(b(X,Y). The subspaces of ib(X,Y)
containing order continuous and sequentially order continuous operators
are respectively denoted by £ S(X,Y) and .£%°(X,Y). For Y =R , the
set of real numbers, we write X° = Z%x, Ry, x° = Z(X,R) and
X% = £5%°x,R ).

Concerning these spaces, we have

PROPOSITION 2.2. If Y is an order complete Riesz space, then
,( (X, Y) is an order complete Riesz space ordered by the cone K =
T e ;( (X,Y): T(x) > 6, ¥ x € K} where for T in ,[ (X,Y) and x¢ X,
ITIC|x]) = sup C|T(y)| : |yl < |x|} Further, 2°°(X,Y) and £ €(X,Y)
are bands in ,(b(X,Y).

For monotone nets of operators in .ib(X,Y), we have [26]

THEOREM 2.3. (Let T, e ¢ A be an increasing or decreasing net

of operators in ;[ (X,Y) such that T x -ﬂ) Tx, x ¢ X, for some

T ¢ £Z(X,Y). Then T ¢ £P(X,Y) and T, o)y 1 in LPx,7).

In case Y is also equipped with a l.c.s. topology, we have another
subclass of .‘(b(X,Y) as given in [7].

DEFINITION 2.4. An operator T in .ib(X,Y). where X is a Riesz
space and (Y,t) is an order complete l.c.s. Riesz space, is said to be
o-precompact if it maps order bounded subsets of X into precompact sub-
sets of Y. The class of all o-precompact operators from X to Y is
denoted by 'iop(x'Y)‘

PROPOSITION 2.5. The space [op(X,Y) forms a band in -{b(X,Y),
where X is a Riesz space and (Y,t) is an order complete l.c.s. Riesz
space with Lebesgue property.

NOTE. The above result is due to P.G. Dodds and D.H. Fremlin [6]
for the special case of Banach lattices; however, in its present form it
is to be found in [2] (with a simplified proof due to A.R. Schep).

We follow [18], [23] for the fundamentals of vector valued sequence
spaces (VVSS). For the sake of convenience, let us recall [23] the
vector spaces 2 (X) and ¢(X) consisting of all sequences and finitely non-
zero sequences from a vector space X. A VVSS A(X) is a subspace of
2(X) containing ¢ (X). Corresponding to a dual pair <X,Y> of vector
spaces defined over the some field, the generalized Kéthe dual AT(Y) of
A(X) is the vector space given by

[AX0]* 2 a*() = (ty,) :y, e¥, i >1 and

1

I |<xi,yi>| < o, ¥ {xi} e A(X)y.
isl
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The generalized Kdthe dual of AX(Y) is denoted , by A**(X) and so on.
Members of qo(X) are denoted by x, y, etc., i.e:, X = x;}, y = ty;hs
XY € X, ¥i >1. For x ¢X and i ¢ N, the set of natural numbers,
we write

5); = {8y Byececenas Xy By Bpeccencs }
i-th co-ordinate
Observe that ¢(X) is spanned by(é)i( : x eX, ie NL
Let us also recall [18] that a VVSS A(X) is normal if {a, x;} e A(X)
where {x. }e MX) and {a.} < R with luili 1, ¥i > 1 and MX)
equipped with a locally convex topology J , is simple if for each J -
bounded set A, there exists an element x in A(X) such that for each y =

(yil € A Yi =% for some sequence (ai) of scalars with Iu <1,

l
¥ i >1, i.e., A is contained in the normal hull of the set ( SZL._

In addition, if X is also a Riesz space, the VVSS A(X) is an ordered
vector space relative to the co-ordinate wise ordering [10]. Indeed we
have [10].

PROPOSITION 2.6. 1f X is an order complete Riesz space, then f(X)
and ¢(X) are also order complete Riesz spaces and a Riesz subspaceA (X)
of a(X) is order complete if and only if it is an ideal in 2(X). Let us
note that in the particular case when X = R, A(X) is normal if and only
if it is a solid subspace of f(X), or equivalently, an ideal in a(X).

