

## STABILITY OF NONLINEAR SYSTEMS UNDER CONSTANTLY ACTING PERTURBATIONS

XINZHI LIU

Department of Applied Mathematics  
University of Waterloo  
Waterloo, Ontario N2L 3G1, Canada

S. SIVASUNDARAM

Department of Mathematics and Physical Sciences  
Embry-Riddle Aeronautical University  
Daytona Beach, FL 32114, U.S.A.  
(Received September 9, 1991)

**ABSTRACT.** In this paper, we investigate total stability, attractivity and uniform stability in terms of two measures of nonlinear differential systems under constant perturbations. Some sufficient conditions are obtained using Lyapunov's direct method. An example is also worked out.

**KEY WORDS AND PHRASES.** Stability, perturbation, Lyapunov function, two measures.

**1980 AMS (MOS) SUBJECT CLASSIFICATION CODE.** 34D20, 34D30, 34D10.

### 1. INTRODUCTION

When we model a physical system by means of a differential equation, it is not generally possible to take into account all the causes which determine the evolution. In other words, we have to admit that there are small perturbations permanently acting which cannot be accurately estimated consequently the validity of the description of the evolution, as given by a corresponding solution of the differential equation, requires that this solution be "stable" not only with respect to the small perturbations of the initial conditions, but also with respect to the perturbations, small in a suitable sense, of the right hand side of the equation. This kind of stability is called total stability, which we shall define in the next section.

There are several different concepts of stability studied in the literature, such as eventual stability, partial stability, conditional stability, etc. To unify these varieties of stability notions and to offer a general basis for investigation, it is convenient to introduce stability in terms of two different measures. Following Movchan [4], Salvadori [5] has successfully developed the theory of stability in terms of two measures. In the recent years much work has been done using two measures. See [2,3] and references therein.

In this paper we investigate the total stability, attractivity and uniform stability of perturbed systems in terms of two measures. In view of the generality of the present approach, our results improve and include some of the earlier findings and may be suitable for many applications.

### 2. PRELIMINARIES

Consider the differential system

$$x' = f(t, x), \quad x(t_0) = x_0 \quad (2.1)$$

and the perturbed differential system

$$x' = f(t, x) + R(t, x), \quad x(t_0) = x_0, \quad (2.2)$$

where  $f, R \in C[R_+ \times R^n, R^n]$ ,  $R(t, x)$  is a perturbation term relative to unperturbed system (2.1).

Let us begin by defining the following class of functions for future use.

$$K = \{a \in C[R_+, R_+] : a(u) \text{ is strictly increasing and } a(0) = 0\};$$

$$\Gamma = \{h \in C[R_+ \times R^N, R_+] : \inf h(t, x) = 0\}.$$

**Definition 2.1** Let  $h_0, h \in \Gamma$ , then we say that  $h_0$  is uniformly finer than  $h$  if there exists a  $\delta > 0$  and a function  $\Phi \in K$  such that

$$h_0(t, x) < \delta \text{ implies } h(t, x) \leq \Phi(h_0(t, x)).$$

**Definition 2.2** Let  $V \in C[R_+ \times R^N, R_+]$  and  $h_0, h \in \Gamma$  then  $V(t, x)$  is said to be

(i)  $h$ -positive definite if there exist a  $\rho > 0$  and a function  $b \in K$  such that  $h(t, x) < \rho$  implies  $b(t, x) \leq V(t, x)$ .

(ii)  $h_0$  - decrescent if there exist a  $\delta > 0$  and a function  $a \in K$  such that

$$h_0(t, x) < \delta \text{ implies } V(t, x) \leq a(h_0(t, x)).$$

Let  $h_0, h \in \Gamma$ . We shall now define the stability concepts for the system (2.1) in terms of two measures  $(h_0, h)$ . Let  $S(h, \rho) = \{(t, x) \in R_+ \times R^n, h(t, x) < \rho\}$ .

