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ABSTRACT. Let E and F be Banach spaces with equivalent normalized unconditional bases. In
this note we show that a bounded diagonal linear operator T : E — F' is compact if and only if its
entries tend to 0, using the concept of weak uniform continuity.
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1. Introduction.

Let E and F be two complex Banach spaces and E* be the dual space of E. A function
f: E — F is said to be weakly uniformly continuous on bounded subsets of E if for each bounded
set B C E and € > 0, there are ¢,,---,¢r € E* and 6§ > 0 such that if z,y € B, |¢,(z — y)| <
8 (t=1,---,k), then ||f(z) — f(y)]| < e R.M. Aron and J.B. Prolla [1] showed that a bounded
linear operator T : E — F is compact if and only if T is weakly uniformly continuous on bounded
subsets of E. Applying this result we generalize the following well-known Hilbert space fact to a
Banach space with an unconditional basis: A diagonal bounded linear operator is compact if and
only if its entries tend to 0. See, for example, 2, Proposition 4.6).

We recall some relevant definitions and results about a Banach space with an unconditional
basis. Let E be a complex Banach space with an unconditional basis (e,). For every choice of signs
0 = (6,,), we have a bounded linear operator M, on E defined by

Ms(Danes) =Y anbnen. (1.1)

The uniform bounded principle implies that the number K = sup || Mp|| is finite, which is called the
unconditional constant of (e,). Then for every choice of a complex sequence (a,) such that 3" ane,
converges and every choice of a bounded complex sequence (a,), we have

I Z Cnanen|| < 2K (suplanl)|| Z tnenl|. (1.2)

For details see [3].
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2. Main Results.

THEOREM 1. Let (e,) and (f,) be equivalent normalized unconditional bases of E and F,
respectively. Given a bounded sequence (a,). let 7 : E — F be the bounded linear operator with
T(en) = o, f, for cach n. Then T is compact if and only if a,, — 0.

Proof. Suppose T is compact. Let (P,) be the sequence of the natural projections associated
with (f,). Then (P, o T) converges uniformly to 7" on the closed unit ball B, from which it follows
that a,, — 0.

Conversely suppose that a, — 0. We will show that T is weakly uniforinly continuous on
bounded subsets of E. Let B, be the closed ball of E with the radius » and the center 0 and ' be
the positive number with |a,| < C for all n. Given ¢ >0, r = Y a,e, and y = 3 bne, in B,

”T(T) - T(y)" = “ Zan(an - bn)fn" (21)
N-1 0
S CXlan—bil + Il 2 an(an =)Ll (2.2)
< C Z lan —ba| + 2K( S"P o) Z(an = ba) full, (23)
n=1 n=N

where I is the unconditional constant of (f,). Since (e,) and (f,) are equivalent, it is easy to see
that
I3 (@ = bo)Jull < 201+ KT, (24)
n=N
Let (f:) be the sequence of coefficient functionals associated with (f,). Since a, — 0, choosing
sufficiently large N, we conclude that

IT(z) = T(y)ll < e (2.5)

if |fr(z —y)l, -+, | fi-1(z — y)| are sufficiently small. Hence T is weakly uniformly continuous on
bounded subset of E.

From the above proof it is easy to see that the Banach space ¢q of null complex sequences is
isomorphic with the Banach space of compact diagonal linear operators 7 : E — F', where I and
F are Banach spaces with equivalent unconditional bases. We would like to remark that if (¢, ) and
(f») are not equivalent, then given a bounded complex sequence (), the map T'(e,) = an fn is not
necessarily extended to a bounded linear operator from E into F. For example take E = €, F'= ¢,
and o, = 1 for all n with respect to the canonical bases of them.
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