PROPOSITION 2.7. Let X be an order complete Riesz space such that
A(X) is an ideal in @(X). Then a linear functional f on A(X) is in
[ AX)]%° if and only if there is a unique Z in (x%%), z = z ),

z ¢ X%° for n > 1 such that

f(x) = <x,z>= n=21 <x,z % VX = (x )e MX).

As examples of ordered vector valued sequence spaces (OVVSS), we
recall the following spaces from [11], which are needed in the sequel and
are defined over an order complete Riesz space X such that < X,X5% forms

a dual pair.

n
LI(X) = (b x e X, n> 1 and { } |xi|} order converges in X},
i=1
27 (X) = {{x }: x € X, n21 and sup {|xn|) exists in X1},
n (2.8)
c(X) = ({xn}: X, € X, n > 1 and (xn) order converges in X},
co(X) = ((xn): X, € X, n > 1 and X, —Lﬂ’ 6 in X ).

One can easily verify that zl(x), £” (X) and co(X) are ideals of
2(X) and c(X) is a Riesz subspace of ®X), which is not an ideal.
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We also define

n
e X, n>1and (| x;) order converges in X}. (2.9)
i=1

Note that the space cs(X) is an ordered vector subspace of 2(X),

cs(X) = LX) xg

which is not a Riesz space.

In particular, when X = IR, the VVSS A (X) written as A in the sequel,
is known as a scalar valued sequence space (SVSS).

Using a normal SVSS ) and a locally convex space (X,t), another

type of a VVSS introduced in [4] is given as

A(X) = {x = x;k x; X, 121and fplx)} er, ¥p e} (2.10)

If X is a locally convex space and X is equipped with a normal
3 ~topology Tx compatible with the dual pair <A AX> and generated by
the family (ps : S ¢ & } of seminorms, where for o = (al) €A,

pgla) = sup CLo eyl s (2.11)
{Bi} €S i>1
and G is a family of normal hulls of balanced convex a(2*,x)-bounded
subsets of 2%, covering 2%, then the topology TX(X) on A(X) generated by
the family of seminorms {Ps 2 p,op: s €&, p €D } defined as

Ps(i) = (pg o p)(x) = pg(lpix,) 1) (2.12)

for X € A(X), is a Hausdorff locally convex topology; cf. [4], p.130.
3. TOPOLOGICAL PROPERTIES OF a(X).

Recalling the space A(X) and the topology TX(X) defined as in (2.10)
and (2.12), corresponding to a normal SVSS X and a locally convex space
X, we prove in this section the impact of topologies of A and X on T (X)
and vice-versa. To begin with, we have

PROPOSITION 3.1. If (X,t) is a l.c.s. Riesz space generated by the
family P of Riesz seminorms, then A(X) is an ideal in a(X) and TA(X)
is a locally convex solid topology on Ai(X).

PROOF. Straightforward.

A partial converse of the above result is contained in

PROPOSITION 3.2. Let X be a Riesz space equipped with a locally
convex topology 1 generated by the family & of seminorms, and
™ (X), TA(X)) be a locally convex solid Riesz space. Then Tt is a
locally convex solid topology on X.

PROOF. Consider p €& , x,y € X with Ix] < |yl and a member S
of G such that M = sup {|8]: {8} € S} > 0 for some i ¢ N. Then

x Yy - y
P( &) = (pg o P)(8]) < (pg o pI(&Y) = Po(83)
implies that p(x) < p(y). Thus each p ¢ @D , is a Riesz seminorm.

