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1. INTRODUCTION.

Functional differential equations (FDE) with delay provide a mathematical model for a
physical or biological system in which the rate of change of the system depends upon its past
history. Although the general theory and basic results for FDE have by now been thoroughly
investigated, the literature devoted to this area of research continues to grow very rapidly. The
number of interesting works is very large, so that our knowledge of FDE has been substantially
enlarged in recent years. Naturally, new important problems and directions arise continually in
this intensively developing field.

The article summarizes the results in the study and addresses the need for further
investigation of generalized solutions to broad classes of FDE. The survey concentrates on
differential equations with piecewise continuous arguments (EPCA), the exploration of which has
been initiated in our papers a few years ago. These equations arise in an attempt to extend the
theory of FDE with continuous arguments to differential equations with discontinuous
arguments. This task is also of considerable applied interest since EPCA include, as particular
cases, impulsive and loaded equations of control theory and are similar to those found in some
biomedical models. A typical EPCA contains arguments that are constant on certain intervals.
A solution is defined as a continuous, sectionally smooth function that satisfies the equation
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within these intervals. Continuity of a solution at a point joining any two consecutive intervals
leads to recursion relations for the solution at such points. Hence, the solutions are determined
by a finite set of initial data, rather than by an initial function as in the case of general FDE.
Therefore, underlying each EPCA is a dynamical system governed by a difference equation of a
discrete argument which describes its stability, oscillation, and periodic properties. It is not
surprising then that recent work on EPCA has caused a new surge in the study of difference
equations. Of significant interest is the exploration of partial differential equations (PDE) with
piecewise continuous delays. Boundary and initial-value problems for some EPCA with partial
derivatives were considered and the behavior of their solutions investigated. The results were
also extended to equations with positive definite operators in Hilbert spaces. This topic is of
great theoretical, computational, and applied value since it opens the possibility of approximating
complicated problems of mathematical physics by simpler EPCA.

It is well known that profound and close links exist between functional and functional
differential equations. Thus the study of the first often enables one to predict properties of
differential equations of neutral type. On the other hand, some methods for the latter in the
special case when the argument deviation vanishes at individual points have been used to
investigate functional equations. Functional equations are directly related to difference equations
of a discrete argument, and bordering on difference equations are impulsive FDE with impacts
and switching and loaded equations (that is, those including values of the unknown solution for
given constant values of the argument). The argument deviations of the EPCA considered in the
paper vanish at countable sets of points, and it would be interesting to investigate the
relationship between EPCA and functional equations. Another deserving direction of future
research is the exploration of hybrid systems consisting of EPCA and functional equations.
Furthermore, EPCA are intrinsically closer to difference rather than to differential equations.
Equations with piecewise constant delay can be used to approximate differential equations that
contain discrete delays. It would be useful to draw a detailed comparison of the qualitative and
asymptotic properties of differential equations with continuous arguments and their EPCA
approximations, which has been widely used for ordinary differential equations and their
difference approximations. Since the arguments of an EPCA have intervals of constancy we
must relinquish smoothness of the solutions, but we still retain their continuity. This enables us
to derive a homogeneous difference equation for the values of a solution at the endpoints of the
intervals of constancy and to employ it in the study of the original EPCA, thus revealing
remarkable asymptotic, oscillatory, and periodic properties of this type of FDE. Of course, it is
possible to further generalize the definition of a solution for an EPCA, by abandoning its
continuity, and to include in the framework of EPCA the impulsive functional differential
equations.

A typical EPCA is of the form

2'(t) = f(t,2(t), 2(h(t))), (1.1)
where the argument h(t) has intervals of constancy. For example, in [1], equations with
h(t) =[t}, [t —n], t—n[t] were investigated, where n is a positive integer and [-] denotes the
greatest-integer function. Note that A(t) is discontinuous in these cases, and although the
equation fits within the general paradigm of delay differential or functional differential equations,

the delays are discontinuous functions. Also note that the equation is nonautonomous, since the
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delays vary with ¢. Moreover, as we have mentioned, the solutions are determined by a finite set
of initial data, rather than by an initial function, as in the case of general FDE. In fact, EPCA
have the structure of continuous dynamical systems within intervals of certain lengths.
Continuity of a solution at a point joining any two consecutive intervals then implies recursion
relations for the solution at such points. Theretfore, EPCA represent a hybrid of continuous and
discrete dynamical systems and combine the properties of both differential and difference
equations.

An equation in which z/(t) is given by a function of z evaluated at ¢t and at arguments
{t], - - -,[t— N], where N is a non-negative integer, may be called of retarded or delay type. If
the arguments are t and [t +1], - - -,[t + N]. the equation is of advanced type. If both types of
arguments appear in the equation, it may be called of mized type. If the derivative of highest
order appears at t and at another point, the equation is generally said to be of neutral type. All
types of EPCA share similar characteristics. First of all, it is natural to pose the initial-value
problem for such equations not on an interval, but at a number of individual points. Secondly,
for ordinary differential equations with a continuous vector field the solution exists to the right
and left of the initial ¢-value. For retarded FDE, this is not necessarily the case [2].

Furthermore, it appears that advanced equations, in general, lose their margin of
smoothness, and the method of successive integration shows that after several steps to the right
from the initial interval the solution may even not exist. However, two-sided solutions do exist
for all types of EPCA. Finally, the problems for EPCA studied so far are closely related to
ordinary difference equations and indeed have stimulated new work on these.

