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ABSTRACT. A sequence f idmttificatim lrollems of coecients in the parallic equation witlt

n<mlinear boundary conditims is cmsidered. The parameter (index of an element of the sequence)

appears in the cost flnctionals as well as },mndary data. It is pr,vcd that tlte optimal solutions

exist anltha.t under Some continuous cvergmice f the cost functima.ls and the convergence of

the data, the sets of optinml solutims cmverge in sne smse to the set <f <ptinml solutions of

the linit pr,bln,:
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1. INTRODUCTION.
In the recent years tlmre has been. an increasing interestin the imrameter identification (or

inverse) problems inw,lvig differential equation constraints. Such problems arise in particular in

the coefficient estimation for partiM differentiM equati,ms (for example in [2-3], [14], [17-18])s
wellas in the theory of structural optimization. The identification problems consist in dctennining

of unknown parameters (coefficients) from known ol,scrvations of the modelled processes.

In this paper we investigate a class of identification probhems fi.r the second order nonlincar

parabolic system:

u’= -A(t). in fl x (0, T), (1.1)

+ fl(u) g g in r x (O,T), (1.2)

u(O) o in , (1.3)

where fl C R" with boundary F, 0 < T < +oo, fl is a maxi,nal monotone gral)h in R x R, the
operator A(t) has the form

o (,, a)
and

o,,(,) "(*’10,."
is the conormal derivative sociated to A(t). Above, v is the unit outward normal vector to P.

Given the set of admissible parameters and the cost fltnctional defined on the space
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W (see N()tati()n) ()f th(.: s()ltti(ns (.()(1.1) (1.3), we ;re itereste(l i, tl,e f()ll(,wig l)a.runeter
i(lentifictti()u

()

where u(a, ,) denotes tle weak s()luti()u i c()rresI)(),[ing to the (lath. n., g an[ . Here a([

i what fi)llows, we Sll)p()se theft tle gral)h fl is fixed.

Our [dm is to l)r()ve the existence of ()l)tinml s()lt.i()us (i.e.n.n clenet which realizes the

niuimnu) t() () ud to sl()w tle stability ()f ()t)tiuM s()lti()ns u(l(.r IWrtnrl)ati()us of the

g mt(l : well tm of tl,., ,’,,st ftutcti,,,tM ft. As in(li,’n.te,l it, [I], [4-5] ,m,l [I0-11] the st.,d,ility

this kind i)lays an important role in

It sltould be noticed that a c()nxptu(.,ss of a(hnissible subset of lint&meters is the cruciltl

tssunl>tion in the identific[,tion l)rol)lems (c()ml)tre e.g. [5]). Sinee the cost fimction is not

c()nvex in generd) the uniq,eness of (.)i)tinml solutions is not guarant(I. Therefot the stability
is understood in the sense of continnity of mttltivtd,ed mtpl)ing.

We note that the widely kn()wn q)pron.(’h to the pn.rmneter identifictttion i)rol)lems used alto)

i,, n,,m(,ric,,l methods (see [4-51, [141) is th,, outp,t le,tst sqnm’es formuh,tion ([10-11], [13]). In
tiffs al)l)roa.ch the cost fimcti()md to I)e miniaturized h.s the

where C: W Z is a.n observation ol)erttor defined on the sl)a.ee of sohtions, za is the desired

element (target) in the space of ol)servations Z. Such cases tre also included in the fi’e of

the paper. Next, it should I)e underlined that the identification of coefficients in partiM differ-

entid equttions is, in genend, m mst,,.I,le l)r,.,1)lem ([1G-17], [13]). This is d,e to the theory of

hom()genization ([8], [18]) which slows thnt ,)perators with highly oscillatory coefficients c

"rel)lace(l" by very diflhrent ones a.n(l still giving the same response.

Finally, we i)oint out that tle l)rol,lems (:)f the type (1.1) (1.3) occur in many mathematical

models of l)henomenu studied in physics. For exnml)le, eq,ation (1.1) (lesebes the change of

pressure during the flow of viscous fluids in porous media or it governs the heat distribution

in a body occupying the w)lume ft. It is nt,nd to consider such problenm not only with the

classical (Dirichlet and/or Neumam) I>oun(htry conditions, but tlsc) with the more gener ones.