From now onwards in_this_section, we assume that the pair (X,t)
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stands for a Hausdorff locally convex solid Riesz space, where the topology
t is generdated by the family ) of Riesz seminorms and A is equipped
with the normal topology n(x, X) which is the same as the absolute weak

topology |o| (A,2%), cf. [1]; and which is an G -topology where G

corresponds to the normal balanced convex hulls of singleton sets in e

In this case, we write the seminorms defined in (2.12) as
P (x) = 1 |8] p(x,), (8} e 25, (3.3)
B i=1 i i i

where P corresponds to p co(t), and °8A(x) for the family
P_:p ed, B ¢ X} of Riesz seminorms.
8 The interrelationship of various properties of Riesz seminorms, for

the families & and o@”x

PROPOSITION 3.4. A seminorm p €D satisfies o-Lebesgue property
in X if and only if the corresponding seminorms fP-E : B e Ax'j) satisfy
the same in A(X).

PROOF. For proving the necessity, consider B = { B e 2% and .a
sequence {X"} in A(X) such that X" + @ in A(X). Then p(x?) + o, for

) are exhibited in

each i >1 and lBil p(x?) < w, ¥ n> 1. Hence for an arbitrary
i=
fixed € >o, there exists io € N such that

i |B.|p(xl) < e,
i i
i=i
(¢
Consequently, for each n > 1
i

o
P-B-' (x™ iizl p(x?) Iﬂil + €.

i

As 3 p(x™ |8, ] o asn + = P=(x")+ o.
i=1 L 8

For proving the converse, consider a sequence {xn) in X such that
X + 0 in X and an element B of A\* such that i ¢ N corresponds to

the non-zero co-ordinate of 8. Then

x
n
IBil p(x ) = P (87) > 0o as n * =,

for 6:" + 8 in A (X). Thus p(x_ ) » o.
PROPOSITION 3.5. A member p of oD satisfies the Lebesgue property
if and only if each P—B for B ¢ A%, satisfies the same in A (X).
PROOF. 1In order to prove that Py for ® e A%, satisfies the
Lebesgue property if p does, consider a net {x° : a ¢ A} in A(X) with
x* +9 in A(X). Then p(x‘;) +0, ¥i > 1 and for an arbitrary fixed
€ > o as well as for fixed a € A, we can find io € N such that
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At a
I leyl e < e
i=1

o
i
-a s a ° a
=> P_(x) =1 |8 ] px) < I el pxH + €. ¥ a> «a
. i i . i i Z %
B8 i=1 =1
i
As I 8] px5) — o, P_ (X% =+ o.
i=1 ! e B

Replacing sequence by net in the proof of the converse part of
preceding result, we may infer the Lebesgue property of p from that of P_.

PROPOSITION 3.6. A seminorm p in %) possesses pre-Lebesgue 8
property if and only if each P_ for B e 2 X, possesses the same.

PROOF. For proving the nBecessity, consider an order bounded disjoint
sequence (X"} in A(X). Then |X"] < X, for every n > 1 and for some
X = {x; } ¢ MX), and so {x?} is an order bounded disjoint sequence in X
for each i € N. Hence p(x?) +o0as n + = for each ie N. Now for

any B ¢ A* and ¢ > o, choose i, e N such that

i.-.):io IBiI plx) < e

We now proceed as in the proof of necessary part of Proposition 3.4 in
order to get the result. x

For sufficiency, observe that for each i > 1, (sin) is an order
bounded disjoint sequence in A(X) for any disjoint order bounded sequence
{xn} in X. Now use the pre-Lebesgue property of Pé' for deriving the
result.

PROPOSITION 3.7. p in o) is a 9-Fatou seminorm if and only if P
is so. 5

PROOF. Let p satisfy the 9-Fatou property. For proving the o-~Fatou
property of P_ where B e A%, consider ® < " x in A(X). Then

i i,e ¥ i >1 and so p(x?) +i p(xi) for each i ¢ N. Consequ-
n

ently, ¥ m > 1

eixnéx

m n m
X IBiI P(Xi) + Z Iﬂil P(xi)
i=1 n i=l
If a is any upper bound of the sequence P_ (x™) , then
B

m
I olslptx)ca, ¥ mot

Hence P_ (X) <a, i.e. P_ (x") + P_ (x)
] 8 n 8
The proof of the converse is analogous to the earlier proofs of con-

verse parts and so omitted.

