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ABSTRACT. In this paper, we investigate total stability, attractivity and uniform stability in
terms of two measures of nonlinear differential systems under constant perturbations. Some sufficient

conditions are obtained using Lyapunov’s direct method. An example is also worked out.
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1. INTRODUCTION

When we model a physical system by means of a differential equation, it is not generally possible
to take into account all the causes which determine the evolution. In other words, we have to
admit that there are small perturbations permanently acting which cannot be accurately estimated
consequently the validity of the description of the evolution, as given by a corresponding solution of
the differential equation, requires that this solution be “stable” not only with respect to the small
perturbations of the initial conditions, but also with respect to the perturbations, small in a suitable
sense, of the right hand side of the equation. This kind of stability is called total stability, which we
shall define in the next section.

There are several different concepts of stability studied in the literature, such as eventual stability,
partial stability, conditional stability, etc. To unify these varieties of stability notions and to offer
a general basis for investigation, it is convenient to introduce stability in terms of two different
measures. Following Movchan [4], Salvadori [5] has successfully developed the theory of stability in
terms of two measures. In the recent years much work has been done using two measures. See [2,3]
and references therein.

In this paper we investigate the total stability, attractivity and uniform stability of perturbed
systems in terms of two measures. In view of the generality of the present approach, our results

improve and include some of the earlier findings and may be suitable for many applications.

2. PRELIMINARIES
Consider the differential system

a' = f(t,z), 2(to) = 2o (2.1)
and the perturbed differential system
2’ = f(t,z) + R(t,z), z(to) = o, (2.2)

where f, R € C[Ry x R", R*], R(t,z) is a perturbation term relative to unperturbed system

(2.1).
Let us begin by defining the following class of functions for future use.
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K ={a € C[Ry, Ry]:a(u) is strictly increasing and  «(0) = 0} ;
I={heCR xR, Ry], inf h(t,z) = 0}.

Definition 2.1 Let hy, h €1, then wesay that hy is uniformly finer than & if there exists
a 6>0 and afunction ® € K such that

ho(t,z) <& implies A(t,z) < ®(ho(t,z)).
Definition 2.2 Let VeC[R, x RN, R,] and ho, h €T then V(t,r) is said to be

(i) h-positive definite if there exist a p > 0 and a function b € K such that h(t,z) < p
implies b(t(t,z)) < V(t,2).

(i1) ho - decrescent if there exist a 6§ > 0 and a function a € K such that

ho(t,z) < 6 implies V(t,z) < a(ho(t,z)).

Let ho,h € T. We shall now define the stability concepts for the system (2.1) in terms of two
measures (ho, k). Let S(h,p) = [(t,$) € Ry x R*, h(t,2) < p].
Definition 2.3 The system (2.1) is said to be (ho,h,T}) - totally stable, if given € > 0 and
tocRy, there exist two numbers 6, 8§, > 0 such that ho(to,z0) < 6, and

| R(t,z) ||< 6 for (t,z)€ S(h,e) (2.3)

imply h(t,y(t,to,20)) <€, t >to, where y(t,to,z0) is any solution of the perturbed system
(2.2).
Definition 2.4 The system (2.1) is said to be (ho, h,T;) - totally stable, if for every € > 0,
to€ R* and T > 0 there exist two positive numbers &, = §;(¢) and &, = 8;(€¢) such that for
every solution y(t) = y(t,t0,z0) of (2.2) the inequality h(t,y(t))T< €, t>1to satisfies, provided
that ho(to,20) < 61, || B(t,2) I pu(t) for h(t,2) S e and | N u(s)ds < 6.
Definition 2.5 The system (2.1) is said to be (ho, h) - attractive if given to € Ry, there exist
a positive constant & = 8(tp) such that ho(to,z0) < 8o implies tl_i‘rgh(t,z)) =0.

We need the following known results [1] for our discussion.
Lemma 2.1 Let g€ C[Ry x R, R| and r(t) = r(t,to,zo) be maximal solution of

v = g(t,u), u(to) = uo > 0 (2.4)

existing on J. Suppose that m € [Ry, R;] and Dm(t) < g(t,m(t)), t € J where D is
any fixed Dini derivative. Then m(t,) < uo implies m(t) < r(t), te J.
3. MAIN RESULTS

In this section we shall investigate the stability and attractivity properties of the differential

system.
THEOREM 3.1 Assume that

(i) ho, h €T and ho is uniformly finer than h.
(ii) V € C*[Ry x R", Ry], V(t,z) is h-positive definite, ho-decrescent and

Via(t,2) £ =C(ho(t,z)), (t,z) € S(h,p), CeK.