The boundary condition (1.2) includes some particuhtr cses e.g. the Signorini condition, the

Stefan-Boltzmn heat radiation law, the .Newt()n’s law, the natural convection, the Midlis-

Menten law. For these and other importmt examples of the condition (1.2) which appem-s in

mechanics, biology md chemistry, we refer to [12], [7], [9] m(! the bibliography in them. We
recall that the evolution vtrittional iuequdities can be formulated in the fi)rm (1.1) (1.3) (see
[6], [9], [12], [15]). For the general identification theory i)resented in an’abstract rammer we refer

The remainder of this note is divided in three parts. In Section 2 we give a sult on the
continuous dependence of solution to b(,un,htry vdue problem (1.1)- (1.3) on the data. With

this background, in Section 3, we show that the problem (P) h a s()lution. The lt section is

devoted to the stability of optimal solutions xvith spect to variations in the given data and the
cost fimetional.

Notation. Let fl be a bounded open subset of R" with Lipsehitz continuous boundm’y F. For

H La(fl), we denote by [[.[[, [.[, the norms in V and H, respectively. By V’ we denote the

dnal to V. Following e.g. [15], we define the Banach spaces: Y La(0, T; V), H La(0,T; H),
Y’ La(O, T; V’) (the spaces of the square s,mmmble fi,nctions defined on (0, T) with the vMues,
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with rcp:ct t< t, is un<lert<,<,l il the dit, ri],tti<,lml eile and dvJd will ]e del<te<l Iy v. Tim

st.anl ht" tl,e im,er l)rdtct ii L(F). Givel, cl:I ets A alld B hl a Banach space X, we dc6no

tl,e distance f,,,cti,,,, 1,y ,I(.,:,A)= +,,.1{11.,- ,,ll.x- ,, A} ,,,,, t.l,, ,,,,,,.,,ti,,,, ,,f ,,t

st D O’
1,’(A, B)= .s,,.+,{,(,,, B)" a A}. (.5)

Thrttghtt this l>l>er a. s,ati cnx’tmtit ver t,l,;te! sdscrilt.s is a.dlt.etl.

2. CONTINUOUS DEPENDENCE ON TIIE DATA.

The goal of this sectin is t study the qtestin of contitmous dependence f solutions t)

(1.1) (1.3) on the data aij, 9 m,l :. First we give tire existence result n tire slutions to tltis

ltllem. To this enl, we athqt the fllwi,g

DEFINITION 2.1. (see [7]) A fimcti,,n u is a vea.k s,,h,ti,,n t,o (1.1) (1.3) if

if there exists a fiutctin w L() such t.l,t

,,,(,, t) /(,,.(-, t)) ,,..,. ,,,, C, (2.)
alld

< .,,’(t),,, > +,,(t;.,,(t),,,)+ < .,,(t),, >v=< /(t),., >r w, e v,,,.c. ,.,, (0,T),

-(()) :,

where we have set

a(t;z,v) aij(x,t),lx, Vz,,, e V, a.e. e (0, T). (2.2)

We need the following hypotheses ,,n tltc data ,f the 1-,rollem (1.1) (1.3):

(H,) the coefficients {aij}, i,j 1,...,n are functions fi’om C(Q) such that

a’ii aij(:t,t)ij, V e R" (2.3)

a.e. in Q, for some constant a > 0,
(Hz) is a maximM (multivalued) m,,notone graph in R / R which satisfies

the condition 0 fl(0),

It is well known (see e.g. [61) that flis a subdifferential of a proper, convex, l.s.c, fimction

PROPOSITION 2.1. In addition to the hypotleses (H)- (Hs) we sume that j()
L(fl). Then the problem (1.1) (1.3) has a unique weak solution u 6 W. Morover, the following
estimate holds:

II-IIw + I1,,’11<=) ( + Ilgll) + I1), (2.4)

where w 6 LZ() is a selection of fl xvhich apl)ears in (2.1) and c R i independent of g d

The proof of this result can be found in [7], Proposition 1, where the overMl hypothes on

the coefficients aij were more restrictive. A careful look in that proof can convince the reader

that it is still true for the ce of coefficients satisfying (H).
Let {ai}, k 6 N, be a sequence in C() satisfying (2.3) uniformly with respect to k and let

(1.3) corresponding to {aj }, {(g, )}, we have

LEMMA 2.1. Under the ubove m,ttttions, let us a.ssume that stisfies (Hz) d j()
L’(). It

ct aii in C(), i,j,
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(9,, t,) (9, t2) in L2(E) x H,

as k +c, tlen

"t- ,t i V f3 C’(0, T; H) a,l w,akly in W,

,s k +c, where L u(-i.,g,) is tiilu, s<lti (still it tl, sesc f Defiit,im 2.1)
(1.1)- (1.3) corrt,sp,,n,ling t, ai.i, g a,l .

