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ABSTRACT. Transfinite induction is employed to construct a copy of an arbitrary partially-
ordered set of cardinality at most ¢ within the power set (quasi-ordered by sub-chain
embeddability) of the real line.
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1. INTRODUCTION.

One way to explore the structure of a quasi-ordered set X is to seek subsets of it which,
under the induced order, are partially- or totally-ordered: for instance the behavior of chains
within X is closely related, through a variant of Zorn’s lemma, to the existence of elements that
are in some sense [4] maximal or minimal in the quasi-order. In her doctoral thesis [2] Matier
employed ideas of Stephen Watson to carry out one such investigation on the power set of R
ordered not by set-inclusion but by sub-chain embeddability. She demonstrated that this quasi-
ordered set contains an infinite antichain, and hence deduced that the family of posets on ¢
points or fewer (ordered by sub-poset embeddability) contains an infinite decreasing sequence.
This finding has relevance to the behavior of the total negation operation, defined for topological
spaces by Bankston [1], when it is applied to partially-ordered topological spaces (see [3] for a
brief account).

This note makes use of a modification of the Watson-Matier argument to establish a stronger
conclusion about the set of subsets of R; namely, that it contains not only infinite antichains and
chains, but also copies of every partially-ordered set whose cardinality does not exceed c¢. An
initial examination is also presented of the circumstances (in terms of set-theoretic axioms
assumed) in which analogous results may be obtained for higher cardinals.

LEMMA A. Let C be an arbitrary chain, A a non-empty subset of C and f: A—C a strictly
increasing mapping. If every open interval in C contains a fixed point for f then f is id 4.

PROOF. Suppose that there exists z € A such that z # f(z). Then either z < f(z) or
z > f(z). In the first case, y € (z, f(z)) implies = < y giving f(z) < f(y), so f(y) ¢ (=, f(z)) which
in turn implies y # f(y): thus (z, f(z)) contains no fixed point for f. In the second case, (f(z),z)
contains no such point.

DEFINITION. Let us call an infinite cardinal « continuum-like if

(i) a = 2P for some (infinite) 8 < a and
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(i1)  there exists a chain C of cardinality a with the following properties:
(a) each open interval in C has cardinality a and
(b) there is a subset Q of C such that card (@)= 3 and every open interval in C
intersects Q.
Clearly, c itself is a continuum-like cardinal. We shall address the question of the existence
of other continuum-like cardinals later in this article.
Given a strictly increasing function f:Q—C (where Q and C are as above) and an element z
of C\Q, consider the set:
A: = {f (z):f is a strictly increasing extension of f over QU {z}}.

Whenever this set is a singleton, we shall use the notation f!(z) for its unique element. We make
the following definitions:

(i) =z is a non-eztension point for f if A = ¢,

(i1) @ is a trivial-eztension point for f if card(A) =1 and fl(z) € Q,

(iii) x is a unique-eztension point for f if card(A) =1 and f!(z) € C\Q,

(iv) =z is a multi-eztension point for f if card(A) > 1.
It is clear that the four classes of points defined here partition C\@ and we note that there are at
most § trivial-extension points for f (for otherwise there would exist z,y in C\@ with z <y and
fi(z) = fy) € Q, contradicting the strictly increasing nature of f). By considering the example
C=R,Q=Q,f(z)= zv/2 it is apparent that the number of trivial-extension points can be as
high as 3. It can also be as low as zero, as in the case C =R,Q = Q, f(z) = z. Somewhat less
obvious is the observation that the number of multi-extension points is likewise constrained to lie
between 0 and 3:

LEMMA B. Let a be a continuum-like cardinal, C and @ as described in the definition. A
given strictly increasing function f:Q—C has at most § multi-extension points.

PROOF. For each multi-extension point y for f we can choose elements t},¢2 of C such that
tl < t2 and that
L(m)_{f(ac)ifacecz,

Tl ifz=y,

f(zx)ifz€Q,

2 ifr=y

73 ={

define two distinct strictly increasing extensions f i, f2 of f over QU{y}. Let I, denote the
interval (t,2), and note that the family
{1,y is a multi-extension point for f}
is pairwise-disjoint: for if z and y are two multi-extension points for f with z < y, we can choose
¢ € Q with z < ¢ <y and observe that for any a € I,,b € I;
a<ti=f32)<fia)=fla)
=fya)<Fyy)=t,<b
so a #b. Since each of the I, contains a point of @ and card(Q) = 8, the result follows.

COROLLARY. In the same notation, every open interval in C contains either o non-

extension points for f or a unique-extension points for f.
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Let Po(C) denote the set of all those subsets of C which contain @ and consider it as a
quasi-ordered set (qoset) under subchain embeddability: that is, given A.B € Py(C) we write
A < B if and only if A is order-isomorphic to a subset of B (where A and B inherit the order on
C).

THEOREM. Let S be a given partiallv-ordered set of cardinality a. There is a subset of
Po(C) which is isomorphic to S.

PROOF. Denote by F the set of strictly increasing functions from @ into C. Since

card(F) < a® = a,F x S has cardinality a and can be expressed as the range of an a-sequence:

FxS={(fos)t€a}

where we are viewing a as an ordinal. Make an arbitrary choice of g, € Q. Transfinite induction
will now serve to construct three a-sequences (5, & € @),(ys5 6 € @), (25,6 €a) in the set
(C\Q) U {4o}-

Let v € a and suppose that we have already chosen, for each é < 7 in a, elements z4,ys, 25 of
C such that

(1) z5ys € (C\Q)U{go},25 € C\Q.

