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ABSTRACT. This paper is devoted to asymptotic formulas for functions related with the spectrum
of the standard Laplace operator in two and three dimensional bounded doubly connected domains
with impedance boundary conditions, where the impedances are assumed to be positive functions.
Moreover, asymptotic expressions for the difference of eigenvalues related to impedance boundary
value problems with different impedances are derived. Further results may be obtained.
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1. INTRODUCTION
The underlying problem is to deduce the geometrical properties of a membrane from a complete

knowledge of the eigenvalues {i,(0)};_, for the negative Laplacian —-A, = — il(a%)z inR”,n=2or
3.
Let Q be a simply connected bounded domain in R* with a smooth boundary 4Q in the case

n =2, or a smooth bounding surface S in the case n = 3. Consider the impedance problem
A, +Mu=0 in Q, (1.1)

(ainux)u-o on 9%or S), (1.2)

where % denotes differentiation along the inward-pointing normal to 92 (or S), and o is a positive

function. Denote its eigenvalues, counted according to multiplicity, by
O<p(0)su(o)s..sy(0)s...—»o as k—>o. (1.3)

At the beginning of this century the principal problem was that of investigating the asymptotic
distribution of the eigenvalues (1.3). It is well known [1] that in the case n =2

4rn
u,‘(o)~(ﬂ)k as k—»>o, (1.4)
while in the case n =3
2
W (o) ~ (E‘Vik) as k—»o, (1.5)

where | Q| and V are respectively the area and the volume of the domain Q. The problem of
determining further information about the geometry of S has been discussed by many authors, see
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for example Pleijel [2,3], Kac [4], McKean and Singer [5], Stewartson and Waechter [6], Waechter
[7], Greiner [8], Smith [9], Gottlieb [10-12], Hsu [13], Sleeman and Zayed [14,15] and Zayed
[16-23], using the asymptotic behavior of the spectral function

@(t)=§lexp[—tu,,(0)] as 1 —0. (1.6)

Thus, if 0 = 0 (Neumann problem), it is well known that in the case n = 2

1|, o] ; R
o=, T 256( ) JK(Q)dQ+O(t) as t—0, (17

while in the case n =3

v Isl,
(@n1y? 16m 12:r”2t‘/2
If 0 = oo (Dirichlet problem), it is well known that in the case n =2

o) = I—l

ant 8(m)"’

o@) = [HX(Q)-N(Q)JdQ +0(t") as t = 0. (1.8)

j H(QMQ + o= |

a, 256( ) JKZ(Q)dQ+O(t) as 10, (1.9)

while in the case n =3

v__Is|, 1
@noy? 16t wﬂ;l/zLH(Q)dQ‘”lzsn

An examination of the results (1.7) and (1.9) shows that in the case n =2 the first term of ©(¢)

o) =

J;[H2(Q)—N(Q)]dQ +0("?) as t = 0. (1.10)

determines the area | Q | of €, the second term determines the total length | 9Q | of the boundary 6Q
and the fourth term determines the curvature K(Q) of 4Q2 at the point Q€32 while the sign = of the
second term determines whether we have a Neumann or a Dirichlet problem. The third term a, in
(1.7) and (1.9) has geometric significance, e.g., if Q is smooth and convex, then a, = % while if Q is
permitted to have a finite number of smooth convex holes "h", then a, = (1 —h)%.

Similarly, an examination of the results (1.8) and (1.10) shows that in the case n = 3 the first

term of ©(¢) determines the volume V of ©, the second term determines the surface area | S | of S,
the third term determines the mean curvature H(Q) = '[R,(Q) R,(Q)] and the fourth term determines

the Gaussian curvature N(Q) = ——— of the surface S at the point Q&S, where R, and R, are the

R (Q)Rz(Q)
principal radii of curvature, while the sign + of the second term of ©(z) determines whether we have
a Neumann or a Dirichlet problem.

We merely note that aspects of the question of Kac, namely, "Can one hear the shape of a
drum?" have been discussed by Sleeman and Zayed [14] when n = 2 and by Zayed [16] when n =3
for problem (1.1)-(1.2) in the case o is a positive constant.