PR()OE. N,te that iy h,wer senicott,iudty ,fj, it fi,llows tha.t j() L(). Tlwrefore,
fr,m Pr,l,<,it.i<,u 2.1, we k,w tl,t t.l,we exists a mdqe solti,n to (1.1) (1.3) c,,rresp,nding

to aij, y alibi . Sulstr;t.ctiug tw, .qmt.ios which Itre satisfied by u and u, we obtain

< .,,()- .,,’(.),.,, > + ,(;.,,(.,,,)

+ < ,,,(.)- ,,,(),, >r= < .()- (.), >r

fi,r all v V, a.e. s (0, T), where ’iv,,’k L"(E) are sm’h tlat

,,,(,} e z(.,,(,}), .,,,{,) f(u(,}) .. ,,,-

and a(.; .,.), a(.;., .) are of the form (2.2) wit,h he coecients ai, a}, respectively.

Taking u(s) u(:) the flmcti,n v aul intgrating lmth sides we get:

lu(t)-,,(t) + ,,(s;..(.s)-,,(),,,(s)-,,(s))ds +

+ < ,,() ,,,(),,,() ,() >t. d. gl 1 + ,,(; ,,(),,,() ,,())

k(; ,(), ,,/) ,).d] + (1 (.),,) ) r ds.

Hence, from (H) and (t12) we c)l.)tain:

fo’ ’ o,,() o.,,,,(s) 0.,()+ (,’ ,,)0,, !1.0.i 0. Id +

Uing the continuity of the trace operator from V to L(P) mad tim inequMity 2ab N a +
b we have

lug(t)-,,(t)l +, II,,(s)- u(s)llas N I -1 +

/c., Ilull I1"t) "ollc.( +c: I()

where ci, 1,2 are positive constructs indepen(lent of k. l’om this, (2.4) and from the hypotheses
we deduce that

u,u in C(O,T;H), as k-l-c.

On the other hand, owing to the estimate (2.4), which is tmifortn with respect to k, we obtain

ut u weakly in

The uniqueness of solutions of problem (1.1)- (1.3) implies that the whole sequence u converges
to u in the sense of (2.5). This completes the proof of the lemma.
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3. EXISTEN(:E IIES[!I:I’ IN I1)I);NT1FI(IATIt)N.

Using tile rcstlt ,f I.(lna 2.1, w’. ,’,1 ln’,x.’’ t.l .xisl.,lc, ,f sltt,in ,,f t.lm i,lettificati

lrl,l,n (D). Tlis is given i 11, till,wig

TItE()I/EM 3.1. I,’.t tl: tsstttll.is ,t" lrlsit.im 2.1 ltll. W, Sttlltst’ t.lat the set f

almissillc ltra,mt,’.rs satisti,b

L,t tle cst 5mctimal l" 1 R 1., w,kly squ,nt.ially ltwer scmicmtimns m . Then the

lrolhn (’P) has a sllt,in.

PR()O. XXhe ,l,l,ly tlc dir,ct (’t,l,l ,f c.ad’ths ,f’ variat.i,,ts (see e.g. [1]). Let 9, satisfy

(Ha) a,l let {a} 1,e t itiizig s,,le,,’ t’r, , scl tl,t

lint ,:/(u(,.,., .q, 9)) id’{,.’l(,,.(-.,9,)) -. Ad} ),)..

Sin(.,c .<t.I is c,)ml)act, tl(:’.r(.: exists a. std,s(qw.ce of tle seqteltCe {a,}, rehd)eled again as {a,},
<1 a ,u 3d swh that (,. a(). It tl)ll()ws fl’<)m L(unnla. 2.1 that in I)a.rticflar

R.EMARI, 3.1. In general, v,,itl,nt coavxity a.ss,nqtins, we do not expect uniqueness of

the ol)timal soluti,,n in ide,tifica.ti,, ([1], [16]).

4. STABILITY RESULT.

In this section we give the m,in rcsflt f this. lml)er on the dependence (hence also the

stability) of the optimal clemnts for the ln’,,1,h:nn (’P) on the data a.s well as on the cost functional.