**Definition 2.3** The system (2.1) is said to be  $(h_0, h, T_1)$  - totally stable, if given  $\epsilon > 0$  and  $t_0 \in R_+$ , there exist two numbers  $\delta_1, \delta_2 > 0$  such that  $h_0(t_0, x_0) < \delta_1$  and

$$\|R(t, x)\| < \delta_2 \text{ for } (t, x) \in S(h, \epsilon) \quad (2.3)$$

imply  $h(t, y(t, t_0, x_0)) < \epsilon$ ,  $t \geq t_0$ , where  $y(t, t_0, x_0)$  is any solution of the perturbed system (2.2).

**Definition 2.4** The system (2.1) is said to be  $(h_0, h, T_2)$  - totally stable, if for every  $\epsilon > 0$ ,  $t_0 \in R^+$  and  $T > 0$  there exist two positive numbers  $\delta_1 = \delta_1(\epsilon)$  and  $\delta_2 = \delta_2(\epsilon)$  such that for every solution  $y(t) = y(t, t_0, x_0)$  of (2.2) the inequality  $h(t, y(t)) < \epsilon$ ,  $t \geq t_0$  satisfies, provided that  $h_0(t_0, x_0) < \delta_1$ ,  $\|R(t, x)\| \leq \mu(t)$  for  $h(t, x) \leq \epsilon$  and  $\int_t^{t+T} \mu(s) ds < \delta_2$ .

**Definition 2.5** The system (2.1) is said to be  $(h_0, h)$  - attractive if given  $t_0 \in R_+$ , there exist a positive constant  $\delta_0 = \delta(t_0)$  such that  $h_0(t_0, x_0) < \delta_0$  implies  $\lim_{t \rightarrow \infty} h(t, x) = 0$ .

We need the following known results [1] for our discussion.

**Lemma 2.1** Let  $g \in C[R_+ \times R, R]$  and  $r(t) = r(t, t_0, x_0)$  be maximal solution of

$$u' = g(t, u), u(t_0) = u_0 \geq 0 \quad (2.4)$$

existing on  $J$ . Suppose that  $m \in [R_+, R_+]$  and  $Dm(t) \leq g(t, m(t))$ ,  $t \in J$  where  $D$  is any fixed Dini derivative. Then  $m(t_0) \leq u_0$  implies  $m(t) \leq r(t)$ ,  $t \in J$ .

### 3. MAIN RESULTS

In this section we shall investigate the stability and attractivity properties of the differential system.

**THEOREM 3.1** Assume that

(i)  $h_0, h \in \Gamma$  and  $h_0$  is uniformly finer than  $h$ .

(ii)  $V \in C^1[R_+ \times R^n, R_+]$ ,  $V(t, x)$  is  $h$ -positive definite,  $h_0$ -decrescent and

$$V'_{2,2}(t, x) \leq -C(h_0(t, x)), \quad (t, x) \in S(h, \rho), \quad C \in K.$$

(iii)  $\|V(t, x) - V(t, y)\| \leq M \|x - y\|$ ,  $(t, x), (t, y) \in S(h, \rho)$  and  $M > 0$ .

Then the system (2.1) is  $(h_0, h, T_1)$  - totally stable.

PROOF: Let us write  $V'_{2,2}(t, y)$ , the time derivative of  $V$  along the solutions of the perturbed system (2.2). Then it follows from (ii) and (iii) that

$$V'_{2,2}(t, y) \leq -C(h_0(t, y)) + M \|R(t, y)\|, (t, y) \in S(h, \rho) \quad (3.1)$$

Since  $V(t, x)$  is  $h$ -positive definite and  $h_0$ -decreasing, there exist constants  $\rho_0 \in (0, \rho)$ ,  $\delta_0 > 0$  and functions  $a, b \in K$  such that

$$V(t, x) \leq a(h_0(t, x)) \quad \text{if } h_0(t, x) < \delta_0 \quad (3.2)$$

and

$$b(h(t, x)) \leq V(t, x) \quad \text{whenever } h(t, x) < \rho_0. \quad (3.3)$$

Let  $\epsilon \in (0, \rho_0)$  be given. Choose  $\delta_1 \in (0, \delta_0)$  such that

$$a(\delta_1) < b(\epsilon) \quad \text{and} \quad h(t, x) < \epsilon \quad \text{if } h_0(t, x) < \delta \quad (3.4)$$

because of the assumptions on  $a, b$  and condition (i).