It is important to note that EPCA provide the simplest examples of differential equations
capable of displaying chaotic behavior. For instance, following Ladas [3], one can see that the

unique solution of the initial-value problem

2(t) = 3a((t) — 2%(t]), 2(0) = co (1.2ab)

where [t] is the greatest-integer function, has the property that

z(n+1) =4z(n)—z*}(n), n=0,1, - - - (1.3)

If we choose ¢, = 4sin’(7/9), then the unique solution of this difference equation is

z(n) = 4sin? (2" % X
which has period three. By the well-known result [4] which states that “period three implies
chaos,” the solution of the above differential equation exhibits chaos. Furthermore, the equation
of Carvalho and Cooke

(1.4)

'(t) = ax(t)(1 - =([t])) (1.5)

is analagous to the famous logistic differential equation, but ¢ in one argument has been replaced
by [t]. As a result, the equation has solutions that display complicated dynamics [5]. It seems
likely that other simple nonlinear EPCA may display other interesting behavior.

The numerical approximation of differential equations can give rise to EPCA in a natural
way, although it is unusual to take this point of view. For example, the simple Euler scheme for
a differential equation z'(t) = f(x(t)) has the form z,, ,, — z, = hf(z,), where z,, = z(nh) and & is
the step size. This is equivalent to the EPCA
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2'(t) = f(z([t/h]R)). (1.6)

Impulsive differential equations and loaded equations of control theory fit within the general
paradigm of EPCA. Another potential application of EPCA is the stabilization of hybrid control
systems with feedback delay. By a hybrid system we mean one with a continuous plant and with
discrete (sampled) controller. Some of these systems may be described by EPCA [6].

Considerable work on EPCA has been done in recent years. In each of the areas — existence,
asymptotic behavior, periodic and oscillating solutions, approximation, application to control
theory, biomedical models, and problems of mathematical physics — there appears to be ample
opportunity for extending the known results. A brief survey of ordinary differential equations
with piecewise continuous arguments is given in [7].
2. BOUNDARY-VALUE PROBLEMS.

The first fundamental paper [8] in this direction appeared in 1991. It has been shown in (8]
that these equations naturally arise in the process of approximating PDE by using piecewise

constant arguments. Thus, for example, if in the equation

u, = a’u,, — bu, (2.1)

which describes heat flow in a rod with both diffusion a®u,, along the rod and heat loss (or gain)
across the lateral sides of the rod, the lateral heat change is measured at discrete times, then we

get an equation with piecewise constant argument (EPCA)

uy(z,t) = a’u,,(z,t) — bu(z,nh), t € [nh,(n+ 1)), n=0,1,--- (2.2)

where h > 0 is some constant. This equation can be written in the form

uy(z,t) = a’u,,(z,t) — bu(z,[t/h]h), (2:3)

where [ -] designates the greatest-integer function.

The diffusion-convection equation

U, = a’u,, —ru, (2.4)

describes, for instance, the concentration u(z,t) of a pollutant carried along in a stream moving
with velocity r. The term a%u,, is the diffusion contribution and —ru, is the convection
component. If the convection part is measured at discrete times nh, the process results in the

equation

(2,8) = 0%, (2, 1) — ru,(a, [t/h]h). (2.5)

These examples indicate at the considerable potential of EPCA as an analytical and
computational tool in solving some complicated problems of mathematical physics. Therefore, it
is important to investigate boundary-value problems (BVP) and initial-value problems (IVP) for
EPCA in partial derivatives, and explore the influence of certain discontinuous delays on the
behavior of solutions to some typical problems of mathematical physics.

The topic of [8] is the BVP consisting of the equation

a'””+P(é,$) 2,1) ( ) (z h), (2.6)

where P and @ are polynomials of the highest degree m with coefficients that may depend only
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on z, the boundary conditions

Lu= kg:l(zu,ku“ “D(0) + Nt =) = 0, (2.7
(M, and N are constants, j =1, - -,m)
and the initial condition
u(r,0) = uo(). (2.8)

where (z,t) € [0,1] x[0,00), and h = const. > 0. Conditions (2.7) will be written briefly as

Lu=0. (2.9)

An important result has been established that BVP (2.6)-(2.8) has a solution in
[0,1] x [rh,(n + 1)k], if the following hypotheses hold true:
(i)  The boundary-value problem

dr
is self-adjoint, all its eigenvalues A, are positive.
(i) For each A, the roots of the equation P(z)— A, = 0 have non-positive real parts.
(111) The initial function uy(z) € C™[0,1] satisfies (2.7).
The solution u,(z,t) of BVP (2.6)-(2.8) on the interval nh <t < (n+1)h is represented in the

form of a Fourier series

P (i) X-AY=0, LX=0 (2.10)

uy(z,t) = § X,(z)T,,(t), (2.11)
7=1
where X ,(z) are the eigenvalues of the operator P. The functions T, (t) are solutions of ordinary
EPCA that arise after separation of variables.
For instance, in [0,1]x[nh,(n+1)k], the solution wu,(z,t) of Eq. (2.3) with boundary
conditions u,(z,nh) = u,(z) is sought in form (2.11). Separation of variables produces

X () = V2sin(n jz), T,,(t) + a®x*5°T, (t) = —bT,, (nh), (2.12)
whence
T, (t)=Che 74t =nh) _ P T,,(nh). (2.13)

We put t = nh in this equation to obtain

Cn] = (1 + a2+2.]2) T,,J(nh),

that is,
T,,(t) = E,(t — nh)T,,(nhk),
where
2,22 2,22
E,(t):e-a”'_(1_6-“”);-27’:7],5. (2.14)