(iii) | V(t2) = V(ty) IS Mz -y, (t2),(ty) € S(h,p) and M >0.
Then the system (2.1) is (ho, h,T}) - totally stable.
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PROOF:  Let us write V,(t,y), the time derivativeof V' along the solutions of the perturbed

system (2.2). Then it follows from (ii) and (iii) that
Violty) < ~Clho(t.y)) + M || R(Ly) |l (t,y) € S(h,p) (3.1)

Since V/(t,r) is h-positive definite and  ho-decrescent, there exist constants po € (0,p), 6 > 0

and functions «, b€ K such that
V(t,x) <a(ho(t,z)) il ho(t,2) < b (3.2)
and
b(h(t,z)) < V(t,2) whenever h(t,2) < pg. (3.3)
Let €€ (0,p0) be given. Choose & € (0,80) such that

a(é) <ble) and h(t,z)<e if ho(t,z)<$é (3.4)

because of the assumptions on «, b and condition (i).

C(é
For K €(0,1), choose 8 = K—— Clé) . Let to € Ry and y(t) = y(t,to,z0) be a solution of
(2.2) we claim that h(to,z0) < 6, and || R(t,y) |[< 6, for (t,y) € S(h,e) implies

h(t,y(t)) <e, t>to. (3.5)

If this is not true, there would exist a solution y(t) = y(t,to,z¢) of (2.2) with ho(to, zo) < & and
t >t > such that

ho(tr, y(t1)) = 81, h(t2,y(t2)) = €, (t,y(t)) € S(h,€) N S°(ho, 61) (3.6)

and
| R(t,y(t)) lI< 62, t€[tr,ta).

Then it follows from (3.1) and (3.6) that

C(5x)

Vi(t,y(t) < -C(&) + MK——- <0, t; <t<t,.

which implies by (3.2)-(3.4) that

b(e) < V(ta,y(t2)) < V(t1,y(t)) < a(61) < be) .
This contradiction shows that (3.5) is true and thus the system (2.1) is (ho, h,T1) - totally stable
which completes the proof of the theorem.
THEOREM 3.2 In addition to the assumption of theorem 3.1, suppose further that there exist
a constant ¢ >0 such that A(t,z) <o implies

lim R(t,y) = 0 (3.7)

uniformly in y.
Then the system (2.2) is (ho, k)-attractive.

PROOF: Because of (hg,h) - total stability of system (2.1), setting € = 0o = min {po,0},
there exists constants 6,0 >0 and &y > 0 such that hg(to,z0) < 60 and || R(¢,z) ||< 820 for
(t,z) € S(h,00) implies

h(t,y(t)) < oo, t2to, (3-8)

where y(t) = y(t,t0,20) is any solution of (2.2).
Let n € (0,00) and & = &i(n), & = &(n) be chosen as in the definition 2.3. Let

)
0; = min {62, _]_\l—}’ it follows from (3.7) that there exist Ty = T(to,z0) > 0 such that
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I RO y(D) <85, £2T 41 (3.9)

To show (hg, h)-atiractivity of (2.2). it is cnough to prove that there exists a 1" = T (lg, 7o) > 0
such that for some t* € [tg, T + to)

ho(t™.x(t7)) < 6, and || R(t.y(1)) ||< &, t > t*.

Choose -
da(ho(to + 11, y(to + 11)))

C(é)
Then if for to+ Ty <t <tg+ T, (t.y(t)) € S(h,o0) N S(ho,61), we get by (3.1) and (3.2)

T= +T1

C(6,
2

~

VI(t,y(t)) < - , o+ St <te+T.

which implies

€

V(to+T,y(to + T)) < a(ho(to + T1,y(to + Th))) — 9

(T-T)<0.

This contradiction shows the existence of ¢* and it follows from (hg, k,T}) - total stability of (2.1)
that the system (2.2) is (ho, k) - attractive, which completes the proof of the theorem.

The next result is on (ho, h,T3) - stability.

THEOREM 3.3  Assume that

(i) ho,h €T and hy is uniformly finer than h.
(ii) V € CY[Ry x R*, Ry), V(t,z) is h-positive definite V(t,z) is ho-decrescent and
VZ’l(tﬂl‘) S —C(V(t,fl)), (t,l)fs(h,p), C € K.

(l“) ” V(t,I)—V(.‘B,y) ”SM HJI—y”, (t,l‘),(t,y)ES(h,/)) and M > 0.
Then the system (2.1) is (ho, h,T3) - totally stable.
PROOF:  Using the relations (3.1) and (3.2) we choose &; = &§;(¢) such that
a(61) < be). (3.10)

Let ho(to,z0) < 61, m(t) = V(t,y(t)), where y(t) = y(t,to,z0) Iis a solution of (2.2). Hence
m(to) < a(b,) < b(e). We claim m(t) < b(e), t > to. If this is not true, then there exist a t;, > to
such that m(¢;) = b(e) and m(t) < b(e) for to <t; which implies

h(t,y(t)) Se<p, to<y<t (3.11)
Let t; —to=T and choose
62 = 8y(€) < b(e) — I {J(a(é1))}/M (3.12)
where
J(u) = J(uo) = DE‘% (w) ='0" Cd—(i) if O“E,d—(’s'—) < oo
Otherwise J(u) = /5 * % for some small constant & >0, and J-' is the inverse function of
J.