For  $K \in (0, 1)$ , choose  $\delta_2 = K \frac{C(\delta_1)}{M}$ . Let  $t_0 \in R_+$  and  $y(t) = y(t, t_0, x_0)$  be a solution of (2.2) we claim that  $h(t_0, x_0) < \delta$ , and  $\|R(t, y)\| < \delta_2$  for  $(t, y) \in S(h, \epsilon)$  implies

$$h(t, y(t)) < \epsilon, \quad t \geq t_0. \quad (3.5)$$

If this is not true, there would exist a solution  $y(t) = y(t, t_0, x_0)$  of (2.2) with  $h_0(t_0, x_0) < \delta_1$  and  $t_2 > t_1 > t_0$  such that

$$h_0(t_1, y(t_1)) = \delta_1, \quad h(t_2, y(t_2)) = \epsilon, (t, y(t)) \in S(h, \epsilon) \cap S^c(h_0, \delta_1) \quad (3.6)$$

and

$$\|R(t, y(t))\| < \delta_2, \quad t \in [t_1, t_2].$$

Then it follows from (3.1) and (3.6) that

$$V'(t, y(t)) \leq -C(\delta_1) + MK \frac{C(\delta_1)}{M} < 0, \quad t_1 \leq t \leq t_2.$$

which implies by (3.2)-(3.4) that

$$b(\epsilon) \leq V(t_2, y(t_2)) \leq V(t_1, y(t_1)) \leq a(\delta_1) < b(\epsilon).$$

This contradiction shows that (3.5) is true and thus the system (2.1) is  $(h_0, h, T_1)$  - totally stable which completes the proof of the theorem.

**THEOREM 3.2** In addition to the assumption of theorem 3.1, suppose further that there exist a constant  $\sigma > 0$  such that  $h(t, x) < \sigma$  implies

$$\lim_{t \rightarrow \infty} R(t, y) = 0 \quad (3.7)$$

uniformly in  $y$ .

Then the system (2.2) is  $(h_0, h)$ -attractive.

PROOF: Because of  $(h_0, h)$  - total stability of system (2.1), setting  $\epsilon = \sigma_0 = \min \{\rho_0, \sigma\}$ , there exists constants  $\delta_{10} > 0$  and  $\delta_{20} > 0$  such that  $h_0(t_0, x_0) < \delta_{10}$  and  $\|R(t, x)\| < \delta_{20}$  for  $(t, x) \in S(h, \sigma_0)$  implies

$$h(t, y(t)) < \sigma_0, \quad t \geq t_0, \quad (3.8)$$

where  $y(t) = y(t, t_0, x_0)$  is any solution of (2.2).

Let  $\eta \in (0, \sigma_0)$  and  $\delta_1 = \delta_1(\eta)$ ,  $\delta_2 = \delta_2(\eta)$  be chosen as in the definition 2.3. Let  $\sigma_2^* = \min \left\{ \delta_2, \frac{C(\delta_1)}{M} \right\}$ , it follows from (3.7) that there exist  $T_1 = T(t_0, x_0) > 0$  such that

$$\|R(t, y(t))\| < \delta_2^*, \quad t \geq T + t_0. \quad (3.9)$$

To show  $(h_0, h)$ -attractivity of (2.2), it is enough to prove that there exists a  $T = T(t_0, x_0) > 0$  such that for some  $t^* \in [t_0, T + t_0]$

$$h_0(t^*, x(t^*)) < \delta_1 \quad \text{and} \quad \|R(t, y(t))\| < \delta_2^*, \quad t \geq t^*.$$