At t = (n 4+ 1)h we have
T,,((n+1)h) = E,(R)T,,(nhk)

and since
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Toj((n+Dh) =T, 4y, ((n+1)h),

then
Tot1,5{(n+1)h) = Ej(R)T,;(nh)
and
T, (nh) = E%}(h)Tq;(0).
Therefore,
T,j(t) = E,(t = nh)EF(R)T,;(0)
and

u(x,t) = ‘fl\/ﬁEy(h)Toj(O)Ej(t — nh)sin(rjz).
] =

Putting t = 0,n = 0 gives

ug(z) = io: T,,(0)v/2sin(r jz)dz
where =1

To;(0) = V2 / 1 uo(z)sin(r jz)dz.
0

(2.15)

(2.16)

(2.17)

If | E;(h)| <1, then solution (2.16) decays exponentially as t—oo, uniformly with respect to z.

From (2.14) it follows that this is true if

2.2
a“n“h
—ar? <b<a®n? P;t_'i'_l'

€% x2h —~1
Furthermore, from the equations
T,;(nh) = E3(h)T,;(0), T,j((n+1)h) = E}*(h)T,(0)
we see that T',j(nh)T,,;((n +1)h) < 0if E;(h) <0. The latter inequality holds true if
b>—Lrt (2.18)
e’ h _ 1
Hence, under condition (2.18) each function T,,(t) (j=1,2,---) has a zero in the interval

[nh,(n 4 1)), in sharp contrast to the functions T(t) in the Fourier expansion for the solution of
the equation v, = a’a,, — bu without time delay. Moreover, the inequality E (k) <0 takes place
for sufficiently large j and any b>0. Therefore, for b > 0 and sufficiently large j, the functions

T,,(t) are oscillatory.
Eq. (2.5) on nh <t < (n+ 1)k becomes

aun(zat)_ 2 azun(m’t)
ot % T a7

- ruﬁ,(z),

and we differentiate the latter with respect to t to obtain the equation

ayn _ az Qf& _ aun
ot~ © 0z Yn = at’

whose solution is sought in form (2.11). Separation of variables leads to the equations
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X"(z)+ AX(x) =0, T'(t)+a®AT,(t) = 0, (2.19)

and the boundary conditions u,(0,t) = u,(1,1) = 0 give A, = 7?2 and

oy
@)= S VBT, (nh)e™ 0 Mg i), (2.20)
J=1
Since
yn('r7 nh) =a U"(T) - 7"71( ) un(‘T) = Un(.l', Nh)‘
then
20
aul(z) - rul(z) = > V2 T,,(nh)smn(rjz)
J=1
and
T,,(nk) = —d*r ]2\/_/1 z)sin(wjx) d1'+r7r]\/_/ u,(r)cos(myz)dz.
Finally
x V2T, (nh l—e“’ LR "Msin(mjz
up(z,t) = un(z) + Z Gl o Jsin(m; ) (2.21)
=1

Given the initial function u(,0) = ug(z), we can find the coefficients Ty,(0) and the solution
ug(z,t) on 0 <t <h. Since yy(z,h) = uy(x), we can calculate the coefficients T,(h) and the
solution u(z,t) on h <t<2h. By the method of steps the solution can be extended to any
interval [nh,(n + 1)h].

The equation

iqaug;,t): B 2%0 315(1,0 +V(2) ( [ﬂh) (2.22)

is a piecewise constant analogue of the one-dimensional Schrédinger equation

2
iq5,1) = g Yoale,t) + Vi)l 1), (2.23)

If u(z,t) satisfies conditions (2.4) and (2.5), with m = 2, then separation of variables produces a

formal solution

un(z,t) = 'flCnJezp[ = A, (t—=nh)/q] X (z)+ P~ Qu,(z), (2.24)
] =

for nh <t <(n+1)h. Here, X (z) are the eigenfunctions of the operator g*(d*/dz?)/2m,, and

P~'Qu,(z) is the solution v,(z) of the equation

q*vn(z) = 2moV (z)u,(z)

that satisfies (2.7).

The Fourier method was also used to find weak solutions of the boundary-value problem
(2.6)-(2.8) and it is easily generalized to similar problems in Hilbert space. First, we remind a
few well-known definitions. Let H be a Hilbert space and let P be a linear operator in H
(additive and homogeneous but, possibly, unbounded) whose domain D(P) is dense in H,, that is
D(P) = H. The operator P is called symmetric if (Pu,v) = (u, Pv), for any u,v € D(P). IfPis



216 J. WIENER AND L. DEBNATH

symmetric, then (Pu,v) is a symmetric bilincar functional and (Pu,u) is a quadratic form. A
symmetric operator P is called positive if (Pu,u)>0 and (Pu,u) =0 if and only if u=0. A
symmetric operator P is called-positive definite if there exists a constant ¥2>0 such that
(Pu,u) > ~*||u|| %2 With every positive operator P a certain Hilbert space Hp can be associated,
which is called the energy space of P. It is the completion of D(P), with the inner product
(w,v)p = (Pu,v); u,v € D(P). This product induces a new norm ||ul| p = (Pu,u)"/?u € D(P),
and if P is positive definite, then ||u|] <y~ '| u|l p. Since D(P) is dense in H, it follows by
using the latter inequality that the energy space Hp of a positive definite operator P is dense in
the original space H.

