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l. INTRODUCTION
Sets of very (lifferent geonmtric charactcristi(:s nm.y have same lla,us(l()tff dimclsion. In

[6]. C. A. Rogers introduced the notion of Haus(l()rff dinmnsion print t() distinguish retch sets.

It is ,t easy t() obtain the Hausd()rff (limension tnint (f a given set, even though it may be

higl@ regflar. In particular, we recognized that it is extremely difficult to find the Hmsdorff

iilwsion print of a nowhere differentiable continuous function. We introChme the coordinate

d-lincnsion print, evolved fi’om the d-dimension to deal with above difficulties. The coordinate

d-(lilension print of a given set inforlns us of its geolnetric characteristics, its d-dimension, and

tlm d-dimension of its projection to x-is.

We investigate coordinate &dimension prints for the graphs of nowhere differentiable con-

timous fltnctions mad for regular sets.

At the end, we shows how the coordinate d-dimension print can be used for calculating

tlw &dimension of a set related to the aforementioned graph.

2. PRELIMINARIES

We restrict our attention to subsets of R for simplicity.

We mean a (b, a) coordinate rectangle by the set of the form [,nb, (m + 1)b] x [ha, (,z + 1)a]
whine nt and n are integers.

For s, >_ O, we define a pre-measure for a set E (: R by

CD(’O(E) ] inf {NF_,(a, b)a"b’ 0 < b < a < 6}>o

wlme NE(a, b) is the number of (b, a) coor(linate rectangles that interest E.
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obtain nx outer mras,re ,tsing Mctho(l ]y M,u,roe [4]

cd("")(E) inf{]- CD("")(E,,) E UnO__lE,,

f,t , set EcR.
N,,w, vc ,ccall 1,,wcr b,,x dimension ([2])(lower cal,acity ([5])), dim,(E)( Cal, (E))

li,i,,f,,_0 s N(E,) and modified lowcr box dimension ([2])(d-dimension ([31))--ioga

d-dish(E)) inf{sup, dimB(E.): E =E.}, where N(E,a)= NE(a,a)for E C R and

N(E,.) is the number of intervals of the form [na, (m + 1)a] that interest E if E C R.
It is not dicult to show that

sup{s > 0" CD(")(E) > 0} Cap(E)

su,{s > 0. cd(’,)(E) > 0} d din(E)

for E C R (cf. [2], [3]). (Note that the smallcst nmnber of squares of side a that cover

E < inf0<<, NE(a,b) < NE(a,a).) Note that CD(’’) and cd(’’) are only the variations of

D’-ptemeasure and d*-measurc in [3] respectively.

Itcncc ve just write CD(’,)(E)= D’(E) and

cd("’)(E) d’(E) for E C R2.

For E C R similarly we define

D (E) lira inf N(E, a)a
a--0

alld

Then we have

and

d’(E) inf{ D"(E,,) E UE,,}.
n--’l

sup{a > O’D’(E) > 0} Cap(E)

sup{s > O’d’(E) > 0} d- dim(E).

We define the coordinate d-dimension print of E C R by

cd- Print (E)= {(s,t)" cd("t)(E) > 0}.

Plainly the coordinate d-dimension print is monotonic; cd-Print (E) Ccd- Print (E) for

E C E2. Further it is additive, in the sense that

cd- Print (U,__, E,) U.__ cd- Print(E,,).
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3. I’R.OPER’I’IES OF cd-PRINTS
By tlie lcfinitil. we lave the fillowing straigltfiwward propositi{s.

PROPOSITION 1. -Prilt (E) C cl-Pit (E) fi,r E C R. (Here, -Print caas

PROOF. C’(,nl)arig the families ()f e(’tagles tlmt (’()ver E i tle (h-iiiti,s, w(, lmv(’

"H(")(E) ,’d(")(E) for E C R.
If a 1)(,it (s, t) is in tlw (’()(,r(liate d-(liwsi(, t,it of E, the (s’, t’) s’ + t’ < s + t, t’ <

} i (’(taixw(l ixx tim (’o(w(linate d-(limesio 1)int (f E

PROPOSITION 2. If cd("t)(E) > 0, then cd(""t’)(E) for s’ + t’ < s + ad t’ f.

PROOF. Sl,l,()se cd("’t)(E) > 0. The for every sequence {E,,} of subsets that cover

E. ,, CD(’")(E,,) > 0. So there exists E,, swh that CD("")(E,,o) > ( > 0. Tlms

f{A’r" (, l,)a"b O < b < a < 6o} >aforsome60
F, .’+’ <s+,,and bJaJ.

N’,, (a, b)a"’bt’ Ng,,o (a, b)a’bta’-bt’-t

> NE.o (a, b)aSb a"’-" at’-t

> Ne.0 (a, b)a"bt6(’+t’)-(’+t)

> o6(s’+t’

CD(""t’)(E,o)=oo fors’+t’ < s+t andt’ <t.

