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ABSTRACT. In this paper we prove the existence and uniqueness theorem for almost everywhere
solution of the hyperbolic equation using the method of successive approximations [1].
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1. INTRODUCTION.

Mixed problems for partial differential equations have been investigated by a number of
authors [2), [3], [4], [5]. In this case we investigate the almost everywhere solution for the
hyperbolic equation that have been studied in [6]. Namely, the solution for the hyperbolic equation
in the space B%:%’T with a nonlinear operator at the right hand side.

2. STATEMENT OF THE PROBLEM.

Consider the following system

uyy(t,z) — Lu(t,z) = F(u(t, z)) in Qp (2.1)
subject to the initial conditions
u0,2)=9(z)  u(0,z)=¥(z) z€Q, (2.2)
and the boundary condition
u(t,z) | T =0 te[0,T] (2.3)
where Qp =[0,T]x2,0 < T < 00,Q is a bounded domain in R" and G is the boundary of 0;
L) = z": = (a,.j(z) %‘L_) — a(z)u, (2.4)
ij=1% j

~ a; (=)
and moreover the functions q; ;(2) have continuous & and ——gik—, a(z) are measurable and bounded
in Q and satisfy the following conditions in Q :

n n
“ij(") = aﬁ(z), a(z) > 0, Z . a’-j(z)fi{j > 0'215‘2 , (2.5)
i,j= i=

§; are any real number; ¥(£), p(z) are given functions in Q; F is a nonlinear operator.
3. PRELIMINARIES.
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DEFINITION 1. The almost everywhere solution for the problem (2.1)-(2.3) is the function
u(z,t), element of W%(QT), belongs to D?(QT) and satisfies (2.1) almost everywhere in Q and t—+0

satisfies the following

J[u(t,t) —¢(1')]2dz =0, J[%— w(z)]de =0 (2.6)
Q Q

,a o)
DEFINITION 2. We define the space B ﬂ" ﬂ” of all functions u(t,z)= Y ug(t)dy(2) in
0» .y 0 s =l

=[0,T]x R, where vy(z) are eigenfunctions for the operator L with the boundary condition (2.3)

corresponding to the eigenvalues )
(0 < Ag— as s—o0) (7], ug(t) are £>0

times continuously differentiable in [0,7] and

l 0 (i B; l/ﬂ’.
a; )
5;1{s§1[l\sio<t<Tlu (t)l] } < 400 (2.7)
and has the norm
1/8;
£ S ( i) i 28
1ol oy =3 { &[5 g i p1odo (28)
ﬁOv-yﬁth

where a; >0,1<8;<2,(i=0,...,0).
DEFINITION 3. The function uy(t) is called the s-component of the function

(o,
w(t2) = ), ug(t)ls(2)
s§=1
. Qg @
and p (s =1,2,...) is the set of all s-components of elements of u where uc B 8 BT
0 Mg

ag, - ap
THEOREM 2.1. The necessary and sufficient conditions for u to be compact in B B BT

are 01 Y c;

(a) for every s(s = 1,2,...) the set u is compact in CY0,T}; and

(b) for any given € > 0 there exists a natural number n, so that for all u(t,z) = io: ugly(z) € p,
1 . s=1
3 UL e
'; 5, [ ommpon] <
This theorem can be proved analogously as in ([9] page 277-278).
LEMMA 1. For any almost everywhere solution u(t,z) of (2.1) - (2.3) functions
ug(t) = ju(t,z)ls(z)dz satisfy the following system ([7] , [8])
Q
ug(t) = @5 cos A,t+~'§§ sin Agt+

t
%I JF(u(‘r,z)).Ca(z) sin Ag(t—r)dzdr,(s =1,2,..), (2.9)
0Q

@«
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where
O, = Jlﬂ‘(.l')l}AJ‘)(],J‘ Lowg = JL‘(.I‘)I)S(.I‘)(].I‘ .
Q Q
3. ASSUMPTION AND RESULTS.
THEOREM 3.1. Let
() are continuously differentiable on Q and a(z) continuous on {;

a,
The cigenfunctious ¥4 ave twice continuoutly differentiable on

o(x )eW’( )NDQ) . y(a ) € D°();
F: Bc, XS, (W’Q(QT N B, o) — I/Vx.(t).?(QT) and satisfies

L S

| Fu(t.z)) || Sc(t)+d(@) [ ull
w
for all u € 32 ,, 13 where c(t),d(t) € Ly(0,T).
5. For any u,v € %, (where %, is the sphere || u|| B2l <C,)
2,2,T

()

() Bya

o -

I} F(u,t,x)) = F(u(t,z) | <gt)|u-v]| ) g(t) € Ly(0,T),
() Byaes
where
2
c, {[2||W (t.2)f st 16Ta2 || c(t) | L2(0,T)] exp [16 Ta | d(®) 1%, T)}}
and

2= max [n- max [ |a;; 1, [la{z)|i
a { e (el o1l )nc(m}

6. For any u € By 5p U(W3(Qr)N By 1) and t € [0,T] F(u(t, z)) € D(%).
Then the problem (2.1) - (2.3) has a unique solution,
PROOF. Let
¥s
W(z,t) —SZI(% cos Agt + 2 X sin Agt)ds(z) ,
and

0o i
PF(u)=}, LJ J Flu(r,z)) - 94(z) sin Ay(t — 7)dz dr - 9,(z)

From (3.4) and (3.5) let us assume that
Q(u) =W + PF(u)
Then it is easy to see that the operator @ acts in Bg:%,T and satisfies Lipschitz condition
100 =@l g <20Teol o)l 0.yl

in the sphere %,,.