PROPOSITION 3.8. p in &® is a Fatou seminorm if and only if each
P_ is so for 8 e x*.
8 PROOF. Analogous to the proof of the preceding result and so omitted.
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Concerning the spaces X and ,(X), the preceding propositions immed-
iately lead to

THEOREM 3.9. (X,:) satisfies o-Lebesgue (resp. Lebesgue, pre-
Lebesgue, o-Fatou or Fatou) property if and only if (A (X), TA(X)) does
so.

PROOF. Straightforward.
4. o-MATRIX TRANSFORMATIONS.

This section which is divided into two subsections incorporates
results on o-matrix transformations from one OVVSS to another OVVSS defined
corresponding to Riesz spaces. Whereas the first subsection deals with the
o-precompactness of the o-matrix transformation, the second subsection
includes characterizations of such transformations on particular OVVSS in
terms of component linear operators. Before we pass on to these results,
let us recall [10].

DEFINITION 4.1. Let X and Y be two order complete Riesz spaces
such that A(X) and u(Y) are ideals in (X) and a(Y) respectively. A

linear map Z from AX) to u(Y) is said to be an o-matrix_transformation

if there exists a matrix [Zij] of linear maps from X to Y such that for

every X = {x;} in AX) and each i e N, the sequence { g Zij(xj))
j=1

order converges to some Yy € Y and Z(x) = y, where y = [yi); in such a
case we write Z = [Zij]' The transpose 2~ of a matrix Z = [Zij] of

X+ Y, i,j > 1 is defined as the transpose of the matrix
].

i
[Zi'] be an o-matrix transformations from

linear maps 2,
ij
of adjoint maps, i.e., z = [z

PROPOSITION 4.2. Let Z
A(X) to u(Y). The the following statements hold:

(i) For x ¢ X and i,j ¢ N : Zij(x) = (Z(G)J.())i, the ith co-ordinate
of Z(&%);

(ii) Z is positive if and only if the Zij's are positive for each

*
]

i,j € N.

PROPOSITION 4.3. Let X and Y be order complete Riesz spaces such
that <X,X°°> and <Y,Y°%> form dual pairs. Assume that the ideals A(X)
and p(Y) in ®X) and a(Y) are in duality with A*(X®®) and wX(Y®°)
respectively. If Z is an order bounded, sequentially order continuous
linear map from A(X) to u(Y), given by the ma:rix [Zij] of linear maps
Zij from X to Y for i,j > 1, then the adjoint Z of Z is an order bounded,
sequentially order continuous o-matrix transformation from 1 X(Y%°) to
21%(x%°) such that z" [Z;i]'

0o-PRECOMPACTNESS OF o-MATRIX TRANSFORMATIONS. In order to
consider the o-precompactness of the o-matrix transformation, we consider
the range space u(Y) as A (Y) defined as in (2.10) corresponding to a
normal SVSS A and a l.c.s. Riesz space Y where Y is equipped with the
Lebesgue topology so that the topology TA(Y) on A(Y) is generated by