Suppose that Q is a general doubly connected bounded domain in R", n = 2 or 3 consisting of
a simply connected bounded inner domain @, with a smooth boundary 49, in the case n =2 (or a
smooth bounding surface S, in the case n = 3) and a simply connected bounded outer domain 2, D Q,
with a smooth boundary 9%, in the case n = 2 (or a smooth bounding surface S, in the case n = 3).
Consider the impedance problem
A, +Mu=0 in Q, (1.11)

ad
(—+ol)u =0 on 49, (or S), (1.12)
on;

and
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(Ea—HJZ)u =0 on 0%, (or S,), (1.13)
n,;

where a..i, and a'_iz denote differentiations along the inward-pointing normals to a2, (or S,) and <2,
(or S,) respectively, in which the impedances o, and o, are positive functions.
Denote its eigenvalues, counted according to multiplicity, by

0<w(0,,0)) spy(0,0,) s ... spu(0,,0,)s ... > as k-—>o, (1.14)
The problem of determining the geometry of Q2 as well as the impedances o, and o, from a complete
knowledge of the eigenvalues (1.14) has been discussed by Zayed [21] in the case n =2 and by
Zayed [22] in the case n = 3 where o, and o, are positive constants, using the asymptotic expansion
of the spectral function

(1) = 3 exp[-tu(0,,0,)] as t—0. (1.15)
k=l
Thus in the case n =2, Zayed [21,23] has shown that

]_l | 892 | +1 0S| 1
o) -2l LR L orlomy) o) om)

) 2 no;
256( ) J' [ 20) - (|69| 02)]dQ+0(t) as t—0, (1.16)
where | 3Q, | and K\(Q),(Q€d%)) are respectively the total length and the curvature of 9Q, while
| 99, | and Kx(Q), (Q€d<,) are respectively the total length and the curvature of 3€2,.

In the case n = 3, Zayed [22] has shown that

v +|51|+l52|
(4ney”? 16t

1 2
o) - + e, [, (@)~ 30140

e, [, {(@)-30F - [N@)-Por@)+ Tl lag +0™) a5 10, (117

where | S, |,H,(Q) and Ny(Q), (Q«S,) are respectively the surface area, mean curvature and Gaussian

curvature of the surface S;, while | S, |, H(Q) and N,(Q),(Q¢S,) are respectively the surface area,
mean curvature and Gaussian curvature of the surface S,. Further interpretations of formulae (1.16)
and (1.17) can be found in Zayed [21-23].

In Theorem 1, we generalize the results (1.16) and (1.17) to the case when o, and 0, are positive

functions satisfying the Lipschitz condition, by using the expression
2 {m(o,0)+P}?, (1.18)

where P is a positive constant.
In Theorem 2, we show that this generalization plays an important role in establishing a method
to study the asymptotic behavior of the difference

2 {0y B) - mla, B}, (1.19)
w(0,0) A

for large values of A, where the three pairs of functions (o,,05), (o, 8,) and (o, B,) are distinct and
satisfying the Lipschitz condition and the summation is taken over all values of k for which
w(0,,0,) s A. The method uses an interesting and important Tauberian theorem due to Hardy and
Littlewood and developed by Titchmarsh [24].
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Theorems 3, 4 and Corollaries 1-5 contain further results which can be considered as a gen-

eralization of the results of Theorem 2.

2. STATEMENT AND PROOFS OF RESULTS
THEOREM 1. If the functions 0,(Q),Q€dQ, (or S,) and 0,(Q),Q¢€dRQ, (or S,) satisfy the

Lipschitz condition and if P is a positive constant, then in the case n =2

0Q %2,
3tuto,onery> LSl IR L[ oouo- [ oone]

_2 g 2y 32
*T02ap% 2 LQ {K1Q)-=[0,Q)K/(Q)

-20,2(Q)]}dQ+O(}%) as P oo, @1

while in the case n =3

< 2 v [Si]+]S:]
3 0,09+ PP —pmm St s S [ 100 -30 (00

2
e 3, [, (1(0)-30@F - (N(©)

—-—O(Q)H(Q)+—02(Q)]}4Q+0( ) as P—w. 22)

