

VARIATIONAL INEQUALITIES OF STRONGLY NONLINEAR ELLIPTIC OPERATORS OF INFINITE ORDER

ADELL T. EL-DESSOUKY

Department of Mathematics
Faculty of Science
Helwan University
Cairo, Egypt

(Received June 30, 1992 and in revised form December 31, 1992)

ABSTRACT. The present paper deals with the study of the solvability of variational inequalities for strongly nonlinear elliptic operators of infinite order with liberal growth on the coefficients.

KEY WORDS AND PHRASES: Variational inequalities of strongly nonlinear problems, Sobolev and Sobolev Orlicz spaces of infinite order.

1992 AMS SUBJECT CLASSIFICATION CODES: 35G30, 46E35.

1. INTRODUCTION

In a series of articles Dubinskii [1,2] considered the nontriviality of Sobolev spaces of infinite order corresponding to boundary value problems for linear differential equations of infinite order and obtained the solvability of these problems for the case in which the coefficients of the equation grow polynomially with respect to the derivatives.

Chan [3], extended the results of Dubinskii to include the case of operators with rapidly (slowly) increasing coefficients.

In this paper we generalize the above results to cover the solvability of variational inequalities for strongly nonlinear operators of the form

$$Au(x) + Bu(x), \quad x \in \Omega \quad (1.1)$$

where Ω is a bounded domain in R^n and

$$Au(x) = \sum_{|\alpha|=0}^{\infty} (-)^{|\alpha|} D^{\alpha} A_{\alpha}(x, D^{\gamma} u(x)), \quad |\gamma| \leq |\alpha|, \quad (1.2)$$

$$Bu(x) = \sum_{|\alpha| \leq M} (-)^{|\alpha|} D^{\alpha} B_{\alpha}(x, D^{\alpha} u(x)), \quad M \text{ fixed}, \quad (1.3)$$

with more liberal growth on the coefficients.

2. PRELIMINARIES

Let Ω be a bounded domain in R^n ($n \geq 2$) for which the cone and the strong local Lipschitz properties hold [4].

An N -function is any continuous map $\Phi : R \rightarrow R$ which is even, convex and satisfies $\Phi(t)/t \rightarrow 0$ (resp. $+\infty$) as $t \rightarrow 0$ (resp., $+\infty$). The conjugate or complementary N -function of Φ and its nonnegative reciprocal will be denoted by $\bar{\Phi}$ and Φ^{-1} , respectively [4].

When Φ and Ψ are two N -functions, we shall write $\Psi \ll \Phi$ if for any $\varepsilon > 0$

$$\lim_{t \rightarrow \infty} \Psi(t)/\Phi(\varepsilon t) = 0$$

The Orlicz space $L_{\Phi_{\alpha}}(\Omega)$ corresponding to N -functions Φ_{α} is defined as the set of all measurable functions $u : \Omega \rightarrow R$ such that

$$\|u\|_{\Phi_\alpha} = \inf \left\{ \lambda > 0; \int_{\Omega} \Phi_\alpha(u/\lambda) \leq 1 \right\} < \infty$$

Let $E_{\Phi_\alpha}(\Omega)$ be the (norm) closure in $L_{\Phi_\alpha}(\Omega)$ of $L^\infty(\Omega)$ -functions with compact support in $\bar{\Omega}$.

The Sobolev-Orlicz spaces of functions u such that u and its distributional derivatives $D^\alpha u, |\alpha| \leq m$, lie in $L_{\Phi_\alpha}(\Omega)$ (resp. $E_{\Phi_\alpha}(\Omega)$). These are Banach spaces with the norm

$$\|u\|_{m, \Phi_\alpha} = \left(\sum_{|\alpha| \leq m} \|D^\alpha u\|_{\Phi_\alpha}^2 \right)^{1/2}$$

and they are identified to subspaces of the product

$$\prod_{|\alpha| \leq m} L_{\Phi_\alpha}(\Omega) = \Pi L_{\Phi_\alpha}$$

Denote by $C^\infty(\Omega)$ the space of infinitely differentiable functions on Ω , $D(\Omega)$ the space $C^\infty(\Omega)$ with compact support in Ω and by $\mathcal{D}'(\Omega)$ for the space of distributions on Ω .