From (ii) and (iii) we have
D*V(t,y(t)) < —C(V(t,y(t) + M || R(t,y(t)) |

for t € [to,t1]-
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Now define A1) = V(1. y(1)) = ~(1). where

W0 = [ R 1

We obtain
DY) < =C'(\(1)
using the monotonic character of C'(u) and the fact A(L) > V(¢ y(t)), which implies, by Lemma
2.1, that
Mt) < J7HI(V (o, 20)) — (L= ru)] . L€ [tonty) (3.13)
Noting that the maximal solution of «' = —C(u), u(ly) = V(to,20), is just the right hand side of
(3.13), thus it follows

Vi(t.y(1) < J-l[v/("(to--l'o)) U ‘U)] +4(8). 1€ [to, ta].

Now using the facts that h(t.y(t)) < ¢ for to <t <to+T. V(lo.xo) < aléy), || R(t,y(t)) || p(t).
+T

/ ji(s)ds < 8, and relations (3.10), (3.12), we derive the inequality

t

b(e) < V(to+ T, ylto + T)) < 7" [J(a(b1)) = T] + M8, < b(e),

which is a contradiction. Thus m(t) < b(e), t > to, which implies (hq,h,T7)-total stability of
(2.1). This completes the proof of the theorem.

In the previous theorems, in order to prove total stability properties of (2.2) we assumed the
uniform asymptotic stability properties of (2.1) (the unperturbed system). In the following theorem
we prove (hg, h) - stability of (2.2) under weaker assumptions on (2.1) by avoiding using norm on
the perturbed term.

THEOREM 3.4  Assume that

(i) ho,h € T and ho is uniformly finer than A.

(i) V € CY[Ry x R", Ry), V(t,z) is h-positive definite, ho-decrescent and
VZI.I(tvx) 307 (t,I)GS(h,p)

) ) g2y < Ve, (t.2) € S(hp)
where {(t) € £' and exp[ffl2 l’(s)ds] <M, M>0.

Then the system (2.2) is (ho, h)-uniformly stable.

PROOF: Let us write V;,(t,y), thetime derivativeof V along the solutions of the perturbed
system (2.2). Then it follows from (ii) and (iv) that

OV(;:Q;) “R(t,x) UV (1Y), (t,y) € S(h, p) (3.14)

Since V/(t,z) is h-positive definite and hqo-decrescent, there exist constants po € (0,p), & >0

Vaa(t,y) < Vaa(ty) +

and functions a, beK such that
V(t,z) < a(ho(t,z)) if ho(t,z) <o (3.15)

and
b(h(t,z)) < V(t,z) whenever h(t,z) < po (3.16)

Let € € (0,p0) be given. Because of the assumptions of «, b and condition (i) we can choose
6, € (0,60) such that

M a(6;) < b(e) and h(t,z) < € "if ho(t,2) < & (3.17)
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Let o€ Ry and y(l) = y(t. 1y, 20) be asolution of (2.2). We claim that  h(ly, 10) < 8, implies
h(t,y(t))y <ec. t>1y for (l.y) € S(h,e) (3.18)

If this is not true, there would exist a solution  y(#) = y(/.fy. 20) of (2.2) with hy(le,xo) < 6 and

1y > 1 >ty such that ho(y,y(6)) = &0 It y(t,)) = ¢ and
(L y()e S(h.€) N S (ho.8y) . LE [thits). (3.19)
then it follows from (3.14)
VIity(t)) < () V(L y(t))
which implies by (3.15)-(3.18)

WO < Vit (ta) < Vit gt exp[ [ ()] < Ma(ar) < o).

t

This contradiction shows that (3.18) is true, which completes the proof of the theorem.
To conclude our paper, we consider the following example.

EXAMPLE: Consider the differential system

=24+ (1 =22 - 2%)a e

(3.20)
¥y =2+ (1 —af —a})agsinad
and the perturbed system
I’l = —T; + (1 - :E? - £§,)xle“ + Rl(t,ﬂll,l‘g)
(3.21)
T2 =3 + 1(1 — 22 — )z, sina? + Ry(t, 21, 22)
where \
Ri(t,z),2q) = (2 + 23 — l)t"’:; s
1
and 2
e %sin t
Ry(t,zy,29) = (22 + 22 - 1) - .
2

Let V(t,z)= (22 +22—1)?, ho=h =| 22+ 2% —1|. Then we see that
h2(t,2) < V(t,2) < h(t,2)

and
Vit z) = —(2 4+ 22 — 1)*(22e™ + 22sinz?) <0, (t,z) € Ry x R?,

av av 2%
a_z . R(t,l‘) = a—lel(t,Il,lg) + a—IZRQ(t,(E],l'z) S f(t)V(t,x) y

where £(t) = 4[t?¢~* + sinte™/?]. Hence by Theorem 3.4, the perturbed system (4.2) is (ho, h)-

uniformly stable.
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