seminorms {Q_ : B ¢ z 5, q € oQY }, where Q_ is defined as in (3.3).
B B

n
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Vith these underlying assumptions, we prove
PROPOSITION 4.4. A positive o-matrix transformation Z = [Zij] from
A(X) to A(Y) is o-precompact if and only if each Zi' is o-precompact.
PROOF. For necessity, use the fact that Zij(x) = (Z(G?))i, for each
i,j >1 and x € X. In order to prove the converse part, for i,j ¢ N,
define linear operators zb A(X) + a(Y) by
Zi(3) = cf‘j(xj) X = ) e A
Since Zij's are o-precompact operators from X to Y, Z?'s are also
o-precompact; indeed, for B € It with Bi £ o, (the case when ei = o,
trivially follows) and any e-neighbourhood U_ = {y e MY): Q_ (y) < ¢}
of ® in A(Y), 8 8
Zj-%,%) < & +U_,
where { = (6{ : f e F}, FBbeing the finite subset of Y obtained corres-
ponding to the neéghbourhood U=1(y €Y : qly) < e/IBil), Now for
i,n € N, define Zgn) : AMX) + a(Y) by
ALV P O
i j=1 j
These linear operators are clearly o-precompact and for x e A(X),
Z{n)(i) _{i)_) Zi(i) as n + =, where Zi : A(X) =+ a(Y) is defined by

Z,(x) = si(Z(i))i , Vi >1;

cf. Def(in)ition L.1. As (x(Y),TA(y)) is a Lebesgue space by Proposition
3.5, Zin (X) converges to Zi(f) in Tx(y)’

In order-to show the o-precompactness of each Zi' fix i e N, an
interval [-X,X] for X >® in AX) and a neighbourhood U of ® in A(Y).
Then we can find another neighbourhood V of ® such that V + V c U.
Choose n,6 e N such that

2M@ 220 T, ¥ n2n

and a finite set A in A(Y) with
(n)) —_ _ _
Z, [-x,x] ¢ A+ V.

Hence
Zi[-i,i] c A+ 1T

arid sb Zi is o-precompact. Consequently, Z(n): A(X) + A (Y), where

n n (n), =, (o)
Z' = I Zi’ ¥ n > 1, are also o-precompact operators. As Z (x) >

b=l
Z(x) in XNY), ¥ X € AMX), cf. [10], Proposition 3.5(i) and the topology
of A(Y) is Lebesgue, Z(n)(;() + 2(x) in T XY)* Now proceeding as in
the preceding paragraph, we infer the o-precompactness of Z. This

completes the proof.
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As an order bounded, sequentially order continuous o-matrix transform-
dtion Z = [Zi'] can be written as Z = [Z:j] - [Z;j], cf. Propositions
4.2.(v), (vi) and 4.3 of [10], the above result immediately leads to

THEOREM 4.5. Let Z = [Zij] be an order bounded, sequentially order
continuous o-matrix transformation from A(X) to A(Y). Then Z is o-pre-
compact if and only if Zij is o-precompact for each i,j > 1.

CERTAIN o-MATRIX TRANSFORMATIONS. 1In this subsection, we charact-
erize o-matrix transformations from c(X), £ (X) to themselves, cs(X) to c(X)
and derive necessary conditions for a matrix of linear operators to trans-
form !,l(X) into a simple OVVSS A(X). We begin with the following general
result:

PROPOSITION 4.6. Let X be a Riesz space, Y an order complete Riesz
space and {Tn) a sequence of positive linear operators from X to Y. Then

n
a necessary and sufficient condition for the sequence { P Ti(xi)) to order
i=1

converge in Y whenever (xn} order converges in X is that (rf Ti)order
. i=1
converges in ofb(X,Y).
PROOF. It suffices to prove the sufficient condition as necessity is
immediate from Theorem 2.3.
For an order converging sequence (x } in X with Ixnl < x, ¥n 2> 1,

write

n
t = J T.x,), n e N.
n =1 & i

Then for n > m,
Jt. -t

n ml

n n
= IZ Ti(xl)l < '): T, (x).
i=m i=m

Since {:21 Ti(x)} , being order convergent, is order-Cauchy in Y, { tn) is
=m
order-Cauchy and so order converges in Y by Proposition 2.1.(iii).
Making use of the above result, we prove
PROPOSITION 4.7. Let X be an order complete Riesz space with diag-
onal property and Zij's, positive linear operators from X into itself. Then
Z = [Zij] is an o-matrix transformation from c(X) to c(X) so that the

transformed sequence order converges to the same limit if and only if

n
(i) ) Zij _(o_)_9 Zi as n + = for some positive linear operator
j=
Z, ¥ i2 1;
(ii) .Zi(x) ——(l) x as i + » ¥ x € x; and

(iit) Zij(x) —(—9—)—-) 8as i * =, ¥ x ¢ X and for each j ¢ N.