Choose

$$T = \frac{4a(h_0(t_0 + T_1, y(t_0 + T_1)))}{C(\delta_1)} + T_1.$$

Then if for  $t_0 + T_1 \leq t \leq t_0 + T$ ,  $(t, y(t)) \in S(h, \sigma_0) \cap S^c(h_0, \delta_1)$ , we get by (3.1) and (3.2)

$$V'(t, y(t)) \leq -\frac{C(\delta_1)}{2}, \quad t_0 + T_1 \leq t \leq t_0 + T.$$

which implies

$$V(t_0 + T, y(t_0 + T)) \leq a(h_0(t_0 + T_1, y(t_0 + T_1))) - \frac{C(\delta_1)}{2}(T - T_1) < 0.$$

This contradiction shows the existence of  $t^*$  and it follows from  $(h_0, h, T_1)$ -total stability of (2.1) that the system (2.2) is  $(h_0, h)$ -attractive, which completes the proof of the theorem.

The next result is on  $(h_0, h, T_2)$ -stability.

**THEOREM 3.3** Assume that

(i)  $h_0, h \in \Gamma$  and  $h_0$  is uniformly finer than  $h$ .

(ii)  $V \in C^1[R_+ \times R^n, R_+]$ ,  $V(t, x)$  is  $h$ -positive definite  $V(t, x)$  is  $h_0$ -decreasing and

$$V'_{2,1}(t, x) \leq -C(V(t, x)), \quad (t, x) \in S(h, \rho), \quad C \in K.$$

(iii)  $\|V(t, x) - V(x, y)\| \leq M \|x - y\|$ ,  $(t, x), (t, y) \in S(h, \rho)$  and  $M > 0$ .

Then the system (2.1) is  $(h_0, h, T_2)$ -totally stable.

**PROOF:** Using the relations (3.1) and (3.2) we choose  $\delta_1 = \delta_1(\epsilon)$  such that

$$a(\delta_1) < b(\epsilon). \quad (3.10)$$

Let  $h_0(t_0, x_0) < \delta_1$ ,  $m(t) = V(t, y(t))$ , where  $y(t) = y(t, t_0, x_0)$  is a solution of (2.2). Hence  $m(t_0) < a(\delta_1) < b(\epsilon)$ . We claim  $m(t) < b(\epsilon)$ ,  $t \geq t_0$ . If this is not true, then there exist a  $t_1 > t_0$  such that  $m(t_1) = b(\epsilon)$  and  $m(t) \leq b(\epsilon)$  for  $t_0 \leq t \leq t_1$  which implies

$$h(t, y(t)) \leq \epsilon < \rho, \quad t_0 \leq t \leq t_1 \quad (3.11)$$

Let  $t_1 - t_0 = T$  and choose

$$\delta_2 = \delta_2(\epsilon) < b(\epsilon) - J^{-1}\{J(a(\delta_1))\}/M \quad (3.12)$$

where

$$J(u) - J(u_0) = \int_{u_0}^u \frac{ds}{C(s)}, \quad J(u) = \int_0^u \frac{dS}{C(s)} \quad \text{if} \quad \int_0^u \frac{ds}{C(s)} < \infty$$

Otherwise  $J(u) = \int_\delta^u \frac{ds}{C(s)}$  for some small constant  $\delta > 0$ , and  $J^{-1}$  is the inverse function of  $J$ .

From (ii) and (iii) we have

$$D^+ V(t, y(t)) \leq -C(V(t, y(t))) + M \|R(t, y(t))\|$$

for  $t \in [t_0, t_1]$ .

Now define  $\lambda(t) = V(t, y(t)) - \gamma(t)$ , where

$$\gamma(t) = M \int_{t_0}^t \| R(s, y(s)) \| ds.$$

We obtain

$$D^+ \lambda(t) \leq -C(\lambda(t))$$

using the monotonic character of  $C(u)$  and the fact  $\lambda(t) \geq V(t, y(t))$ , which implies, by Lemma 2.1, that

$$\lambda(t) \leq J^{-1} [J(V(t_0, x_0)) - (t - t_0)], \quad t \in [t_0, t_1] \quad (3.13)$$

Noting that the maximal solution of  $u' = -C(u)$ ,  $u(t_0) = V(t_0, x_0)$ , is just the right hand side of (3.13), thus it follows

$$V(t, y(t)) \leq J^{-1} [J(V(t_0, x_0)) - (t - t_0)] + \gamma(t), \quad t \in [t_0, t_1].$$