We consider tlm sequence (inlexed by the lm.rmneter k N) of the identification problems:

find a*={,,iS} in sothat
()

where u(a,g,k) are the s,,luti,)ns in to(1.1) (1.3) corresponding to the perturbed data

gk, k and k are the perturbed functionals. We show that the set of optima.1 solutions to (Pk)
converges in sone sense, to the set of optimal solution to (P).

We need the following cmtimos convergence of 5mctionals. Let (A’,r) be a topological

space and k:,l" R.

DEFINITION 4.1. We sa.y tha.t a. sepencc of functionals {}, k N, is sequential

continuously convergent (shortly, C,-com,erges) t,:, and we write C,,(r- X) lim

if for every x ,V and for every {xk} C ,V whi,:h r-c,,nvcrges t,, x, the sequence k(x) converges
t,, :(.,).

For each k N, we denote by S, $ the sets of optimal elements to the proMen (P), (P),
respectively, i.e.

ith the above notation we have
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li, l, $,, $ {}, (4.3)

wl.,rc h*(.,-)is 1.,fi,,1 i (1.5).

PR()()F. We arg’ I,y c,t.ri,lict,i. If (,t.3) is ,t, vcrifie,! t,l.u’e exist g > 0 and a sequeuce

I,:,, }, k + s,:l t.lt

< h*(S.,.,S), V k. N.

(’,lrly, there exist a. S,. sucl t.lt

< d(,.L.,S ), V :,. c N. (4.4)

In view ,,f c,mpactuess ,ff M, we !,.,1,’, tl.t tluc cxist, ulscqucnce of {a. }, that we will

d:nt,e iu the ame way, wh tlu.t

fi,r some a* M.
Let ,ow u. u(a., g., ,. )and u* ..(.*, g, ),h.,n,,te the s,:,hti,,ns t,, (1.1)- (1.3) which

c,,rresl,oul to the triph,s (..,., 9,., .,. )a,l ("*,9, ), r"sl’cctively. Fr,,m (4.1) and (4.8)
2.1 gives

u. u* w,a.ldy iu W, as k +.

Since the fimctiouals d C’,:,-’nv’rg,s t J, wc

J(.,,’) i,,:h,.(,,L ). (4.6)

Le us fix au arbitrary . M. Let ’u,. u(.,9,,,.) and u u(a,9 ) be the solutions

(1.1) (1.3) with the inlicated data. Frcm the ccmt,iuts lepeudeuce ou the data, we conclude

that

u. ’u wcaklyiu W, as kv +.

Hence, as above, we have

Since a.,. are in S,,,, we have

J(,t) liu Jr,,. (u,,.). (4.7)

In the limit, as k,, +oo, one gets from (4.6), (4.7)

s(,,(,,’,,j,)) _< s(,,(,,,,)), v ,, e .
From the arbitrariety of a , we lu.w ,* S and this implies that

,(,,Z.,,s) II,L --*11. (4.8)

But now from (4.5), we ,:,btain tha.t (4.8) c,.,tra,licts (4.4). This proves (4.3) ,! completes the

proof of the theorem.
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’-FI; c,verg’n’e (4.2) lulls, f’,v itt’’, f’w tl,’ ’tu’c f" f’uct,iu;,l ff t.h’ fiwn (1.).

t" l’rtuled listrilnttetl ols.l’vatis il "H cv.rgilg t za, xve hav that(4.2), is satisfied with

,1 tiffs eml,ed,ling is c,nl,;,ct. (c,,l,a,v,’ [15]).

in..L
k +, tlmn usig tlu cnxqatct,t,ss ,f tlt tx’ace ’nl,llitg fi’m W int L2(E), we easily gt

REhIARK 4.1. ()te c g’u’ra,lize t.l" ’,slts lres,nt,.l al,w to t,le case when A(t) is a

litt:reti;l ol)erat{w tf tim t)

0 0

()tlr t.lu:vy, with sme niuw chngcs, cnt ltntlle ittx;’rs, lnlh’tns inwlving the idetifica.tion of

REIARK 4.2. A futher gcter;,liza.t.i f nr r,slts can lm oltained considering the

ilentificatim prolh-.s fr (1.1) (1.a) witl the ixl lnmtlary cmditicns

instea(l ,,f (1.2), where gi Pi (0, T) ani Pi are the (lisj,int parts of F. The exact fi)nmdatim

f the results with olviCnts mliticatims is h,f’t t, the: ilfl.:rested reader.
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