Assuming P is positive definite, we may consider the solution u(z,t) of (2.6)-(2.8) for a fixed
t as an element of Hp. If D(Q) C H, then Qu(z,[t/h]k) may be treated as an abstract function
Qu([t/h)h) with the values in H. Therefore, the given BV P is reduced to the abstract Cauchy
problem

dd%+Pu=Qu([%]h), t>0,ul,_o=u, € H. (2.25)

If (2.25) has a solution, we multiply each term by an arbitrary function g(t) € Hp in the sense of
inner product in H and get on the interval nh <t < (n + 1)h the equation

(% 9)+ w9 = (Quug), (226)
where u, = u(nh). Conversely, if u € CY((nh,(n +1)h);D(P)) for all integers n >0 and satisfies
(2.26), then it also satisfies (2.25). Indeed, if u € D(P), then (u,g)p = (Pu,g), and (2.26) can be
written as

(%+Pu—Qun,g)=0, nh<t<(n+1)h
Since Hp is dense in H, then u(t) is a solution of (2.25).
DEFINITION. An abstract function u(t):(0,00)—H is called a weak solution of problem
(2.25) if it satisfies the conditions:
(i)  u(?) is continuous for ¢ > 0 and strongly continuously differentiable for ¢t > 0, with the
possible exception of the points t = nh where one-sided derivatives exist.
(1) u(t) is continuous for ¢ > 0 as an abstract function with the values in Hp and satisfies
(2.26) on each interval nh <t < (n + 1)k, for any function g(t):[0,00)—Hp.
(iii) wu(t) satisfies the initial condition (2.25), that is,

lim || u(t) = o | 1 = 0.
A weak solution u(t) is also an ordinary solution if u(t) € D(P), for any ¢>0, and
u(z,t)—ug(z) as t—0 not only in the norm of H but uniformly as well. It is said that a
symmetric operator P has a discrete spectrum if it has an infinite sequence {),} of eigenvalues
with a single limit point at infinity and a sequence {X,} of eigenfunctions which is complete in
H. Suppose the operator P in (2.26) is positive definite and has a discrete spectrum and assume
the existence of a solution u(t) = u(z,t) to (2.26) with the condition u(0) = u,. On the interval
nh <t <(n+1)h this solution can be expanded into series (2.11), where T,(t) = (u(t),X;). To
find the coefficients T',(t), we put g(t) = X in (2.26) and since X does not depend on #, then
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du(t
( :;(t )- Xk) = ﬁl{ (u(t). X)) = T(2).

(0, X()p = (Pu, Xy) = (u, PX}) = A(u, X)) = N Til(2),

which leads to the equation

To,() + AT ,,(t) = (Qu,, X))
By selecting a proper space H, a weak solution corresponding to conditions (2.7) can be
constructed. A theorem has been stated in (8] that if P and @ are linear operators in a Hilbert
space and P is positive definite with a discrete spectrum, then there exists a unique weak

solution of problem (2.25).

3. INITIAL-VALUE PROBLEMS.
The topic has been explored by Wiener and Debnath in [9]. Eq. (2.6) with constant

coefficients and initial condition (2.8) has been considered in the domain
(z,t) € Q = (— 00,00) x [0, 00).

Let u,(z,t) be the solution of the given problem on nh <t < (n + 1)k, then

au"a(::’t) + Pu"(z‘ t) = Qun(x)v (31)

where
un(z) = u,(z,nh). (3.2)
Write
up(z,t) = wy(z,t) +va(z),

which gives the equation

O 4 P+ Pu,(z) = Qui ),
and require that
dwn o _
W + Pw,, = 0, (33)
Pu,(z) = Qu(2). (3.4)

If v,(z) is a solution of ODE (3.4), then at ¢ = nh we have

w"(I, nh) = u,,(:c) - U"(.‘E), (3'5)
and it remains to consider (3.3) with initial condition (3.5). It is well known that the solution

E(z,t) of the problem

i pu=o, w(z,0) = we(z), (3.6)

with wg(z) = 6(x), where §(z) is the Dirac delta functional, is called its fundamental solution.
The solution of IVP (3.6) is given by the convolution

w(z,t) = E(z, t)*wy(z). (3.7)

Hence, the solution of problem (3.3), (3.5) can be written as
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w,(z,t) = E(x,t — nh)xw,(z,nh), (3.8)

and the solution of (3.1), (3.2) is

un(z,t) = E(x,t — nh)x(u,(x) — v () + v,(2), (nh <t < (n+1)h). (3.9)

Continuity of the solution at ¢t = (n + 1)h implies

Un(z,(n+ Dh) = up 41 (2, (4 1R) =, 44(2),

that is,

Uy 41(2) = E(x, h)*(u,(z) — v, () + v, (). (3.10)
Formulas (3.9) and (3.10) successively determine the solution of IVP (2.6), (2.8) on each interval
nh <t <(n+1)h. Indeed, from Puvg(z) = Quy(r) we find vy(z) and substitute both uy(z) and vy(z)
in (3.9) and (3.10) to obtain uy(z,t) and uy(x). Then we use uy(z) in (3.4) to find v(z) and
substitute u,(z) and v;(z) in (3.9) and (3.10), which yields u,(z,t) and uy(z). Continuing this
procedure leads to u,(r,t), the solution of (2.6) on [rh,(n + 1)k]. The solution v,(x) of (3.4) is
defined to within an arbitrary polynomial ¢(z) of degree < m. Since g(z) is a solution of (3.6)
with the initial condition w(z,0) = ¢(z), then ¢(z) = E(z,t)*q(z), and g(z) cancels in the formulas
(3.9) and (3.10). This proves that if (3.6) with w(z,0) = ug(z) has a unique solution on ¢ € (0,00),
then there exists a unique solution of IVP (2.6), (2.8) on (0,00) and it is given by (3.9) for each
interval nh <t<(n+1)h. Thus, there exist unique solutions of (2.3) and (2.5), with
u(z,0) = ug(z), in the class of functions that grow to infinity slower that exp(z®) as |z | —oo. For
(2.3) and (2.5) we have