Now using the facts that  $h(t, y(t)) \leq c$  for  $t_0 \leq t \leq t_0 + T$ ,  $V(t_0, x_0) < a(\delta_1)$ ,  $\| R(t, y(t)) \| \leq \mu(t)$ ,  $\int_t^{t+T} \mu(s) ds < \delta_2$  and relations (3.10), (3.12), we derive the inequality

$$b(\epsilon) \leq V(t_0 + T, y(t_0 + T)) \leq J^{-1} [J(a(\delta_1)) - T] + M\delta_2 < b(\epsilon),$$

which is a contradiction. Thus  $m(t) < b(\epsilon)$ ,  $t \geq t_0$ , which implies  $(h_0, h, T_2)$ -total stability of (2.1). This completes the proof of the theorem.

In the previous theorems, in order to prove total stability properties of (2.2) we assumed the uniform asymptotic stability properties of (2.1) (the unperturbed system). In the following theorem we prove  $(h_0, h)$ -stability of (2.2) under weaker assumptions on (2.1) by avoiding using norm on the perturbed term.

**THEOREM 3.4** Assume that

- (i)  $h_0, h \in \Gamma$  and  $h_0$  is uniformly finer than  $h$ .
- (ii)  $V \in C^1[R_+ \times R^n, R_+]$ ,  $V(t, x)$  is  $h$ -positive definite,  $h_0$ -decreasing and

$$V'_{2,1}(t, x) \leq 0, \quad (t, x) \in S(h, \rho).$$

- (iii)  $\frac{\partial V(t, x)}{\partial x} \cdot R(t, x) \leq \ell(t)V(t, x)$ ,  $(t, x) \in S(h, \rho)$ ,  
where  $\ell(t) \in \mathcal{L}^1$  and  $\exp \left[ \int_{t_1}^{t_2} \ell(s) ds \right] \leq M$ ,  $M > 0$ .  
Then the system (2.2) is  $(h_0, h)$ -uniformly stable.

**PROOF:** Let us write  $V'_{2,2}(t, y)$ , the time derivative of  $V$  along the solutions of the perturbed system (2.2). Then it follows from (ii) and (iv) that

$$V'_{2,2}(t, y) \leq V'_{2,1}(t, y) + \frac{\partial V(t, x)}{\partial x} \cdot R(t, x) \leq \ell(t)V(t, y), \quad (t, y) \in S(h, \rho) \quad (3.14)$$

Since  $V(t, x)$  is  $h$ -positive definite and  $h_0$ -decreasing, there exist constants  $\rho_0 \in (0, \rho)$ ,  $\delta_0 > 0$  and functions  $a, b \in K$  such that

$$V(t, x) \leq a(h_0(t, x)) \quad \text{if } h_0(t, x) < \delta_0 \quad (3.15)$$

and

$$b(h(t, x)) \leq V(t, x) \quad \text{whenever } h(t, x) < \rho_0 \quad (3.16)$$

Let  $\epsilon \in (0, \rho_0)$  be given. Because of the assumptions of  $a, b$  and condition (i) we can choose  $\delta_1 \in (0, \delta_0)$  such that

$$M a(\delta_1) < b(\epsilon) \quad \text{and} \quad h(t, x) < \epsilon \quad \text{if } h_0(t, x) < \delta_1. \quad (3.17)$$

Let  $t_0 \in R_+$  and  $y(t) = y(t, t_0, x_0)$  be a solution of (2.2). We claim that  $h(t_0, x_0) < \delta_1$  implies

$$h(t, y(t)) < \epsilon, \quad t \geq t_0 \quad \text{for } (t, y) \in S(h, \epsilon) \quad (3.18)$$