Note that the expression (1.18) is just the Laplace transform of the function t©(¢) with respect to ¢

and P > 0 is the Laplace transform parameter. With this connection we deduce that formulae (2.1)

and (2.2) can be considered as a generalization of formulae (1.16) and (1.17) respectively.
THEOREM 2. If the three pairs of functions (0,(Q), 0X(Q)), (o,(Q), B,(Q)) and (0,(Q), BAQ))

are distinct and satisfying the Lipschitz condition, then we deduce for A — o that

%?\. +o(N) in the case n =2, 2.3)
> A{l"’k((’?a B,) - w(ay, ‘31)} -
mone) < —L33%, 602 in the case n =3, 2.4)
32
where
a,= j [BAQ)-B,(Q)HQ - j [04(Q) - 0,(Q)}Q
0, (2
and

b, - LZ[BZ(Q)-BI(Q)]dQ + f [0,(0) - a,(Q)MQ -

Formulae (2.3) and (2.4) can be considered as a generalization of the familiar formulae of
Gel’fand and Levitan [25] for the difference of traces of two Sturm-Liouville operators.

Let us now give the proofs of Theorems 1,2. To prove Theorem 1, we shall use the Laplace
transform of Green’s function for the heat equation (A,, -%)u =0, n =2 or 3 with respect to the time
t, and use s” as the Laplace transform parameter.

PROOF OF THEOREM 1. With reference to [26, Sec. 2], let

5({?,{:1; —sz) -%Ko(s x-x, ) ‘g(f”fl; —sz) , (2.5)
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be the Green’s function of the expression (A, — s%)u in the domain Q C R together with the boundary
conditions (1.12) and (1.13) on 9, respectively, where s is a sufficiently large positive constant
while x and x, are points belong to Q. In (2.5), K, is the modified Bessel function of the second
kind and of zero order, while g is a regular part of the Green’s function.

With reference to [2], we deduce that as x, — x the equality

P I RIS oljolz) 2.6)

£=1{m(0,,0) +512} {m(o,,0,) +s°} ’

where {cpk(x)} are normalized eigenfunctions and s = s,, implies

Llog( %) +§(}f,{; —Sf) —§()_c,)f; —sz) -(57-5) 3 ) 2.7

2n ¥=1{ (0, 0,) + 512} {m(o,,0,) + s%} .

Thus we get the formula
s 2 Q] 1 (= )
3 {m0,0)+57)7 ,i;;L,LE L J' g,'(J_c,)_c; -s )dx . 2.8)
Using methods similar to those obtained in [14], [21], [23] we can show that
—, B |09 | +]0S] 1 _
[ (xs=sax LT [ o0 - [ oi0x0)
21 2 2y 32 ~
r5g58, [o[K@-Fio0K0)- 2001} do
+O(l5) as s —>o, (2.9)
s

On inserting (2.9) into (2.8) and letting s* = P we arrive at (2.1).

E(x,x ;—s’) - M- g(;_c,;fl; -sz) , (2.10)

4n

Similarly, let

X=X,

be the Green’s function of the expression (A; — s%)u in the domain Q C R* together with the boundary

conditions (1.12) and (1.13) on S, and S, respectively.
With reference to [3], we deduce that as x, — x the equality (2.6) implies

2
Ss_l_—_.s)+§(x x'—-sz) ‘E(x x'-sz) (s>~ s?) i ¢k(§) @.11)
4n S - b {1(04,00) + 5T} {1(0,,0) + 5}
Thus we get the formula
5 e [ 5 ris)
kgl{p‘k(ol’oZ)'*s } 83'[5 +ZS JLJ‘g.x ({rf’ s d‘f . (2‘12)

Using methods similar to those obtained in [16], [22], we can show that
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J [ xmmsax L LS @) -s0@me

75 2 26
+64n53:§1 L,{[H'(Q)_:so‘(Q)] _[N'(Q)'7",(Q)H,(Q)

+A—‘7ZO,Z(Q)]}dQ +0($) as § >, (2.13)

On inserting (2.13) into (2.12) and letting s> = P we arrive at (2.2).

Finally, we note that the proof of either (2.9) or (2.13) is omitted here since it is very similar
to those obtained in [21] or [22] respectively.