v(z)=a ‘zb/z(z — 8)up(s)ds and v, (z) =a ‘Zr/Iu,,(s)ds,
0 0
respectively, and E(z,t) = exp( — £/4a%t)/2a/7t.
Formula (3.9) for the solution of the problem

uy(z,t) = aPug,(x,t) — bu,, (a:,[%] h),u(:c, 0) = ug(x)
on nh <t < (n+1)h becomes
un(z,t) = (1= 25 Bl t = nh)run(z) + & (e,

where E(z,t) is the same as in (2.3) and (2.5).

The above method may also be used to solve IVP for PDE of any order in ¢ with piecewise
constant delay or systems of such equations. In the latter case, P and @ in (2.6) are square
matrices of linear differential operators and u(z,t) is a vector function. Thus, the solution u,(z,?)

of the problem

utt(z7t) = a2u11($7 t) - buzz(xv [t])v
u(z,0) = fo(z), u(,0) = go(z)

on n<t<n+1 is sought in the form w,(z,t) = w,(z,t) + v,(z) whence a’v}l(z)—bull(z,n)=0
and 0%w, /0t = a?0%w, [0z Setting u(z,n) = f,(z),u,(z,n) = g.(z) gives
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vn(:c) = a_zbf"(l‘), w(z‘v") = (l - a_zb)fn(‘t)’ w,(z,n) = gn(I)v
and

u(at) =& £,(2) +(1

g Leemalt ol et et g,

Putting t = n + 1 produces the recursion relations

fn+1(‘7")=%fn(z)+(l_%) fn(f—a)%‘fn(r'{'a)_'_QG /1‘+ gn(s ds,

+1 (9u(z +a) + gu(z — ).

!]..+1(z) =(1 _;bi) afn(z"'a)gaf"(.‘c—a)

Loaded partial differential equations have properties similar to those of equations with
piecewise constant delay. The IVP for the following class of loaded equations

(g s £0, (Bt

u(z,0) = ug(2)

was considered in [9] and [10], where (z,t) € R" x [0,T], the t, € (0,T) are given, P(s) and Q(s) are
polynomials in s = (s, - -,8,), and T|Q,(s)| #0. Eq. (3.11) arises in solving certain inverse
problems for systems with elements concentrated at specific moments of time. The Fourier

transform U(s, t) of u(z,t) satisfies the equation

q
U,(S, t) = P(is)U(s,t) + E QJ(iS)U(s’ t;)a
whence, 7=1

U(s,t) = Uy(s)eP")* + k(P(is), t) Z Q,(is)U(s,t,), (3.12)
] =

where Uqy(s) is the Fourier transform of ugy(z) and

KP(is),t) = [‘ep{Pls)y}dy.
0

Denote

P(ia)t’

q
A, =Uq(s)e k, = k(P(is),t,), B= ‘EIQJ(is)U(s, t,), (3.13)
] =

then multiply by Q,(is) each of the equations
U(svt])=Aj+kJB9 j=1,' * g
and add them. Hence,
q q
j= ] =1

or

( f; k,Q,(is )B = E A,Q,(43). (3.14)

1=1

The equation
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q
A(s)=1- Y Q,(1s)k(P(is),t)) =0 (3.15)
i<
is called the characteristic equation for (3.11) and its solution set Z is called the characteristic
variety of (3.11). It is said [10] that (3.11) is absolutely nondegenerate if Z = ), nondegenerate of
type a if

a=mf|Ims| < oo, SEZ#£C,

and degenerate if Z = C". The case Z =§ implies A(s) = constant, since A(s) is meromorphic,
and a meromorphic function that is not constant assumes every complex value with at most two

exceptions. The equation A(s) = C can be written as

q q
P(is) + .ZIQJ(is) - .ZIQJ(is)ezp(P(is)t,) = CP(is)
J= J=

and is possible for ¢ > 1 only if P(s) = constant, otherwise exp(P(is)t,) would grow faster than
any polynomial, which breaks the latter equality. For ¢ = 1 we have

. Sy B eP(u)tl
A(s) = 2+ Q:(h;))(is?l( s) ,

and in this case Z =40 is equivalent to P(is)+ Q,(is) =0. On the other hand, A(s)=0 is

equivalent to

P(u)tJ _

9 q
P(is) + z Q,(is) - E Q,(is)e =0,
J=1 J=1

which implies P(s) = constant. This establishes the following proposition which was stated in
[10] without proof, namely (3.11) is absolutely nondegenerate if and only if either of the following

conditions holds true:
q
(i) P(s)=Cy, .EIQ,(S)’C(Cnt,) =C#1;
or 1=
(i) ¢=1, P(s)+Qy(s) =0.
Eq. (3.11) is degenerate if and only if

q
PO=C Y QHCut) = 1.
J =

Substituting B from (3.14) in (3.12) leads to the proof that the uniqueness classes for the solution
of the Cauchy problem for an absolutely nondegenerate equation (3.11) are the same as those for
the equation (without “loads”) u,(z,t) = Pu(z,t). The homogeneous degenerate IVP (3.11)
(ug(z) = 0) has nontrivial solutions, with compact support. Suppose that (3.11) is of finite type
a(0 < a < o0) and that u(z,t) is a solution of (3.11) with uy(z) =0. If

lu(z,8)| <Ce!*l,  zeR, te(0,t], (3.16)

and a <a, then u(z,t)=0. For any a >a there exists a solution u(z,t)#0 of (3.11) with
ug(z) = 0 satisfying (3.16). Integral transformations have also been used in the study of EPCA.
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Consider the nonlinear initial-value problem