We define $W_0^m L_{\Phi_\alpha}(\Omega)$ as the $\overline{(\Pi L_{\Phi_\alpha}, \Pi E_{\Phi_\alpha})}$ closure of $D(\Omega)$ in $W^m L_{\Phi_\alpha}(\Omega)$ and $W_0^m E_{\Phi_\alpha}(\Omega)$ as the norm closure of $D(\Omega)$ in $W^m L_{\Phi_\alpha}(\Omega)$.

The Sobolev-Orlicz spaces of infinite order is defined by:

$$W^\infty L_{\Phi_\alpha}(\Omega) = \left\{ u \in C^\infty(\Omega) : \sum_{|\alpha|=0}^{\infty} \int_{\Omega} \Phi_\alpha(D^\alpha u(n)) dx < \infty \right\},$$

and $x \in \Omega$. Moreover there exists a function $h_1 \in L^1(\Omega)$, independent of l , and a sequence of positive numbers $(S_l)_{l \in \mathbb{N}}$ with $\sum_l \lambda_l S_l < \infty$ such that

$$\sup_{|\xi_\gamma| \leq S_l^{-1}} |A_\alpha(x, \xi_\gamma)| \leq h_1(x) S_l.$$

(A1) There exists a constant $C_0 > 0$ and a function $h_2 \in L^1(\Omega)$, both independent of l , such that

$$\sum_{|\alpha|=0}^l A_\alpha(x, \xi_\gamma) \xi_\alpha \geq C_0 \sum_{|\alpha|=0}^l a_\alpha |\xi_\alpha|^p - h_2(x)$$

for all $x \in \Omega, \xi_\gamma \in \mathbb{R}^{\lambda_1}$.

(A2) For all $l \in \mathbb{N}$, a.a. $x \in \Omega$ and all distinct $\xi_\gamma, \xi_\gamma^* \in \mathbb{R}^{\lambda_1}$

$$\sum_{|\alpha|=0}^l (A_\alpha(x, \xi_\gamma) - A_\alpha(x, \xi_\gamma^*)) (\xi_\alpha - \xi_\alpha^*) > 0.$$

Or the following one:

(A1)* For all $l \in \mathbb{N}$, each $A_\alpha(x, \xi_\gamma)$ is a real-valued Caratheodory function defined on $\Omega \times \mathbb{R}^{\lambda_1}$.

There exist two N -functions Φ_α, Ψ_α with $\Psi_\alpha \ll \Phi_\alpha$; functions $a_\alpha(x)$ in $E_{\Phi_\alpha}(\Omega)$ for $|\alpha| = l$, in $L_{\Phi_\alpha}(\Omega)$ for $|\alpha| < l$; and positive constants c_1, c_2 , both independent of l , such that if $|\alpha| = l$

$$|A_\alpha(x, \xi_\gamma)| \leq a_\alpha(x) + c_1 \sum_{|\beta| < l} \bar{\Phi}_\alpha^{-1} \Phi_\alpha(c_2 \xi_\beta) + c_1 \sum_{|\beta| < l} \bar{\Psi}_\alpha^{-1} \Psi_\alpha(c_2 \xi_\beta),$$

if $|\alpha| < l$

$$|A_\alpha(x, \xi_\gamma)| \leq a_\alpha(x) + c_1 \sum_{|\beta| < l} \bar{\Phi}_\alpha^{-1} \Phi_\alpha(c_2 \xi_\beta) + c_1 \sum_{|\beta| < l} \bar{\Psi}_\alpha^{-1} \Psi_\alpha(c_2 \xi_\beta),$$

for a.a. $x \in \Omega$ and all $\xi_\gamma \in \mathbb{R}^{\lambda_1}$.