If this is not true, there would exist a solution  $y(t) = y(t, t_0, x_0)$  of (2.2) with  $h_0(t_0, x_0) < \delta_1$  and  $t_2 > t_1 > t_0$  such that  $h_0(t_1, y(t_1)) = \delta_1$ ,  $h(t_2, y(t_2)) = \epsilon$  and

$$(t, y(t)) \in S(h, \epsilon) \cap S^c(h_0, \delta_1), \quad t \in [t_1, t_2], \quad (3.19)$$

then it follows from (3.14)

$$V'(t, y(t)) \leq \ell(t) V(t, y(t))$$

which implies by (3.15)-(3.18)

$$b(\epsilon) \leq V(t_2, y(t_2)) \leq V(t_1, y(t_1)) \exp \left[ \int_{t_1}^{t_2} \ell(s) ds \right] \leq Ma(\delta_1) < b(\epsilon).$$

This contradiction shows that (3.18) is true, which completes the proof of the theorem.

To conclude our paper, we consider the following example.

EXAMPLE: Consider the differential system

$$\begin{aligned} x'_1 &= x_2 + (1 - x_1^2 - x_2^2)x_1 e^{-t} \\ x'_2 &= x_1 + (1 - x_1^2 - x_2^2)x_2 \sin x_1^2 \end{aligned} \quad (3.20)$$

and the perturbed system

$$\begin{aligned} x'_1 &= -x_2 + (1 - x_1^2 - x_2^2)x_1 e^{-t} + R_1(t, x_1, x_2) \\ x_2 &= x_1 + (1 - x_1^2 - x_2^2)x_2 \sin x_1^2 + R_2(t, x_1, x_2) \end{aligned} \quad (3.21)$$

where

$$R_1(t, x_1, x_2) = (x_1^2 + x_2^2 - 1)t^2 \frac{e^t}{x_1},$$

and

$$R_2(t, x_1, x_2) = (x_1^2 + x_2^2 - 1) \frac{e^{-t/2} \sin t}{x_2}.$$

Let  $V(t, x) = (x_1^2 + x_2^2 - 1)^2$ ,  $h_0 = h = |x_1^2 + x_2^2 - 1|$ . Then we see that

$$h^2(t, x) \leq V(t, x) \leq h_0^2(t, x)$$

and

$$V'_{4,1}(t, x) = -(x_1^2 + x_2^2 - 1)^2(x_1^2 e^{-t} + x_2^2 \sin x_1^2) \leq 0, \quad (t, x) \in R_+ \times R^2,$$

$$\frac{\partial V}{\partial x} \cdot R(t, x) = \frac{\partial V}{\partial x_1} R_1(t, x_1, x_2) + \frac{\partial V}{\partial x_2} R_2(t, x_1, x_2) \leq \ell(t) V(t, x),$$

where  $\ell(t) = 4[t^2 e^{-t} + \sin t e^{-t/2}]$ . Hence by Theorem 3.4, the perturbed system (4.2) is  $(h_0, h)$ -uniformly stable.

## References

1. LAKSHMIKANTHAM, V. and LEELA, S. Differential and Integral Inequalities, Vol. I, Academic Press, New York (1969).
2. LAKSHMIKANTHAM, V. LEELA, S. and MARTYNYUK, A.A. Stability Analysis of Nonlinear Systems, Marcel Dekker, New York (1989).
3. LAKSHMIKANTHAM, V. and LIU, X.Z. Stability of Nonlinear Systems in Terms of Two Measures, to appear.
4. MOVCHAN, H.A. Stability of Process with Respect to Two Matrices, *Prik. Mat. Mech.* **24** (1960), 988-1001.
5. SALVADORI, L. Sul problema della stabilità asintotica, *Rend. Conti, Acad. No. 2. Lincei* **53** (1972), 35-38.

## Special Issue on Intelligent Computational Methods for Financial Engineering

### Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

|                        |                  |
|------------------------|------------------|
| Manuscript Due         | December 1, 2008 |
| First Round of Reviews | March 1, 2009    |
| Publication Date       | June 1, 2009     |

### Guest Editors

**Lean Yu**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [yulean@amss.ac.cn](mailto:yulean@amss.ac.cn)

**Shouyang Wang**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; [sywang@amss.ac.cn](mailto:sywang@amss.ac.cn)

**K. K. Lai**, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [mskklai@cityu.edu.hk](mailto:mskklai@cityu.edu.hk)