Consider the sequence uy(t,z) = Q(uy _(t,z)) in B%:%,T where u,(t,z) =0. Using (3.1)
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(3.1)

(32)

(33)

(34)

(3.5)

(36)

(3.7)

and
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the mathematical induction we get for any k(k =1,2,3,..) and t € [0, T):

9
=, <2|W
”“k” ”53-. I || wl

t
+8T(:,,J | Flug _ (7,2 N2
r 0

lutv
S\fn—

T

t
<2W 2y +16Ta3{ [A(r)dr+ [dX7)|lup_y 1|2, dr
By 0 B354

2.8,

0

=A%+ [BY7) luy_ ||f32 L dr

-,-,

o~

t {
< A‘~’+A2[°32 (r)dr + ..+ 42 L0 =T
0

where

=2(|W|%y, +16Ta}]lc(t)]|?
and Bya,T ’ L0.1),

B2(t) = 16Tald*(t)
From (3.8) for any k(k =1,2,...), we get

T
gl 232,1 < A% exp {I€B2(T)d1’} =C2
2,2,t )

¢ k-1
Jm? (‘r)dr}

(38)

(3.9)

(3.10)

i.e., all uy(t,z) are contained in the sphere %,. Further, using (3.2) and (3.3) we get for any

t€[0,T] and k(k=1,2,3,..)
lugp1—wllily ) <4Ta2|| Fluy(r,2)) = Flug_y(r,2) |3 @ 97
By)a¢ 2D

t
<aTa [ () ug =gy 12,y
2,2,t

0
¢ k
{4Ta§] g2(T)d‘r}

0
Slup—uollyy —p——
Bys.T k!

- k ' k
g2(7')d1'} {4Tag J gQ(T)dr}
<ozl

¢
4Ta€2,J

0

= w2y, ] ]
Byy T k! k!

Therefore,

{4Ta3 Ilg()11% 5(0, T)}’c

2

||uk+1—uk||2B%,%T$C 7 J(k=1,2,.)

(3.11)

(3.12)
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Then {u(t,2)} is a fundamental sequence in 32 2 7 Since B 2 T complete, then

u(t,z) B%:%,T u(t,z) € %, as k—oo (3.13)

Since Q is continuous in %,, then from the relation uy(t,z) = Q(u _ (t,z))
we have
u, (4, z) = Q(u(t, 2))
Therefore, as in (3.11), (3.12) the speed of convergence is governed by the following inequality

ATa3 || g(t) || 2 ¢
) o 19N Lo0, )
lupg—ull<9 1 <”“0_“” 1,0 T
Bys T Bylar K

v 4y 94y

k
{4Ta% IHa(e) 1l %2(0, T)}

i J(k=1,2,..). (3.14)

<c?

o
Now to prove the uniqueness let us assume the u(t,z) = Z ug(t)ey(x) solution to (2.1) - (2.3) then

s =
F(u(t,z)) € Ly(@p). By Lemma (1) ug(2) satisfy (2.9); from (2.9) we get

1) g SIWER g +2VTI RO gy < +o0 (3.15)

Bl
By, 2,2, T

Therefore ue B} ;. Since u(t,z) e WH(Qp)n By  then by (3.1) F(u(t,) € WhY 5(@p), but by

condition 6 Theorem 2 for all t €[0,T), F(u(t,z)) € D(Q). Thus using (2.9) with some manipulation

| u(t,2) || < IwL) |l +2V/T a, || F(u(t,z)) [ 3.16)
B 4 By dp ° WhaQp) < +oo (

Therefore, ue B%:%,T' Then, using (3.1), (3.8), (3.10), we get |lu(t,z)]| 521 <C,. Thus, all
2,2,
almost everywhere solutions (2.1)-(2.3) belong to the sphere K, and they are fixed points in Bg:%,T

for operator Q. Le u,v be two solutions to (2.1)-(2.3), then by (3.2) we get

t
l=ollgy <oTed] i) - Fr eIy o dr
0

i

wi@Q)

t
54Ta,2,Jy2(r) Nu-vli2y, dr (3.17)
0 B33,

Therefore, using Belmann’s inequality [10] we have

2 .
lu—vl|| — 0in [0,7]. Therefore, u=v.
t

y &y
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