PROOF. We first derive the necessary conditions (i), (ii) and (iii).

n
(i) Since (] Zij(xj)) order converges in X, for each i ¢ N and
i1
for each x = (xj} e c(X), (i) follows from Proposition 4.6.
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(ii) For x ¢ X, consider the constant sequence {xnl , X=X, ¥n2>1
n 2

in c¢(X). Then Zi(X) —% x by the hypothesis.
(iii) This follows from the hypothesis, equalities zij(X) = (Z(‘S)j()).,
i

¥ i,j ¢ N and (6?)i——(3—)—- 8 as i * = in X, for each j > 1.
For proving the sufficiency, let us consider a sequence X = (xj }ec(X)

n
with xj ﬁ)—-)x in X. Then by Proposition 4.6, § Zij(xj) &?_, t

j=1
say, in X for each i > 1. Hence by Proposition 2.1(i), for any € > o,

we can find jo e N such that

i’

Ixj - x| < eu, ¥ 2,

where u is the regulator of convergence of the sequence (xn} . Let ve X
be such that Zi(u) <v, ¥i >1. Then

n n
[t. - x| < Jo-lim | Z..(x;) -o-lim § Z.(x)| + |Z.(x) - x
i nee  je1 M) nee jo1 1) | | i I
|éo ©
< jz=1 Zij(xj - x)| + |j=zj Zy50%; - x)| o+ |z,(x) - x|
)
JO
< jzl Zij(|xj—x|)+ev+ IZi(x)—x| ,
© n
where ] Z..(x, - x) = o-lim | Z_.(x, - x). Consequently, by (ii),
PR § PO PR § R g
3=ig e jsj

(o)

(iii) and Proposition 2.1(i), t,— x in X. This completes the proof.

NOTE. Observe that the restriction of Z on the space co(X) has the
range contained in co(X) under the conditions (i), (ii) and (iii).

For the space 27(X), we have the following characterization of o-
matrix transformation.

THEOREM 4.8>~ Let X be an order complete Riesz space. Then a matrix
Z = [Zij] of positive linear operators Zij from X to X, transforms & (3()
into itself if and only if

(o)

.., — Zi as n + =, for some positive

(i) for each i in N,
1 Y

[t}

J

linear operator Zi on X; and
(ii) for each x e X, (Zi(x): i> 1} is an order bounded subset of X.
PROOF. It suffices to prove the sufficiency of the conditions (i) and

(ii) as necessity is immediate from the definition of o-matrix transformation

Z from Lm(X) into itself. Indeed, if x = {xj} € n.“(X), then ‘the sequence

n
) Zijl(xj): n >11}is order-Cauchy by (i) and so order converges for
=1

every i > 1 by Proposition 2.1(iii). Let

n
t, = o-lim I z2,..(x;) , i> 1.
1 n +« ]=1 iJ J
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Since Ile < x, for each j > 1 and for some x ¢ X, { t) e 27(X) by (ii).
In case of the matrices of linear operators transforming the space
cs(X) to c(X), we have the following two results dealing separately the
sufficient and necessary conditions:
THEOREM 4.9. Let X be an order complete Riesz space with diagonal
property and Z = [Zij]‘ a matrix of positive sequentially order continuous

linear operators satisfying the conditions

n
(i) for each i > 1, o-lim § |Z.. -

i for some sequent-
n+e  j=1 J

Ziarl = 20
ially order continuous linear operator Z. on X;
(ii) {Zi) is an order bounded sequence in L%°(X) = L%°(X,X); and

(o)

(iii) for each j >1, Z las i+ = in £%°(X) where 1 is

ij
the identity map on X.