% = A(D)u(at) + fltu(a,[t]), (3.17)
u(r,0) = wo(x),
where u(x,t) and ug(r) are m-vectors, r = (r,,.,, - - -, ry) € RV,

AD)= Y AD
laf <r

a=(al,az,. .‘,aN),|a| =a,ta,+ - - - +an,

D= D% . . D3N, D, = 8/dz(k=1,2, - - -, N),

the coefficients A, are given constant matrices of order mxm, and the m-vector
feC(nn+1)x L¥RY),L%RM)) n=0,1,2, - -. The number r is called the order of the
system. It is assumed that uy € £%(R"), and the solutions sought are such that u(z,t) € £3R"),
for every t > 0. Let u,(s), pq(8), - - -, m(s) be the eigenvalues of the matrix A(s). The system

Ou _

ot = A(D)u (3.18)
is said to be parabolic by Shilov if

Re p(s) < —c|s|" +b, j=1,---,m
where h > 0,c > 0, and b are constants. For a fixed t we may consider the solution u(z,t) as an
element of £%(R"), and f(t,u(z,[t])) may be treated as an abstract function f(¢,u([t])) with the
values in £2. Therefore, IVP (3.17) is reduced to the abstract Cauchy problem

o gut ftut),  ulico=ue L (3.19)

Applying to (3.18), with the initial condition u(z,0) = uy(z), the Fourier transformation ¥ in z

produces the system of ordinary differential equations

Uy(s,t) = A(s)U(s,?), (3.20)

with the initial condition U(s,0) = Uy(s), where U(s,t) = F(u(z,t)),Uq(s) = F(ug(z)), and A(s) is a
matrix with polynomial entries depending on s = (s;,3,, - - -,Sx). The solution of (3.20) is given

by the formula

U(s,t) = 40U (s).

Parabolicity of (3.18) by Shilov implies that the semigroup T'(t) of operators of multiplication by
'), for t > 0, is an infinitely smooth semigroup of operators bounded in £2(R"). Together with
the requirement h = r, this ensures that the Cauchy problem for (3.18) is uniformly correct in
2%RN) and all its solutions are infinitely smooth functions of ¢, for t > 0. Since f is continuously

differentiable, problem (3.17) has a unique solution on [0,1)
t
u(t) = T(t)ue + / T(t — 3)f(s, uo)ds.
0

Denoting u; = u(1), we can find the solution
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ult) = T(t - 1)u, + /tT(t — 9)f(s,uy)ds
1

of (3.17) on [1,2) and continue this procedure successively. If

f(tu((2]) = Bu([t]),

where B is a constant matrix, the solution of (3.17) for ¢ € [0,00) is given by

u(t) = (T(t ~(t)+ [ uTie- s)Bds)k _]l[[t](T(l) + [5_ Ttk s)Bds)ruo.

This proves that problem (3.17) has a unique solution on R x [0, 00) if system (3.18) is parabolic
by Shilov, the index of parabolicity h coincides with its order r, and f € C'([n,n + 1]) x £(RV),
2RN)), n=0,1,2, - - -.

4. WAVE EQUATIONS WITH DISCONTINUOUS TIME DELAY.

The influence of terms with piecewise constant time on the behavior of the solutions,
especially their oscillatory properties, of the wave equation was initiated in 1991 by Wiener and
Debnath ([11], [12]).

First, we shall discuss separation of variables in systems of PDE. Consider the BVP

consisting of the equation

Uy(z,t) = AU _,(z,t) + BU . .(z,[t)), (4.1)

the boundary conditions
U(0,t) =U(1,t) =0, (4.2)

and the initial condition
U(z,0) = Uy(z). (4.3)

Here, U(z,t) and Uy(x) are real m x m matrices, A and B are real constant m X m matrices and

[ -] denotes the greatest-integer function. Looking for a solution in the form

U(z,t) = T(t)X(x) (4.4)
gives
T'($)X(a) = AT()X"(a) + BT() X" (=),
whence
(AT(t) + BI([#) " T'(t) = X"(2)X ~X() = — P,

which generates the BVP

X"(z) + P X(z) =0, (4.5)

X(0)=X(1)=0

and the equation with piecewise constant argument

T'(t)= — AT(t)P? — BT([t])P". (4.6)

The general solution of (4.5) is
X (z) = cos(zP)C, + sin(zP)C,,
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where
o0 ( _ 1)"1‘2"P2" o0 ( _ 1)"1’2"+]P2"+1
P)= — sn(zP)=
cos(zP) nX=:0 @) sin(zP) 712=:0 ZnF 1)

and C,,C, are arbitrary constant matrices. From X(0) =0 we conclude that C, =0, and the
condition X(1) = 0 enables us to choose sinP = 0 (although this is not the necessary consequence
of the equation (s:nP)C, =0). This can be written e'P —e~*F = 0,¢*F = I. Assuming that all
eigenvalues p;,p,, - - ,p, of P are distinct and S~ 'PS =D = diag(p,,psr - * *»Pm), We have
ezp(2iSDS 1) =1,5¢*P§ -1 =1, and e#® =1. Therefore, D = dwag(rjy, gy -+ +3TJ,,), wWhere
the j, are integers, and P = SDS 1,