(A2)* There exist functions b_α in $E_{\bar{\Phi}_\alpha}(\Omega)$ for $|\alpha| = l$, in $L_{\bar{\Phi}_\alpha}(\Omega)$ for $|\alpha| < l$; function $h_3 \in L^1(\Omega)$ and positive constants d_1, d_2 , independent of l , such that

$$\sum_{|\alpha|=0}^l A_\alpha(x, \xi_\gamma) \xi_\alpha \geq d_1 \sum_{|\alpha|=0}^l \Phi_\alpha(d_2 \xi_\alpha) - \sum_{|\alpha|=0}^l b_\alpha(x) \xi_\alpha - h_3(x)$$

for a.a. $x \in \Omega$ and all $\xi_\gamma \in \mathbb{R}^{\lambda_1}$

$$W_0^\infty L_{\Phi_\alpha}(\Omega) = \left\{ u \in D(\Omega) : \|u\|_{\infty, \Phi_\alpha} = \sum_{|\alpha|=0}^\infty \|D^\alpha u\|_{\Phi_\alpha} < \infty \right\}$$

They are Banach spaces with the norm $\|\cdot\|_{\infty, \Phi_\alpha}$.

Similar definition of $W_0^\infty E_{\Phi_\alpha}(\Omega)$ is obvious. The dual of $W_0^\infty L_{\Phi_\alpha}(\Omega)$ (resp. $W_0^\infty E_{\Phi_\alpha}(\Omega)$) will be denoted by $W^{-\infty} E_{\bar{\Phi}_\alpha}(\Omega)$ (resp. $W^{-\infty} L_{\bar{\Phi}_\alpha}(\Omega)$), where

$$W^{-\infty} E_{\bar{\Phi}_\alpha}(\Omega) \text{ (resp. } W^{-\infty} L_{\bar{\Phi}_\alpha}(\Omega)) = \left\{ h \in \mathcal{D}'(\Omega) : h(x) = \sum_{|\alpha|=0}^\infty (-)^{|\alpha|} D^\alpha h_\alpha, h_\alpha \in E_{\bar{\Phi}_\alpha}(\Omega) \text{ (resp. } L_{\bar{\Phi}_\alpha}(\Omega)) \right\}$$

These spaces are Banach spaces with the norm

$$\|h\|_{-\infty, \bar{\Phi}_\alpha} = \sum_{|\alpha|=0}^\infty \|h_\alpha\|_{\bar{\Phi}_\alpha} < \infty$$

The duality of $W_0^\infty L_{\Phi_\alpha}(\Omega)$ and $W^{-\infty} E_{\bar{\Phi}_\alpha}(\Omega)$ is defined by

$$\langle h, u \rangle = \sum_{|\alpha|=0}^\infty \int_\Omega h_\alpha(x) D^\alpha u(x) dx .$$

Let $1 \leq p < \infty$. The Sobolev spaces of infinite order are defined by

$$W_0^\infty(a_\alpha, p)(\Omega) = \left\{ u \in \mathcal{D}(\Omega) : \|u\|_{\infty, p}^p = \sum_{|\alpha|=0}^\infty a_\alpha \int_\Omega |D^\alpha u(x)|^p dx < \infty \right\},$$

where $a_\alpha \geq 0$ is a sequence of numbers. We formally define the spaces dual to $W_0^\infty(a_\alpha, p)(\Omega)$ via:

$$W^{-\infty}(a_\alpha, p')(\Omega) = \left\{ h : h = \sum_{|\alpha|=0}^\infty (-)^{|\alpha|} a_\alpha D^\alpha h_\alpha, h_\alpha \in L^{p'}(\Omega) : \|h\|_{-\infty, p'}^p = \sum_{|\alpha|=0}^\infty a_\alpha \|h_\alpha\|_{L^{p'}(\Omega)}^{p'} < \infty \right\}, \quad p' = p \rightarrow p/p - 1$$

For more details we may refer to [1,3,4]. Let $l, M \in \mathbb{N}$, M being fixed. By λ_1 and λ_2 we denote the number of multi-indices α with $|\alpha| \leq l$, $|\alpha| \leq M$, respectively.