Then Z is an o-matrix transformation from cs(X) to c(X) so that the
transformed sequence order converges to the sum of the original sequence.

PROOF. We first prove the result for those elements x = { xj) e cs(X),

which have the zero sum; indeed, if o-lim ) xj =6, for x = {xj) €
e i=1
n
cs(X), we show that t, = o-lim ) Zij(xj), for each i € N, exists and
n+o j:l
ti —ﬁ)—> e in X.
m
Let us write s = ) X m e N. Then s_ _(o_)_) o in X and so
j=1

for given ¢ > o, we can find jo e N such that |[s,| <eu, ¥j > jo,
where u is the regulator of convergence. Let A,B ¢ Z3%°(X) be such that
IZi| < A and 'Zill < B, ¥i >1. Then using the equalities

m m-1
) Zy50x) = 1 (2447245, (sp) + Zo (s ) ¥ i1, m2> 1 (*)
i=1 j=1
and
b Pt (s_. ) (s ) (%)
Z..(x))= 1 (Z.-Z )(s) + 7, - Z; ,
j=m ij° 73 j=m ij “ij+l im+p ~m+p im “m-1

¥ i,m,p e N,

we infer that

m+p
|'] Z.(x)| < e(3A+2B)u; ¥ m > j_,
: 1) " - - 0
j=m
and
1 (s.) 1 (+)
t, = o-lim | (Z.. -2 )s , ¥ i>1. +
i nse j=1 ij ij+1

(o)

Also, from (+) and the condition (iii), we deduce that t, —— 6. Thus
Z(x) £ c(X).

1f X € cs(X) is such that | xj = x £ 8, then the sequence (yj)
j=1
defined by Yy =% = % yJ. = xj, for j > 2, is. in cs(X) with zero sum. As
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m
j£1 Zyjlxg) = j=21 Ziglyyh + 2yt ¥ m > 1

and Zij(X) £l—) x in X, the result follows from the preceding paragraph.

THEOREM 4.10. Let X be an order complete Riesz space and Z = [zij]’

a matrix of positive and sequentially order continuous linear operators
from X into itself such that Z.., > Z.. .,
ij — Tij+l
Z transforms cs(X) to c(X) so that the transformed sequence order converges

for each i,j in N. Assume that

to the suimn of the original sequence. Then

(i) for each j >1 and x <X, Z;(x) o)y s as i+ e ;

-&) Zi as n + =, where

(ii) for each i > 1, Zi
e £°°(X); and
(iii) for each x ¢ X, (Zi(x) } is an order bounded sequence of X.

PROOF. (i) This is immediate from the equalities

4

Z;5(x) (zu’j‘)) . ¥ 4, N and x € X.

In

i
(ii) As o Zin(X) } in X, for each x in K and 1 ¢ N and X is
order complete, Zin(x) vV for some Vi€ X and for each i € N. Hence,
if we define linear operators Zi's on X as

Zi(X) = o-lim Zin(x) ,

N+o

for x ¢X, then in view of Proposition 2.2 and Theorem 2.3, {Zi: i> 1)
c ZL%x).

(iii) for each x ¢ K, observe that

0 <2z,0x)22Z2,x), ¥ i>1,

since ¢ < Zm(x) < Z,,(x), for each i,n im N and Zm(x) Lol Zi(X) as

n + », in X by (ii). Hence (iii) follows from (i).