PROOF OF THEOREM 2. Withreference to [26], let us assume that a,(Q ) =z a,(Q),(Q € d9?,)
and B,(Q) = B,(Q),(Q € 6,) and introduce the non-negative and non-decreasing function

(D(}") = m(ﬂ%ﬂﬂ{l‘-ﬁ“z, ﬁz) - uk(al’ ’31)} s (214)

moreover we let

W(P) = i {e(02, B) - i, B1)} {10, B) + 201y, By) + 3P}
k=t {pulon, By) + PF {me(a, By) + P}

Using formula (2.1) first for the functions (a,(Q),B,(Q)), then for the functions (a,(Q), BAQ)) and

(2.15)

subtracting the second one from the first, we find after some reduction that

= {0 By) — we(ay, B))} a, 3a, 1
7 {m(anB) PP “"(P)SZnP“lsP”*O(P

where

= [ [90)-POI[ 3K()-B(@)-p:@)]d0 + [ [:40) - w(@)] 3K,0)- @)~ ox@)] 0 .

) as P —»oo, (2.16)

Formula (2.16) can be written for any ¢ < p,(o,, ;) in the equivalent form

a, 3a, 0( 1

+= dd(N) NECI RS
P2 16P™ \ P

¢ ()\ + I))3
Further, noting that

+w(P)= ) as P —> o, (2.17)

Y(P) = a{ f m(x +P)-3dq>(x)} as P—oo,

we get

= dd) @
. (A+P) 4nP?

Applying a Tauberian Theorem of Hardy and Littlewood (see, for example [24]), we find that

P—o, (2.18)

a
(M) ”alx as A— o, 2.19)
Analogously, one establishes the asymptotic formula
a,
B -0t~k as A= 2.20
wla) ,)sx{““(a? B2) - we(a, B))} o as (2.20)

Further, noting that
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> (e B) -l B)} = 2‘; )‘)\{l"&(ap B2) — (o, B}

u‘(u:_,‘ﬁ:,j sh H(oy,

= E {0, By) - m (. B} (2.21)

i ) <
where

a;(Q) =min{0,(Q),o(Q)},  PUQ)=min{ox(Q),B,(Q)},
o(Q) =min{0,(Q),a,(Q)},  BAQ)=min{0,Q).B,Q)}

and the fact that as A — o« the functions

S {0 By) - @, B} = (,2,) A{uk(a;,rs;)-uk(apﬁl)}

we(a2.By) =& (B3

-3 (@) - 0.8y}, (2.22)
By) <x

o

(O Py =

and likewise for (aj,p)) are asymptotically equal to %)\,, we obtain (2.3) for the special case

(@) z a,(Q),(Q €99Q)) and B(Q) = B(Q), (Q € 02,).
Similarly, we derive (2.4) for the special case a,(Q)=a,(Q), (Q €S, and

BAQ) = B.(Q).(Q €S,) as follows: Using formula (2.2) first for the functions (a,(Q),8,(Q)), then
for the functions (a,(Q),B,Q)) and subtracting the second one from the first, we find for any
¢ < p(ay B,) that

> dd()) b, b, 1
e (}\.+P)3+w(P)-8an+8n_Pz+0 pz) P, (223)

where
b, = L[ﬁz(Q)—ﬁl(Q)][Hz(Q)-ﬁl(Q)—ﬁz(Q)]dQ + f [0,(Q) - 0 (Q)IIHL(Q) - 4,(Q) - 4(Q) 0 -

On using the same nature of Y(P), we write the integral in (2.23) in the asymptotic form

+= dD(\) b,

. Py ~ Ton P as P— o, (2.24)
Consequently, we deduce that
DA ~ :—;ﬁ" as A—>o, (2.25)
Analogously, one establishes the asymptotic formula
o o (@2 B) = (00, B)} ~ g%x” as A, (3:26)

On using (2.21) and the fact that as A — o the functions (2.22) for (a, B;) and likewise for (a, B;)

are asymptotically equal to 3%}»3’2, we obtain (2.4) for the special case a,(Q) = a,(Q),(Q €S,) and

BAQ) = Bi(Q).(Q ES,).