3. CONDITIONS ON THE COEFFICIENTS

To define the operator (1.2) more precisely we introduce either the following set of hypotheses:

(A3) For all $l \in \mathbb{N}$ and $|\gamma| \leq |\alpha|$, each $A_\alpha(x, \xi_\gamma)$ is a Caratheodory function, i.e., $A_\alpha(x, \xi_\gamma)$ is measurable in $x \in \Omega$ for all fixed $\xi_\gamma \in \mathbb{R}^{\lambda_1}$, and continuous in ξ_γ for almost all (a.a.) fixed.

(A2)* As in (A2). For the operator (1.3) we impose the following assumption:

(B1) $B_\alpha(x, \xi_\alpha)$ is a Caratheodory function defined on $\Omega \times \mathbb{R}^{\lambda_2}$. There exists a function h_4 in $L^1(\Omega)$ such that:

$$|B_\alpha(x, \xi_\alpha)| \leq h_4(x) P_\alpha(\xi_\alpha)$$

for some continuous function $P_\alpha : \mathbb{R}^{\lambda_2} \rightarrow \mathbb{R}$ and

$$B_\alpha(x, \xi_\alpha) \xi_\alpha \geq 0, \quad x \in \Omega, \quad |\alpha| \leq M$$

4. MAIN RESULTS

THEOREM 4.1. Let K be a closed convex subset of $W_0^\infty(a_\alpha, p)(\Omega)$ containing the origin. Suppose that (A2)-(A3) and (B1) hold. Let $f \in W^\infty(a_\alpha, p')(\Omega)$ be given. Then there exists at least one solution $u \in K$ of

$$\langle A(u), v - u \rangle + \langle B(u), v - u \rangle \geq \langle f, v - u \rangle \quad \forall v \in K \quad (4.1)$$

PROOF. Consider a partial sum of order $2l$ of the series (4.1):

$$\langle A_{2l}(u_l), v - u_l \rangle + \langle B(u_l), v - u_l \rangle \geq \langle f', v - u_l \rangle \quad \forall v \in K \quad (4.2)$$

where

$$A_{2l}(u_l)(x) = \sum_{|\alpha|=0}^l (-1)^{|\alpha|} D^\alpha A_\alpha(x, D^\gamma u_l), \quad |\gamma| \leq |\alpha|,$$

$$B(u_l)(x) = \sum_{|\alpha| \leq M < l} (-1)^{|\alpha|} D^\alpha B_\alpha(x, D^\alpha u_l),$$

and

$$f' = \sum_{|\alpha|=0}^l (-1)^{|\alpha|} a_\alpha D^\alpha f_\alpha \in W^l(a_\alpha, p')(\Omega).$$

For the solvability of (4.2), in view of (A2)-(A3) and (B1), we refer to [5] and [6].

Put $v = 0$ in (4.2), and use (A2) and (B1) to get the a priori-bound

$$\|u_l\|_{W_0^l(a_\alpha, p)(\Omega)} \leq \text{const.}$$

Since $u_l \in W^l(a_\alpha, p)(\Omega)$ implies $u_l \in W^1(a_\alpha, p)(\Omega)$ we get from the compactness of

$$W^1(a_\alpha, p)(\Omega) \rightarrow C(\bar{\Omega}),$$

the uniform convergence of $u_l(x) \rightarrow u(x)$ on $\bar{\Omega}$ as $l \rightarrow \infty$. Similarly, by the compactness of

$$W^l(a_\alpha, p)(\Omega) \rightarrow C^{l-m}(\bar{\Omega}), \quad \text{for large enough } l \text{ and } m \in \mathbb{N};$$

we obtain,

$$D^\alpha u_l(x) \rightarrow D^\alpha u(x) \quad \text{uniformly on } \bar{\Omega} \text{ as } l \rightarrow \infty \quad (4.3)$$

Using the definition of $W_0^\infty(a_\alpha, p)(\Omega)$ we get $u \in W_0^\infty(a_\alpha, p)(\Omega)$ and by the closedness of K , $u \in K$.