Restricting further the linear operators Zij in the hypothesis of the
above theorem, we have

';‘HEOREM 4.11, Let 2 = [zij] and X be as in Theorem 4.10. Assume
further that Z.. > Z. ¥ i,j N. Then A = [Aij]’ where Aij =

i+j,j’
VA

ij
¢ N, is an o-matrix transformation from c(X) to co(x).

ij = ijarr B

PROOF. Observe that we have one-one onto correspondence R between
c(X) and cs(X), defined by R(X) = u, where x = {xj} e c(X) and u =
{u; } is given by u; =Xy and uj = ):J' - xj-l' j2> 2. (o)

Let us now consider a positive x = {x} in c(X) with x ——>x
in X, for some x € X. Then with u as defined above, Z(u) e c(X) and
(Z(i]))t —(l) x by the hypothesis. Also, from the proof of the part (ii)
of the' preceding theorem, Zin(X) rt Vi for some Vi€ X and for each

i ¢ N. Further, Zin(xn - x) -M—é 6as n+ =, ¥i > 1. Hence

n
(Z(u))i = o-rlli:’ jzl (Zij'zij+1)(xj) + Vi ¥ i> 1. (%)
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Note that v, ¢ x under the additional restriction, namely Zi' >

i j2
zi+l,j’ ¥ i,j >1. Hence if
n -
s, = o-lim .I (Zij_zij+l)(xj) = (Z(u))i -vys 1201,
n+e j=1
(o)

then s, ——— 0in X. Thus A(x) = {s;} e c (X) for x e c(X).

Lastly, we prove

THEOREM 4.12. Let X be an order complete Riesz space such that
<X,X*°> forms a dual pair and o(X%°,X)-bounded sets are order bounded
in X°°. Also, assume that A(X) is an ideal in (X) and is a simple space
for the topology ofA(X),AX(X%°)). For a matrix Z = [Zij] of positive
linear operators from X into itself, consider the following statements:

(i) Z is an order bounded sequentially order continuous, o-matrix
transformation from LI(X) to A(X).

(ii) The adjoint z" of Z is an order bounded, sequentially order
continuous o-matrix transformation from AX(X%°%) to 2~ (x%9).

(iii) For x € X, the sequence (a}( : j > 1}, where a)j< = {Zij(X) :
i > 1}, is an order bounded set in A(X).
Then (i) => (ii) and (i) => (iii). Further, if (iii) holds, then the part-
ial statement of (ii), namely, "z" is an o-matrix transformation from
A*(x*°) to £7(X°°)" holds.

PROOF. (i) => (ii). Since (!.I(X))x = 27(x%°), cf. [11]. Proposition
3.5, the implication follows from Proposition 4.3.

(i) => (iii) For a given j in N and x ¢ K, we first prove that

s al = 2(6%) and 6% ¢ 21(x).
In order to show that the set (a)J( t 1} is o (A(X), AX(Xx%9))

‘bounded, consider a positive element T = ({f, } in AX(X®*°). Then from

a)j( e AMX). Indeed, it is immediate as

Iv

the preceding implication, Z*(T) e 27 (X%°%) and so there exists g ¢ x5°
such that
<@ @ x>] = |1 5z,00)] <e, ¥ 121 (+)
j=1

Hence {ai :§ 21} is o (A(X), 4%(x5°))-bounded and so order bounded in
A(X) by the hypothesis.

n
For the last statement, we first show that { [ z;i(fj” order
j=1

converges in X°°, for a positive element T = (fj } in AX*(X®°). Indeed,

for x > 6and n ¢ N,

Tzt ro = ] i
Z., f.(x) = f. a, ,
j=1 it j=1 J )X
n no,
=> the set { § 2., f.(x): n> 1} is bounded in R and so ] Z..(f.)
j=1 it j=1 it

order converges in x5° by Theorem 2.2 and Proposition 2.3.
For proving that Z*(T) e 27 (x59),

that |a’j(| < y, for every j > 1. Hence

for x > 8, choose y € A(X) such
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l«@" @), x>| - '-21 f(z;00] = | 1 f(al )|

] j:l J J:,X

) filyyy ¥ 121

j=1
|
Thus {(Z (f))i : i 21} is order bounded in X°° and the result follows.
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