In order to prove the theorem in the general case it is sufficient to apply the equality

> {0 B) -m(a, B} = @ Zq )“{W(om 0;) - w(a, B}

W(0,0) <A ™

- 3 A{P«&(Oo’ 0(.)) - (0,8}, (2.27)

(01,09 =

where
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0(Q) = max{a,(0), 0,(Q)}, Q) = max{B(Q),BAQ)} .

and apply the special case of the theorem which we just proved.

3. FURTHER RESULTS
COROLLARY 1. On using formulae (1.4) and (1.5) we deduce as m — = that

2a, .
(lgl)m +o(m) in the case n =2, 3.1

3 () - i@, B} -
) (7) m +o(m) in the case n = 3. (3.2)

Using Theorem 2 we easily prove the following Theorems:
THEOREM 3. Let the three pairs of functions (0,(Q), 0,(Q)), (,(Q). B,(Q)), (0(Q). BQ))

and the quantity a, = 0 be the same as in (2.3). Furthermore, on the half-axis [c, + ®) let a function
f(M) of constant sign be given which is absolutely continuous on each interval [c,d],d < «; further

ﬂif is bounded almost everywhere and f** f(A)dA = . ThenasA — «

we assume that the expression

we get

ey IO O (0 )= 0} = 2 o) [ (33)
THEOREM 4. Let the three pairs of functions (0,(Q),0,(Q)), (0,(Q), B:(Q)), (a(Q), BAQ))

and the quantity b, = 0 be the same as in (2.4). Furthermore, on the half-axis [c, +) let a function
f()) of constant sign be given which is absolutely continuous on each interval [c,d],d < =, further

we assume that the expressnon ) is bounded almost everywhere and [**AY2f(A\)dA = . Then as

ﬂk)
A — o we get

vemiEone f[uk(ol’oz)] {m(0z By) — (0, B} = [ "'0(1)] J. |t lmf(t)dt (3.4)

PROOF. On setting
Z\)= {l’-&(aza B) - m(as,B)},

0<l‘1(01 o))<
where the summation is taken over all values of k, for which w(o,,0,) <A, we deduce for any

¢ < (o, 0,) that

S S0 (e B) - (et B} - [ oz ). (3.5)

0<p(0,0) A
On inserting (2.3) and (2.4) into (3.5) we get easily (3.3) and (3.4) respectively.
COROLLARY 2. On using the mean value theorem, we deduce for any ¢ < p,(G,,0,) that

5 {0 B - FTi(c, BT} =

(0,0 e B) - (e B} - [T 10XZON, G6)

0<plo,0) =
where p(ay, B,) = w(0,, 0,) s W (0, B,) and the summation is taken over all values of k, for which
(0, 0p) s

Consequently, if f(A) =N, i > 0 we deduce for m — oo that in the case n =2
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3 b B - i, )} = 2 77 ' o), (.7

while if f(A)=N,i = —% we deduce for m — = that in the case n =3

+o(m?*y if

ibl 63'[2 (2+1)y3
22 + 1)(—_”')

a—yéln(6n2m)+o(1n(6:2 )) if i-—%.

COROLLARY 3. Assuming that the function f(A) of Theorem 3 has the form: f(A) =X\,i = -1

l>—i'

3 ot Bo) - ilcn, B} - (38)

then we deduce as A — « that

NhoW*tY) if is-l,

: +1
0<py(0,09) 52 (01, 0,) {0, B,) - i, B)} = 2;«‘ ) 3.9
(0,07 Elnl+o(lnx) if [=-l.

COROLLARY 4. Assuming that the function f(A) of Theorem 4 has the form f(A) = X', i = -3/2

we deduce for A — oo that

b,
PYCRECINPN IR A -3
; nz_(Zt 3 +o( ) if i>-312
0e (‘,Eozmm(ou 0)) {0, By) — (0, B} = (3.10)
B ?In)wo(lnk) it i=-3/2.
COROLLARY §. If w(ay,B,) = 0 we deduce for m — o that in the case n =2
G (4n ) ( ( ))
l +ol|ln 3.11
inanp)” El LIk @10
while in the case n =3
- "l’k(aQ’ 32) 6 s 13 13
- b| - . 3.12
AT CH ( n‘v) o) .12
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This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