H(’(:e cd(’ t’)(E) co.

REMARK 3. Let C E,__, a,4 a, G {0,3} }.
By Example 2 in [6] and Proposition

cd(1/2,1/2)(C1/4 x C) > O.

It, flllows from Proposition 2 that cd(’1/2)(C. x CI co.

However we note that d1/2(C1/4) 1. (Compare this with Theorem 8.)

PROPOSITION 4. cd(’"t’)(E) > cd("O(E) for s’ + t’ _< s + and t’ _< t.

PROOF. It follows from sixnilar argument with the proof of Proposition 2.

COROLLARY 5. Ifcd(’)(E) < co, then cd(’)(E) 0for any s > 0, and cd(,t’)(E) 0

for t’ > t.

PROOF. It follows immediately from Proposition 2.

To deal with the geometric characteristics of cd-Print, we need the following two simple

bt interesting lemmas.

LEMMA 6. If d- dim(A) a for A C Rl, then cd(’)(A x R) 0 for/3 > a. In

particular, if d- dim (ProjE) a for E C R, then cd(’)(E) 0 for/3 > a. (Here ProjE
denotes the projection of E to x-axis.)
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PROOF. Si(’, d- li(,,t) , #’(A) () f(,r fl > fl’ > ,. By the lcfiaitia f

(]-lll(’SllI’e, h[’lo oxis,s s(,(lllOll(’[ {)[[,’,}=, Sll(’]l Ill,l[, =,A A an,l Z,,, D"(A,)<
Tl,s, fl,r ay it,gcr ad and/4 > fl’,

lin if{NA0 [....... +](a., b)ab 0 < b < , < 6}CD"’/’)(A’, x [,,, ,,, + i]) -,,

b)bB b5 i,2( + 2) i,,f{W(A,,, <

in(+2) lim inf N(A b)b

]i,2( + 2)D(A)= 0.

c,l(’/)(A R) < inf{ E Z CD(’/)(A" x [,n,m + 1])" A O,,__,A,,}

< Z Z CD(’Z)(a,’ [m,,n + 11)= 0.

LEMMA 7. If d- din, (Proj,E) a for E C R, then cd(,’l(E) oo for < a.

E CD("O(E"
n--1

>- Z D’(P"J’E")
n-’l

>_ d’(P,’oj, E)

As d- dim(E) a doesn’t always meaa d((E) > 0, it is natural to consider cl[ cd-Print

(E)], the closure of cd-Print (E) in the space {(s,t) s > 0, > 0}.
There is very interesting connection between d-dimension of the projection of a set to

x-axis and its cd-Print.

THEOREM 8. For E C R2, d-dim (Proj,E) a iffcl[ cd- Print (E)]Oy-axis [0, a].
PROOF. If d- dixn (Proj,E) a, then cl [cd- Print (E)][3 y- axis [0, c] by Lmma

6 and 7.

Suppose that cl led- Print (E)] VI y- axis [0, a]. Then cd(’7)(E) oo for 3’ < a, and

cd(’)(E) 0 for fl > a by Proposition 4 and Corollary 5.

It follows from Lemma 6 that d din (Proj,E) > a. And d dim (Proj,E)

< a follows from Lemma 7.

Next theorem tells us a geometrical connection between d-dimension and cd-Print.

THEOREM 9. For E C R, d dim(E) fl iff c/[cd Print (E)] V x axis [0,/3].

PROOF. It. follows from sup{s > O: cd("’)(E) > O} d di,n(E).
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COROLLARY 10. If d- lil(Proj.E) a a,l ,t- lial(E) / fox E C R2, ll,’

l’it (E)C {(.,t).s+t /,t 5 a}. I 1,atic,la, (’d-Prit (E)C {(.,t) s+t 2, 1}

E C R

PROOF. It. is iwliatc floral Plsilio 4, Tl.ens 8 and 9.

4. CALCULATION OF cd-PRINTS

N(,xv, we ,’ah’ulatc tho c(l-Pliltl ()f s()me Sl)C(’ific stl)sct.s of R2. Lot [JI denote the

()f t’ val .1.

TIIEOREM 11. Let .[(),1] R be afuncti(,n such that C].I[ SUl).,vej](.r)-

(V)] 6.’7.11 f() ay interval J C [0,1], where s,,c (’(,stants C,C7 > 0 an(l 0 < r 5 1.

L,.t A(C [0,1]) be a co,l)aCt set such float Cap(A(a- &a +a)) Cap(A) for ay a A

:la(l 6 > 0, with 0 /3 1. Then for tle grat)h of () A, 9a

cl[cd- Print(gA)] {(s,/)’s+t__< +fl--a,t <_fl--cs}.

PROOF. Since A is a closed subset of R2, U,,__,G,, A for each sequence {G,,} such

float. U,,__ G,, 9A, where G,, is the closure of G,, in R. Further, by Baire Category thcormn,

tlwe exists iIteger 0 such that G,, contains , B,(a’) for some z G,, C a all{l some

’>0.

By conti,mity of , ,ve can choose 6 > 0 such that {(b, ((b)) b e (a-6, a+5),(a,(a))
.,} c B,.().

Therefore ,ve have (b, (b))" b (a 8, a + 6) hA, (a, (o)) z C 9A O B(z). And, we

,,,,to that Cap((a- 6, a + 6) n A)= and d-dim(A)= ([7]).
Hence ve only need to show that

(1) CD(’")(gA) for s + < + fl-a and

(2) CD(’")(ga)=0fors+t < l+fl-aort>
(1)" Supl)ose that s + < + fl a and < -as + ft. Then we can find e > 0 satisfyig

.+t < l+fl-a-e and < -as+fl-e. Since Cap(A) fl, thereis b0 such that for all

psitive b b0,

Nmv, consiter 6 _< b0 and b, a such that 0 < b _< a _< 6.

In case that Cb > a, we have

Na.,(a,b)a*b’ >_ (C,b"/a)b-+a’b

>_ C bO-Z++*a’-

If,-/3+e-t <0, then

Otherwise,

Naa (a, b)a"b >_ Ca-+-+*+.

Naa(a,b)a’b’ >_ C,[(a/C,)’-]’-++’a"-’
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I c;.qe that C’b’*

_
,, we have

T]IllS

N.aa(a,b)a’b >_ b-+a’b.

lira inf{Na(a,b)a’b’" 0 < b < a <_ 8} oo.
8--0

(2) Sul)l)ose that s + > +/3- a or > -as + t3. Then we can find e > 0 such that

> +/3 a + c or > -as + fl + c. Since Cap(A) fl, for such > 0, there exist infinitely

runny , such that N(A, ,1/4) <_(+/-,,)--. Hence,

(Here, we may assume C > 1). And,

Hcnce
lim inf{N0a (a, b)a" bt" 0 < b _< a < 8} 0.

COROLLARY 12. Let , "[0, 1] R’ be a function satisfying C, IJI <_ sup,,,e s I(z)-

qo(y)l <_ C21J] for any interval J C [0, 1], where some 0 < a < 1 and some constants C and

C2 > 0. Let A(C [0, 1]) be a symmetric Cantor set with a sequence of contracting ratios

{a,, }([7]). Then

cllcd-Print({(x,(x) x e A})]

-n log 2
{(s,t)’s + _< + liminf -log an

and < max {lim inf
-n log 2

,0}}.
log a.

PROOF. It is easy to show

Cap(A
-n log 2
log an

Cap(A)



COORDINATE d-DIMENSION PRINTS 103

f,,, ay o A, ; > 0, and A is a cOUlmCt set ([7]). It follows imne,liately fi’o Tlw,rena 11
azzl tlze fact

REMARK 13. Tlwre are Iaxy (,xazl,les (,f Tlw(nezn 11. Kicsswetter’s curve([1])is one

,,f tlcz a,l tim cl,,sme of its cd-Print is {(s,t) .q + s}.
Now, we iltihme a tecllfiqe t{ gail tlw chsle )f cd-Print f solw talticflar sets.

PROPOSITION 14. Let E C R anal d- lill (PrjE) ,, d- dian(E) ,,+ 14 alll

PROOF. If follows fi’nn Proposition 4, Thereli 8 and 9.

COROLLARY 15. Let A,B

satiqfyiag

"Cal)(A (a- &a + 6)) Cap(A) , fl,r any a G A and any 6 > 0

Cap.(B(b-5, b+6)) >_ Cap(B)=/ for any b B and any > O.

cl[c(1-P, int(A x B)] {(s,t). s + < a +fl and _< t}.

PROOF. Recalling the a.rgmwnt in the proof ()f Theorezn 11, we only need to show

CD("’t)(A B) oo to prove cd(’,t)(A x B) oo for s + < cr + fl and < a.

Supposc that s+t < +flandt < (. Then thcrcise > 0such that a+t < a+fl-2e
an(l < c e. Since Cap(A) a and C,ap(B) fl, there exists b0 such that for all positive

b < bo, N(A,b) > b-’+ and thcre is a0 such that for all positive a < ao, N(B,a) >_ a -a+’.
F()z0 < b < a < rain{a0, bo},

NAt(a,b)a*b >_ b-’*+’a-a+a’b

b-C’+e+ta-fl+e+s"

Since -a + e + < 0,

Since-a-fi/+2s+s+t<0,

NAB(a,b)a’bt > a--a+2e++ t.

lira inf{Na,(a, b)a"bt" 0 < b < a < 6 < min{a0, b0 }}

Noting d din (ProjA x B) d dim(A) ([7]) and d dim(a x B) a + , we have

our conclusion from Proposition 14.

EXAMPLES 16. Let A and B be symmetric Cantor sets in R with sequences of contract-
log --nloging ratios {a.} and {b.} respectively. Let liminf._ toga. a, and limn 0s . fl"

The. aim(A x ) + 5 a ai,,( x A) ([7]).
Clearly A and B satisfy the sumptions of Corollary 15.

neHce

c/[cd -Print(A x B)] {(s,t) s + a + and a}.

Als,)
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EXAMPLE 7. Usiug Pol{sifil 14 n (_’{n{}llay 15, we easily see tim fill}wig fact.

(1) If E is any s’t i I[ wit, l -’lty it..ir, tlw

c/[c,l-Pint(E)] {(s,t) s + _< 2, _< 1}.

(c) Let A be n syuetic Cantw set, witl a seqwnce f court,acting ratios {a,,} aM
logliif log,,,

c" Tlmn

cl[cd- Print(A x R)] {(s,t)’q + < + c,t < ,}.

! ld

c/[cd -Print(R x A)] {(s,t) s + _< + c,t _< 1}.

EXAMPLE 18. Let E denote the rotation ,f E vith the angle 0 with respect to origin

aud let C_ bc as in Rcmark 3. Then for almost all 0 (0, r),

c/[cd- Print(Cl x Cl)0] {(.s,t)" s + _< 1}

since tlausdotff dimension of Proj=[(C{ x C{)0] is the Hausdorff dinension of CI x C{, 1,

ahnost all 0 (0, r) ([2] Theorem 6.1).
We uote that

and

c/[cd Print(C1 x Cl)] {(s,t) s + _< 1 and _< },
log 3

cl[cd-Print(C CI)] {(,t)- + < 1 and < }.
Now, we introduce ,’m application of cd-Print.

THEOREM 19. Let 0 [0.1] R be a function such that

c, lsl" <_ r, Io(.)- o(u)l <_ c, lJI
t,yJ

for any interval J C [0, 1], where some constants C1, C2 2:> 0 and 0 < a _< 1. Then d-dim(

[0, 1] o(x) is not an algebraic number }) 1.

PROOF. Let If {x ( [0, 1] o(x) ’ .4}, where .4 is the set of algebraic numbers.

Suppose that d- din(K) < 1. Then d- din(K) < fl < 1 for some fl > 0. Now,

Since A is a co,ratable set, we carz enumerate .,4 {an}n=l. Therefore
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{(.., .).. -(.,.) E .A} u,%, {(.,.. v(.,.) + -,,) ., E [0, ]}.

,./[c,l P,in/({(.,., g)" y- W(.r) ..4})]-

/11(|

clio,l- Pri,t({( ,’,)" a’ K,g-2(.r) A})] c {(s,t)- s+t _< 2-,, _</}

el[,.,1- P,i,t( {(.r, l)’g G A)]

< c/[cd P,int(U_, {(.r,a,,) .r [0, 1]})]

{(s,t)’s+t 1}.

A contradiction arises by the nonotoniciy of cd-Print.

REMARK 20. Let A C R be a conpact set su:h that ap(A(a-e,a+e)) Cap(A)

( f,, any a A and any e > 0. Then d-(lin({:r G A (,) A}) , whcre A is the set of

algelnaic mmbcrs.
REMARK 21. There might be several different way to get cl [cd-Print (R x R)]

{(,t)’.s+t 2, 1}.
For exalnt)le, we could consider countable g, aphs of , in Theorem 11 with ,.
Another ,nethod is to use countable sets of [0, 1] x If,, where K,, is a symmetric Cantor

set ,vith a sequence of contracting ratios {a,,}= satisfying

-k log 2
lim- log a,,,

CONJECTURE 22. Let E C R with d- dim(E) c > 1. We conjecture

c/[cd-Print(E0)] {(s,/) s + _< c,t _< 1}

for almost all 0 ( [0, r).
REMARK :23. While the Hausdorff dimension print is invariant under linear transfor-

mations, our coordinate d-dimension print is not so. For example, a straight line parallel to

g-axis has a smaller coordinate d-dimension print than a line at 45 to y-axis. Nevertheless

our coordinate d-dimension print is particularly useful for the study of sets, such as the graphs
of functions or Cartesian products which naturally have special relationship to the coordinate

axes. (We thank our referee for pointing out the previous fact.) It would be interesting to

investigate how the coordinate d-dimension print changes according to linear transformations.
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