It remains to show that u is a solution of (4.1). For this purpose it suffices to prove the assertions:

$$\lim_l \langle A_{2l}(u_l), z \rangle = \langle A(u), z \rangle \quad (4.4)$$

$$\lim_l \langle B(u_l), z \rangle = \langle B(u), z \rangle \quad (4.5)$$

$$\liminf_l \langle A_{2l}(u_l), u_l \rangle \geq \langle A(u), u \rangle \quad (4.6)$$

and

$$\liminf_l \langle B(u_l), u_l \rangle \geq \langle B(u), u \rangle \quad (4.7)$$

for all $z \in K$.

To show (4.4) we use the inequality:

$$|A_\alpha(x, D^\gamma u_l)| \leq \sup_{|\xi_\gamma| \leq S_l^{-1}} |A_\alpha(x, \xi_\gamma)| + S_\gamma A_\alpha(x, D^\gamma u_l) D^\alpha u_l$$

as well as the uniform boundedness of $\{A_2 u_i, u_i\}$ in $L^1(\Omega)$, to obtain the uniform equi-integrability of $\{A_\alpha(x, D^\gamma u_i)\}$ in $L^1(\Omega)$ provided that $\sum S_i \lambda_i(\cdot, l) < \infty$. Now, in view of Vitali's convergence theorem, (4.7) follows.

To show (4.5) we have

$$\sum_{|\alpha| \leq M} \int_{\Omega} |B_\alpha(x, D^\alpha u_i)| \leq \int_{\Omega} |h_4(x) P_\alpha(D^\alpha u_i)| \leq \|h_4\|_{L^1(\Omega)} \sum_{|\alpha| \leq M} \|P_\alpha(D^\alpha u_i)\|_{L^\infty(\Omega)} \leq \text{const.},$$

and (4.5) follows from the dominated convergence theorem. Assertions (4.6) and (4.7) are direct consequences of Fatou's lemma in view of the uniform convergence (4.3) and the proof is completed.

The above result enables us to give the following theorem.

THEOREM 4.2. Let K be a convex $\sigma(W^*L_{\Phi_\alpha}(\Omega), W^{-*}E_{\Phi_\alpha}(\Omega))$ sequentially closed subset of $W^*L_{\Phi_\alpha}(\Omega)$ such that $K \cap W^*E_{\Phi_\alpha}(\Omega)$ is $\sigma(W^*L_{\Phi_\alpha}(\Omega), W^{-*}L_{\Phi_\alpha}(\Omega))$ dense in K and $0 \in K$. Let $f \in W^{-*}E_{\Phi_\alpha}(\Omega)$ be given. Let the hypotheses (A1)*-(A3)* hold. Then there exists at least one solution $u \in K$ such that:

$$\langle Au, v - u \rangle - \langle f, v - u \rangle \geq 0 \quad \forall v \in K \quad (4.8)$$

OUTLINE OF PROOF. As in Theorem 4.1, we may consider the auxiliary variational inequality

$$\langle A_{2m}(u_m), v - u_m \rangle - \langle f^m, v - u_m \rangle \geq 0 \quad \forall v \in K \quad (4.9)$$

The solvability of (4.9) is a consequence of [7]. Thus, there exists $u_m \in K$ solving (4.9).