P2 =89S~ ! =S diag(r?j, 7?52, - - -, 7%52)S 1,

sin(zP) = S sin(2D)S ~! = § diag(sintj,z, - - -,sin7j,,x)S ~ . Furthermore, we can put

P, =diag(r(m(j ~1)+1),- - -,mmj), (j=1,2,---) (4.7)

in (4.5) and obtain the following result:

There exists an infinite sequence of matrix eigenfunctions for BVP (4.5)

X,(z) = V2 diag(sint(m(j — 1)+ 1)z, - - -, sintmjz), (j=1,2,- ) (4.8)

which is complete and orthonormal in the space £7[0,1] of m x m matrices, that is,

. 0, j#k
/ X (2)Xi(z)ds = '
0 Iv J= k
where I is the identity matrix.
Let E(t) be the solution of the problem
T'(t) = — AT(t)P?, TO)=1 (4.9)
and let
M(t) = E(t)+ (E(t)-I)A~'B. (4.10)

If the matrix A is nonsingular, then (4.6) with the initial condition T'(0) = Cy has on [0,00) a
unique solution
T(t) = M(t - [t)MU(1)C,. (4.11)
If || M(1)|| <1, then || T(t)|| exponentially tends to zero as t— + oo.
For the scalar parabolic equation
ut(zv t) = azuz:(xv t) + b“::(zv [t])

we have m =1 and P, = rj, according to (4.7). For (4.9) with A =a® and P =P,, we have
E(t) = exp( — a*n?5%t) and

2,2,2,

b _ p—a‘x"y
a_f(l e

Hence, the inequality | M,(1)| <1 is equivalent to

222‘_

M (t) = e~ ).

-1 <e"'2"'2’2—£2 (1—e‘“2’2’2)< 1,
a
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whence
2 2.2
) 1+e- "
—a?<becat 12X
3.2.2
l_e—aR]

Since the function (1 +e~')/(1 —e~*) is decreasing, all functions T (t) exponentially tend to zero

as t—oo if and only if
—-a*<b<a (4.12)

If b < —d?, then all T (t) monotonically tend to infinity as t—oo; and if

2 2

2 l+e—ar
@
l1—e "%

b>

then all T')(t) are unbounded and oscillatory. For any b > a?, there exists a positive integer j,
such that the T'(t) are unbounded and oscillatory, for j > jo. Indeed, letting b= a®+¢€ and
solving the inequality

, 1+e‘“2"2’2

—arj'

a+te>a
l1-e
gives

2,22

e~ 9" < .

€
2a% +¢
which holds for any positive e and sufficiently large j and implies M,(1) < —1. If b= —a’ then
M ,(t)=1,T,(t) =T,0), and u(z,t)=uz), for all t. Therefore, the condition |b| < a® is
necessary and sufficient for the series
00
u(z,t)= ) T ()X,(z) (4.13)
j=1

to be a solution of the scalar BVP (4.1)-(4.3), with A =4a? and B =b, if uy(z) is three times
continuously differentiable. The coefficients T',(0) are given by

T0) = [ ul@)X,(z)ds,
0
where X j(z) = V2 sin(njz) and uy(z) € C¥0,1] satisfies

ug(0) = up(1) =0.
The solution T =0 of (4.6) is globally asymptotically stable as t— + oo if and only if the
eigenvalues ), of the matrix M(1) satisfy the inequalities
Al <1, r=1,---,m (4.14)
If all eigenvalues of A have positive real parts and Uy(z) € C30,1], | A"'B|| <1, then BVP
(4.1)-(4.3) has a solution (4.13). This series and all its term-by-term derivatives converge
uniformly.
Separation of variables in the equation with constant coefficients
“u(zv t) = azucz‘(zl t) - bu::(zv [t]) (4'15)
and boundary conditions (4.2) yields X ;(z) = v/2 sin(rjz) and leads to the EPCA



DIFFERENTIAL EQUATIONS WITH PLECEWISE CONTINUOUS ARGUMENTS 225

T!(t) + a®x?)*T () = br?j°T ([t]). (4.16)

For brevity, omit the subindex j and use the substitution T'(t) = V/(t), which changes (4.16) to a
vector EPCA

w'(t) = Aw(t) + Bw([t]), (4.17)
where w = col(T,V') and

0 1 0 0
A = B =
—alnr 0 br?j2 0

Eq. (4.17) on the interval n <t <n + 1 becomes
w'(t) = Aw(t) + Be,, ¢, = w(n)
with the solution
w(t) = M(t —n)c,,
where
M(t) = et + (A~ 1)A'B. (4.18)

Therefore, (4.17) with the initial condition w(0) = ¢, has on [0,00) a unique solution given by the
right-hand side of (4.11) where M(%) is defined in (4.18).
For b < 0, the solution w = 0 of Eq. (4.17) is unstable. Indeed, computations show that

et = cos(wt) + w ™~ 1sin(wt)A

and
coswt—1  w ™ lsin wt
et—I=
—wsmmwt coswt—1

where w = arj. Also

(*—DA-1B+ b(1 — cos wt)/a? 0
eAt _

(bw sin wt)/a? 0
Hence,
cos wt +ba~*(1 — cos wt) w ™ sin wt
M(t) =
(ba=% = 1)w sin wt cos wt
and

det M(1)=1 —i—’i+a%cos w.

The condition b < 0 implies detM(1) > 1 and shows that at least one of the eigenvalues A of M(1)
satisfies |A| > 1. Therefore, || w(t)|| —oco as t— + oo, for some initial vector ¢, # 0.

For b > a?, the solution w = 0 of Eq. (4.17) is unstable. Calculations give
b

M) =X - b ginzw b b
det(M(1)=A) =\ 2(cosw+azsm 2)/\+1 a2+a2cosw
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and the expressions A\; = s +d. X, = s —d for the eigenvalues A, \, of M(1), where

5 2
S = cos w +% sin? “7" d* = (%— 1) sin? w4+ 2—4 sint %
The condition b > a® shows that d? >0 and A, > 1. The latter inequality implies || w(t)|| —oo as
t— + oo, for some initial vector ¢y # 0.

The solution w = 0 of (4.17) is asymptotically stable as t— 4 0o if and only if

0<b<a? (4.19)
and w # 2rn,n =0,1,2, - - -. The condition d’ <0, which means that the eigenvalues of M(1)
are complex, leads to

2w b?
cos” 5 > _—(2112 — b)z’
whence
b < a? (l — tan? %) orb< az(l — cot? f)

Since || = | A;| and detM(1) = A\, the inequality || <1 is equivalent to detM(1) <1,

that is, to b>0. Therefore, in the case of complex eigenvalues, a criterion for asymptotic

stability is

0<b< mazx (az(l — tan? ‘f az(l — cot? %))

The inequality d2 > 0 in the case of distinct real eigenvalues leads to

b > maz (a2(l — tan’? ‘f a2(1 — cot? %)),

and the inequalities A\; <1, A\, > —1 yield b < a®>. Hence, in this case a criterion of asymptotic

stability is

maz (a2(1 — tan? ‘74"- az(l — cot? %)) <b<al

Finally, if

b = maz (a2(1 — tan? ‘f az(l — cot? %)),

then d =0 and \; = )\; = cos w + ba ~ %sin’w/2, whence

€0s w < Ay < cos*w)/2

and |A;| <1. According to (4.14), this implies asymptotic stability and completes the proof of
criterion (4.19).

If b=a% then A\ =1\, =cosw, and the solutions of (4.17) are bounded but not
asymptotically stable. If w = 2rn, then A\, = A, =1, which leads to the existence of unbounded
solutions for (4.17). If the coefficient a is irrational, then (4.19) is a criterion of asymptotic
stability of the solutions to (4.16) for all j, since recalling that w = w, = arj, we note that the
equality arj = 27n is impossible for any irrational a. For any rational a, there exist infinitely
many integers j such that the corresponding solutions w,(t) of (4.17) are unbounded.



DIFFERENTIAL EQUATIONS WITH PLECEWISE CONTINUOUS ARGUMENTS 227

Furthermore, each component of every solution of (4.17) oscillates if and only if either of the
following conditions holds true:

(i) b<maz (02(1 — tan? %), a2(1 — cot? i’—))‘

s 21 _ 2 W\ 201 _ ~ns2 & a? . 't
(i1)  mazx (a (1 tan 4), a (1 cot 4))< b< 3 sin? % and cos w < >

In conclusion, it is worth noting that the asymptotic properties of (4.16) depend on the
algebraic nature of the coefficient a. For b < 0, all solutions of (4.16) are unstable and oscillatory;
for b > a? all solutions of (4.16) are unstable and nonoscillatory. These two cases hold true for

both rational and irrational values of a. For

0 < b< mar (a2(1 — tan?® % az(l — cot? %))‘

all solutions of (4.16) are asymptotically stable and oscillatory, provided that w # 2wn. However,
for any rational a, there exist infinitely many integers j such that w, = 2wn, which leads to the
existence of unbounded solutions for (4.16). Furthermore, since w =w, = arj the inequality
cosw < —1/2 breaks down for infinitely many integers j. Therefore, under the above hypothesis
(i1), there are infinitely many solutions of (4.16) which are asymptotically stable and oscillatory,
as well as infinitely many solutions which are asymptotically stable and nonoscillatory (w # 2mn).
Also, for w # 27n and a?/2sin*(w/2) < b < a®, the solutions of (4.16) are asymptotically stable
and nonoscillatory. Problems of this nature deserve further investigation. The following topics
which are, in our opinion, of considerable interest either have not been explored at all or deserve

deeper study.

(1) Partial differential equations with both constant and piecewise constant delays.

(2) Cauchy-Kovalevsky type existence-uniqueness theorems for partial differential
equations with the argument 0 < A(t) < ¢ by using piecewise constant delays.

(3) Boundary and initial-value problems for PDE with alternately retarded and advanced
piecewise continuous arguments.

(4) Parabolic PDE of neutral type with piecewise constant time.

(5) Bounded solutions of nonlinear parabolic equations with piecewise continuous
arguments.

(6) Boundary and initial-value problems for the wave equation with the argument [At/h}k,
0<i<l, h>0.

(7) Bounded solutions of nonlinear hyperbolic equations with the argument [At/h]h.
(8) Loaded partial differential-difference equations.

In conclusion, we note that parabolic equations with unbounded piecewise constant delay were
studied in [13], and the first monograph on equations with piecewise continuous arguments was
published in 1993 [14].
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