(i1)  all choices are distinct except for repetitions of g,

(iii) whenever f; = idg then z5 = ys = ¢q,

(iv) whenever f; # idg then

either T4 is a unique-extension point for f, and y; = f!(xs)
or z4 is a non-extension point for fs and ys = go.

Now if f. = idg choose z, = qo,y., = qo and, bearing in mind that the cardinality of C\Q exceeds
that of the set of all previously-made choices, select z., in C\Q distinct from all the zy,y5 and 2;
for § <. On the other hand, suppose f,# g If f, possesses a non-extension points then
choose one which is different from all preceding choices, denoting it by z.,, put y. = go and assign
to z, any value in C\Q distinct from all previous selections. If not, then f, must have a strictly
increasing extension f7 over a subset D of C such that C\D has cardinality less than o; since
each interval in C has a elements, this D will therefore be order-dense. An appeal to Lemma A
and the Corollary guarantees the existence of an open interval J, in C which is free from fixed
points of f} and contains a unique-extension points for f,. Once again, since fewer than o
points have previously been identified we can select one of these a unique-extension points z., in
such a way that z, and f.!(z,) differ from all preceding choices, and note that f,!(z,) # z, since
z,€J,; pick also z, €C\Q distinct from all other chosen elements. This completes the
inductive step, and we are accordingly assured of the existence of a-sequences (z),(ys),(25)
satisfying the above conditions (i) to (iv) for every § in a.

For each s in the poset S (order denoted by <) we now define

I, = {z4,25 55 < s}.

It is immediate from the definition that r <s implies I, C I, and therefore QU I, trivially
embeddable into QU I,.
Supposing now that r £ s in S, consider the hypothesis that QU I, could be embedded in

QUI,. Then we could find a strictly increasing function

FQUI,—-QUI,
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The pair ()]q.r) belongs to Fx S and 1s therefore listed as (fg 55) for some §€a. Two
possibilities must be considered.

(I)  Jlg=1dg. Here Lemma A implics that j is the identity map on QUI,, giving
QUI CQUI,. Yetsince ss=r ¢ s.zo €1, but 2y ¢ I, vielding a contradiction.

(I1)  ylg #1dgy. This time. r, will be cither a unique-extension point or a non-extension

point for f,. In the first case. since x4 € I and j| QU frg) 1s strictly increasing.

i) =] QU(16)(16) = fsl(xs) = ys
forces y; to belong to QU I,, contrary to the definitions. In the second, no strictly increasing
extension of j| g over QU {rs} could exist: and yet, as we saw in the discussion of the first case,
Jlou {z5) 19 such an extension.
We conclude that. when r £ s. no order-embedding of QU I, into QU I, can be obtained.

Thus the map
6:5—2(C)

defined by 6(s) = Q U I, satisfies the condition

r < s if and only if 8(r) < 6(s)

and establishes an order-isomorphism between S and the sub-poset 6(S) of the qoset P(C).
COROLLARY 1. Given any poset S with card(S) < a, we can find a subset of Po(C’) which
is isomorphic to S.
PROOF. Extend S in any fashion to yield a poset S* of cardinality a. By the theorem

there is an embedding
6:5*—6(5*) C Po(C).

The restriction of 8 to S now embeds the latter into Py(C) as required.

COROLLARY 2. Any poset of cardinality not exceeding ¢ can be embedded in ’:'PQ(R).

NOTE. The question of which infinite cardinals are continuum-like appears difficult to
resolve fully, and will certainly depend to some extent on the axiom system adopted. For
instance, if we assume the negation of the continuum hypothesis (CH), so that R, <¢, it will
evidently be impossible to express X, in the form 2#, whence X, will not be continuum-like: this
contrasts with its status when CH itself is assumed. One positive result is fairly easy to obtain:
it will follow from the generalized continuum hypothesis (GCH) that every successor cardinal o
is continuum-like. For let 8 be the immediate cardinal predecessor of a, so that GCH implies
a =28, and define

A = {all B-sequences of Os and 1s that are ultimately constant at 0}.

Then
card(A)< Y 2°< Y B [using GCH again]
§<f §<p
=pf'=B<a.

Next put C = {all (-sequences of 0s and 1s}\A and impose on C the lexicographic ordering,
converting it into a chain with a elements.
Let r = (z,,v € p) and y = (y,,7 € B) be any elements of C for which r <y. Then there
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must exist § < 3 for which x5 = 0 and y; = 1; let { denote the least cardinal for which y. =1 and

¢ > 6 (recalling that y ¢ A). Now any z = (z,.v € ) for which

=y, ify <

2=0
will lie in the open interval (z,y) of C. There are 2% such sequences z, so every interval in C has
cardinality a as required.

Now if @ = {all B-sequences of 0s and 1s that are ultimately constant at 1} we again have
card(Q) < B; indeed, equality occurs here since it is easy to exhibit 3 distinct elements of Q
(those consisting simply of a ‘block’ of 0s followed by a ‘block’ of 1s). In the previous paragraph,
the z constructed to lie between z and y could have been chosen to have =, =1 for all >,

therefore belonging to Q: this verifies that @ is order-dense in C and concludes the

demonstration.
REFERENCES
1. BANKSTON, P., The total negation of a topological property, Illinois J. Math. 23 (1979),
241-252.

2. MATIER, J., Total negation in general topology and in ordered topological spaces, Ph.D.
thesis, Queen’s University Belfast, 1991.

3. MATIER, J. and McMASTER, T.B.M., Iteration of the ‘anti’ operation in ordered
topological spaces and in other categorical contexts, Boll. Un. Mat. Ital., to appear.

4. MATTHEWS, P.T., and McMASTER, T.B.M., A viewpoint on minimality in topology,
Bull. Irish Math. Soc., submitted.



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