Put $v = 0$ in (4.9) and make use of (A2)*, we have

$$\int_{\Omega} \Phi_\alpha(c_2 D^\alpha u_m) \leq c_3$$

where

$$c_3 = c_3(\|f\|_{W^{-*}E_{\Phi_\alpha}(\Omega)})$$

Hence, there exists a subsequence of u_m such that $u_m \rightarrow u$ in $C^\infty(\Omega)$. By the definition of $W^*L_{\Phi_\alpha}(\Omega)$ and the $\sigma(W^*L_{\Phi_\alpha}(\Omega), W^{-*}E_{\Phi_\alpha}(\Omega))$ sequential closedness of K , we get $u \in K$. To show that u solving (4.8) it remains to prove assertions (4.4) and (4.6) of Theorem 4.1.

A similar procedure of Theorem 4.1 may be carried and the proof follows.

EXAMPLE. As a particular example which can be handled by Theorem 4.1 and falls outside the scope of [1], consider the nonlinear Dirichlet boundary-value problem

$$\sum_{l=0}^{\infty} \sum_{|\alpha|=l} (-1)^{|\alpha|} D^\alpha (a_\alpha S_l^p |D^\alpha u|^{p-2} D^\alpha u) + |u| e^{|u|} = f(x)$$

where $(S_l)_{l \in \mathbb{N}}$ is a sequence described in (A1). In fact:

$$A_\alpha(x, D^\gamma u) := a_\alpha S_l^p |D^\alpha u|^{p-2} D^\alpha u, \quad |\gamma| = |\alpha|$$

$$B_\alpha(x, D^\alpha u) := |u| e^{|u|}$$

By the Sobolev's embedding theorem, for $u \in W^l(a_\alpha, p)(\Omega)$ ($lp > n$), the functions $D^\alpha u$ are bounded for all $|\alpha| \leq l$. Therefore $A_\alpha(x, \xi_\gamma)$ and $B_\alpha(x, \xi_\gamma)$ are $L^\infty(\Omega)$ -functions and hence (A1) and (B1) follow. Condition (A2) is obvious, while (A3) follows in view of the inequality

$$|x|^p + |y|^p - xy(|x|^{p-2} + |y|^{p-2}) > 0 \quad \text{for } x \neq y$$

Thus the hypotheses of Theorem 4.1 are satisfied. Our example falls outside the scope of [1], for the term $|u|e^{|u|}$ does not verify the polynomial growth condition of [1].

ACKNOWLEDGMENTS. The author would like to express his sincere thanks to the referee for his suggestions and comments. He also expresses his sincere thanks to the Editor Professor Lokenath Debnath for his cooperation.

REFERENCES

- [1] DUBINSKII, JU. A., Sobolev spaces of infinite order and the behavior of solutions of some boundary-value problems with unbounded increase of the order of the equation, *Math. USSR Sbornik*, **72** (1972), 143-162.
- [2] DUBINSKII, JU. A., On traces of functions in Sobolev spaces of infinite order and non-homogeneous boundary value problems, *Math. USSR Sbornik*, **34** (1978), 627-644.
- [3] CHAN DYK VAN, Traces of functions from Sobolev-Orlicz classes of infinite order and nonhomogeneous boundary value problems for equations with arbitrary nonlinearity, *Soviet Math. Dokl.*, **22** (1980), 626-630.
- [4] ADAMS, R. A., *Sobolev spaces*, Academic Press, New York (1975).
- [5] EL-DESSOUKY, A. T., Optimal control of systems governed by nonlinear elliptic and parabolic problems of arbitrary order, *D. Phil. Thesis*, Al-Azhar University, Cairo, Egypt (1989).
- [6] FUCIK, A. and KUFNER, A., *Nonlinear differential equations*, Elsevier Scientific Publishing Company, Amsterdam (1980).
- [7] GOSSEZ, J. P. and MUSTONEN, V., Variational inequalities in Orlicz-Sobolev spaces, *Nonlinear Analysis, Theory, Methods and Applications*, **11** (1987), 379-392.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk