

SPECIAL MEASURES AND REPLETENESS

EL-BACHIR YALLAOUI

Department of Mathematics
Polytechnic University
Six Metro Tech Center
Brooklyn, NY 11201

(Received November 14, 1989 and in revised form February 1, 1990)

ABSTRACT. Let X be an abstract set and \mathcal{L} a lattice of subsets of X . To each lattice-regular measure μ , we associate two induced measures $\hat{\mu}$ and $\tilde{\mu}$ on suitable lattices of the Wallman space $I_R(\mathcal{L})$ and another measure μ' on the space $I_R^G(\mathcal{L})$. We will investigate the reflection of smoothness properties of μ onto $\hat{\mu}, \tilde{\mu}$ and μ' ; and try to set some new criterion for repleteness and measure repleteness.

KEY WORDS AND PHRASES. Replete and measure replete lattices, Lattice regular measure, Wallman space and remainder, σ -smooth, τ -smooth and tight measures, purely finitely additive measures, purely σ -additive measures, purely τ -additive measures.

1980 AMS SUBJECT CLASSIFICATION. 28C15.

1. INTRODUCTION: Let X be an abstract set and \mathcal{L} a lattice subsets of X . To each lattice regular measure μ , we associate following Bachman and Szeto [1], two induced measures $\hat{\mu}$ and $\tilde{\mu}$ on suitable lattices of subsets of the Wallman space $I_R(\mathcal{L})$ of (X, \mathcal{L}) ; we also associate to μ a measure μ' on the space $I_R^G(\mathcal{L})$ (see below for definitions). We give in section 2, a brief review of the lattice notation and terminology relevant to the paper. We will be consistent with the standard terminology as used, for example, in Alexandroff [2], Frolik [3], Grassi [4], and Nöbeling [5]. We also give a brief review of the principal Theorems of [1] that we need in order to make the paper reasonably self-contained.

2. DEFINITIONS AND NOTATIONS

Let X be an abstract set, then \mathcal{L} is a lattice of subsets of X if for $A, B \subset X$ then $A \cup B \in \mathcal{L}$ and $A \cap B \in \mathcal{L}$. Throughout this work we will always assume that \emptyset and X are in \mathcal{L} . If $A \subset X$ then we will denote the complement of A by A' i.e. $A' = X - A$. If \mathcal{L} is a Lattice of subsets of X then \mathcal{L}' is defined $\mathcal{L}' = \{L' \mid L \in \mathcal{L}\}$.

Lattice Terminology

DEFINITIONS 2.1. Let \mathcal{L} be a Lattice of subsets of X . We say that:

- 1- \mathcal{L} is a δ -Lattice if it is closed under countable intersections.
- 2- \mathcal{L} is separating or T_1 if for $x, y \in X; x \neq y$ then $\exists L \in \mathcal{L}$ such that $x \in L$ and $y \notin L$.
- 3- \mathcal{L} is Hausdorff or T_2 if for $x, y \in X; x \neq y$ then $\exists A, B \in \mathcal{L}$ such that $x \in A', y \in B'$ and $A' \cap B' = \emptyset$.
- 4- \mathcal{L} is disjunctive if for $x \in X$ and $L \in \mathcal{L}$ where $x \notin L; \exists A, B \in \mathcal{L}$ such that $x \in A, L \subset B$ and $A \cap B = \emptyset$.
- 5- \mathcal{L} is regular if for $x \in X, L \in \mathcal{L}$ and $x \notin L; \exists A, B \in \mathcal{L}$ such that $x \in A', L \subset B'$ and $A' \cap B' = \emptyset$.

6- \mathcal{L} is normal if for $A, B \in \mathcal{L}$ where $A \cap B = \emptyset \exists \tilde{A}, \tilde{B} \in \mathcal{L}$ such that $A \subset \tilde{A}, B \subset \tilde{B}$ and $\tilde{A}' \cap \tilde{B}' = \emptyset$.
 7- \mathcal{L} is compact if $X = \bigcup_{\alpha} L'_{\alpha}$ where $L_{\alpha} \in \mathcal{L}$ then there exists a finite number of L_{α} that cover X i.e.

$$X = \bigcup_{i=1}^n L'_{\alpha} \text{ where } L'_{\alpha} \in \mathcal{L}.$$

$\mathcal{A}(\mathcal{L})$ = the algebra generated by \mathcal{L} .

$\sigma(\mathcal{L})$ = the σ -algebra generated by \mathcal{L} .

$\delta(\mathcal{L})$ = the Lattice of countable intersections of sets of \mathcal{L} .

$\tau(\mathcal{L})$ = the Lattice of arbitrary intersection of sets of \mathcal{L} .

$\rho(\mathcal{L})$ = the smallest class containing \mathcal{L} and closed under countable unions and intersections.

If $A \in \mathcal{A}(\mathcal{L})$ then $A = \bigcup_{i=1}^n (L_i - \tilde{L}_i)$ where the union is disjoint and $L_i, \tilde{L}_i \in \mathcal{L}$.

Measure Terminology

Let \mathcal{L} be a lattice of subsets of X . $M(\mathcal{L})$ will denote the set of finite valued bounded finitely additive measures on $\mathcal{A}(\mathcal{L})$. Clearly since any measure in $M(\mathcal{L})$ can be written as a difference of two non-negative measures there is no loss of generality in assuming that the measures are non-negative, and we will assume so throughout this paper.

DEFINITIONS 2.2.

- 1- A measure $\mu \in M(\mathcal{L})$ is said to be σ -smooth on \mathcal{L} if for $L_n \in \mathcal{L}$ and $L_n \downarrow \emptyset$ then $\mu(L_n) \rightarrow 0$.
- 2- A measure $\mu \in M(\mathcal{L})$ is said to be σ -smooth on $\mathcal{A}(\mathcal{L})$ if for $A_n \in \mathcal{A}(\mathcal{L}), A_n \downarrow \emptyset$ then $\mu(A_n) \rightarrow 0$.
- 3- A measure $\mu \in M(\mathcal{L})$ is said to be τ -smooth on \mathcal{L} if for $L_{\alpha} \in \mathcal{L}, \alpha \in \Lambda, L_{\alpha} \downarrow \emptyset$ then $\mu(L_{\alpha}) \rightarrow 0$.
- 4- A measure $\mu \in M(\mathcal{L})$ is said to be \mathcal{L} -regular if for any $A \in \mathcal{A}(\mathcal{L})$

$$\mu(A) = \sup_{\substack{L \subset A \\ L \in \mathcal{L}}} \mu(L)$$

If \mathcal{L} is a lattice of subsets of X , then we will denote by:

$M_R(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $M(\mathcal{L})$

$M_{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on \mathcal{L} of $M(\mathcal{L})$

$M^{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on $\mathcal{A}(\mathcal{L})$ of $M(\mathcal{L})$

$M_R^{\sigma}(\mathcal{L})$ = the set of regular measures of $M^{\sigma}(\mathcal{L})$

$M_R^{\tau}(\mathcal{L})$ = the set of τ -smooth measures on \mathcal{L} of $M_R(\mathcal{L})$

$M'_R(\mathcal{L})$ = the set of tight measures on \mathcal{L} of $M_R(\mathcal{L})$.

Clearly

$$M_R^{\tau}(\mathcal{L}) \subset M_R^{\sigma}(\mathcal{L}) \subset M_R(\mathcal{L})$$

DEFINITION 2.3. If $A \in \mathcal{A}(\mathcal{L})$ then μ_x is the measure concentrated at $x \in X$.

$$\mu_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

$I(\mathcal{L})$ is the subset of $M(\mathcal{L})$ which consists of non-trivial zero-one measures which are finitely additive on $\mathcal{A}(\mathcal{L})$.

$I_R(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I(\mathcal{L})$

$I_{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on \mathcal{L} of $I(\mathcal{L})$

$I^{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on $\mathcal{A}(\mathcal{L})$ of $I(\mathcal{L})$

$I_\tau(\mathcal{L})$ = the set of τ -smooth measures on \mathcal{L} of $I(\mathcal{L})$

$I_R^0(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I^0(\mathcal{L})$

$I_R^1(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I_1(\mathcal{L})$

DEFINITION 2.4: If $\mu \in M(\mathcal{L})$ then we define the support of μ to be:

$$S(\mu) = \bigcap \{L \in \mathcal{L} / \mu(L) = \mu(X)\}.$$

Consequently if $\mu \in I(\mathcal{L})$

$$S(\mu) = \bigcap \{L \in \mathcal{L} / \mu(L) = 1\}$$

DEFINITION 2.5. If \mathcal{L} is a Lattice of subsets of X , we say that \mathcal{L} is replete if for any $\mu \in I_R^0(\mathcal{L})$ then $S(\mu) \neq \emptyset$.

DEFINITION 2.6. Let \mathcal{L} be a lattice of subsets of X . We say that \mathcal{L} is measure replete if $S(\mu) \neq \emptyset$ for all $\mu \in M_R^0(\mathcal{L})$, $\mu \neq 0$.

Separation Terminology

Let \mathcal{L}_1 and \mathcal{L}_2 be two Lattices of subsets of X .

DEFINITION 2.7. \mathcal{L}_1 separates \mathcal{L}_2 if for $A_2, B_2 \in \mathcal{L}_2$ and $A_2 \cap B_2 = \emptyset$ then there exists $A_1, B_1 \in \mathcal{L}_1$ such that $A_2 \subset A_1, B_2 \subset B_1$ and $A_1 \cap B_2 = \emptyset$.

REMARK 2.1. We now list few known facts found in [1] which will enable us to characterize some previously defined properties in a measure theoretic fashion.

1. \mathcal{L} is disjunctive if and only if $\mu_x \in I_R(\mathcal{L}), \forall x \in X$.
2. \mathcal{L} is regular if and only if for any $\mu_1, \mu_2 \in I(\mathcal{L})$ such that $\mu_1 \leq \mu_2$ on \mathcal{L} we have $S(\mu_1) = S(\mu_2)$.
3. \mathcal{L} is T_2 if and only if $S(\mu) = \emptyset$ or a singleton for any $\mu \in I(\mathcal{L})$.
4. \mathcal{L} is compact if and only if $S(\mu) \neq \emptyset$ for any $\mu \in I_R(\mathcal{L})$.

3. THE INDUCED MEASURES

If \mathcal{L} is a disjunctive lattice of subsets of an abstract set X then there is a Wallman space associated with it. We will briefly review the fundamental properties of this Wallman space, and then associate with a regular lattice measure μ , two measures $\hat{\mu}$ and $\hat{\mu}$ on certain algebras in the Wallman space (see [1]). We then investigate how properties of μ reflect to those of $\hat{\mu}$ and $\hat{\mu}$, and conversely, then give a variety of applications of these results. Let X be an abstract set and \mathcal{L} a disjunctive lattice of subsets of X such that \emptyset and X are in \mathcal{L} . For any A in $\mathcal{A}(\mathcal{L})$, define $W(A) = \{\mu \in I_R(\mathcal{L}) : \mu(A) = 1\}$. If $A, B \in \mathcal{A}(\mathcal{L})$ then

- 1) $W(A \cup B) = W(A) \cup W(B)$.
- 2) $W(A \cap B) = W(A) \cap W(B)$.
- 3) $W(A') = W(A)'$.
- 4) $W(A) \subset W(B)$ if and only if $A \subset B$.
- 5) $W(A) = W(B)$ if and only if $A = B$.
- 6) $W[\mathcal{A}(\mathcal{L})] = \mathcal{A}[W(\mathcal{L})]$.

Let $W(\mathcal{L}) = \{W(L), L \in \mathcal{L}\}$. Then $W(\mathcal{L})$ is a compact lattice of $I_R(\mathcal{L})$, and $I_R(\mathcal{L})$ with $\tau W(\mathcal{L})$ as the topology of closed sets is a compact T_1 space (the Wallman space) associated with the pair X, \mathcal{L} . It is a T_2 -space if and only if \mathcal{L} is normal. For $\mu \in M(\mathcal{L})$ we define $\hat{\mu}$ on $\mathcal{A}(W(\mathcal{L}))$ by: $\hat{\mu}(W(A)) = \mu(A)$ where $A \in \mathcal{A}(\mathcal{L})$. Then $\hat{\mu} \in M(W(\mathcal{L}))$, and $\hat{\mu} \in M_R(W(\mathcal{L}))$ if and only if $\mu \in M_R(\mathcal{L})$.

Finally, since $\tau W(\mathcal{L})$ and $W(\mathcal{L})$ are compact lattices, and $W(\mathcal{L})$ separates $\tau W(\mathcal{L})$, then $\hat{\mu}$ has a unique extension to $\tilde{\mu} \in M_R(\tau W(\mathcal{L}))$. We note that by compactness $\hat{\mu}$ and $\tilde{\mu}$ are in $M_R^*(W(\mathcal{L}))$ and $M_R^*(\tau W(\mathcal{L}))$ respectively, where they are certainly τ -smooth and of course σ -smooth. $\hat{\mu}$ can be extended to $\sigma(W(\mathcal{L}))$ where it is $\delta W(\mathcal{L})$ -regular; while $\tilde{\mu}$ can be extended to $\sigma(\tau W(\mathcal{L}))$, the Borel sets of $I_R(\mathcal{L})$, and is $\tau W(\mathcal{L})$ -regular on it. One is now concerned with how further properties of μ reflect over to $\hat{\mu}$ and $\tilde{\mu}$ respectively. The following are known to be true (see [1]) and we list them for the reader's convenience.

THEOREM 3.1. Let \mathcal{L} be a separating and disjunctive lattice of subsets of X , and let $\mu \in M_R(\mathcal{L})$. Then

1. $\mu \in M_R^*(\mathcal{L})$ if and only if $\hat{\mu}^*(X) = \hat{\mu}(I_R(\mathcal{L}))$.
2. $\mu \in M_R^*(\mathcal{L})$ if and only if $\tilde{\mu}^*(X) = \tilde{\mu}(I_R(\mathcal{L}))$.
3. If \mathcal{L} is also normal (or T_2) then $\mu \in M_R^*(\mathcal{L})$ if and only if X is $\tilde{\mu}^*$ -measurable and $\tilde{\mu}^*(X) = \tilde{\mu}(I_R(\mathcal{L}))$.

We now give some further results related to the induced measures $\hat{\mu}$ and $\tilde{\mu}$.

THEOREM 3.2. Let \mathcal{L} be a separating and disjunctive lattice, and $\mu \in M_R(\mathcal{L})$ then $\tilde{\mu}$ is $W(\mathcal{L})$ regular on $(\tau W(\mathcal{L}))'$.

PROOF. We know that $W(\mathcal{L})$ and $\tau W(\mathcal{L})$ are compact lattices and that $W(\mathcal{L})$ separates $\tau W(\mathcal{L})$. Since $\mu \in M_R(\mathcal{L})$ then $\hat{\mu} \in M_R^*[W(\mathcal{L})]$. Extend $\hat{\mu}$ to $\tau W(\mathcal{L})$. The extension is

$$\tilde{\mu} \in M_R[\tau W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})].$$

Let $0 \in [\tau W(\mathcal{L})]'$ then since $\tilde{\mu} \in M_R[\tau W(\mathcal{L})]$ there exists $F \in \tau W(\mathcal{L}), F \subset 0$ and

$$|\tilde{\mu}(0) - \tilde{\mu}(F)| < \varepsilon; \varepsilon > 0.$$

Since $F \in \tau W(\mathcal{L}), F = \bigcap_{\alpha \in \Lambda} W(L_\alpha), L_\alpha \in \mathcal{L}$. Also since $F \subset 0$ then $F \cap 0' = \emptyset$ i.e. $\bigcap_\alpha W(L_\alpha) \cap 0' = \emptyset$ by

compactness there must exist $\alpha_0 \in \Lambda$ such that $W(L_{\alpha_0}) \cap 0' = \emptyset$ thus $\tilde{F} \subset W(L_{\alpha_0}) \subset 0'' = 0$ so

$$|\tilde{\mu}(0) - \tilde{\mu}(W(L_{\alpha_0}))| < \varepsilon$$

i.e. $\tilde{\mu}$ is $W(\mathcal{L})$ regular on $(\tau W(\mathcal{L}))'$.

THEOREM 3.3. Let $\mu \in M_R(\mathcal{L})$ then $\hat{\mu}^* = \tilde{\mu}$ on $\tau W(\mathcal{L})$.

PROOF. Since $\mu \in M_R(\mathcal{L})$ and $W(\mathcal{L})$ is compact then $\hat{\mu} \in M_R^*[W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})]$ and since $W(\mathcal{L})$ separates $\tau W(\mathcal{L})$ and $\tau W(\mathcal{L})$ is compact then $\tilde{\mu} \in M_R[\tau W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})]$ furthermore $\tilde{\mu}$ extends $\hat{\mu}$ to $\tau W(\mathcal{L})$ uniquely. Let $F \in \tau W(\mathcal{L})$ then

$$\hat{\mu}^*(F) = \inf \sum_{i=1}^{\infty} \hat{\mu}(A_i), F \subset \bigcup_{i=1}^{\infty} A_i \text{ and } A_i \in \mathcal{R}[W(\mathcal{L})]$$

and since $\hat{\mu} \in M_R^*[W(\mathcal{L})]$ then

$$\hat{\mu}(A_i) = \inf \hat{\mu}[W(L'_i)], A_i \subset W(L'_i), L_i \in \mathcal{L}$$

thus $F \subset \bigcup_{i=1}^{\infty} W(L'_i)$ but since $W(\mathcal{L})$ is compact then $F \subset \bigcup_{i=1}^{\infty} W(L'_i) = W(L')$ where $L \in \mathcal{L}$ and

$$\hat{\mu}^*(F) = \inf \hat{\mu}[W(L')]; F \subset W(L') \text{ and } L \in \mathcal{L}$$

Now $F \subset W(L') \Rightarrow F \cap W(L) = \emptyset$ then since $W(\mathcal{L})$ separates $\tau W(\mathcal{L}) \exists \tilde{L} \in \mathcal{L}$ such that $F \subset W(\tilde{L})$ and $W(\tilde{L}) \cap W(L) = \emptyset$. Therefore $W(\tilde{L}) \subset W(L')$ and hence

$$\hat{\mu}^*(F) = \inf \hat{\mu}[W(\tilde{L})]: \text{ where } F \subset W(\tilde{L}); \tilde{L} \in \mathcal{L}$$

i.e. that $\hat{\mu}^*$ is regular on $\tau W(\mathcal{L})$. On the other hand since $\tau W(\mathcal{L})$ is δ then

$$F = \bigcap_a W(L_a) \text{ and } \tilde{\mu}\left[\bigcap_a W(L_a)\right] = \inf_a \tilde{\mu}(W(L_a)) = \inf_a \hat{\mu}(W(L_a))$$

where $F \subset W(L_a), L_a \in \mathcal{L}$. Therefore $\hat{\mu}^* = \tilde{\mu}$ on $\tau W(\mathcal{L})$.

THEOREM 3.4. Let \mathcal{L}_1 and \mathcal{L}_2 be two lattices of subsets of X such that $\mathcal{L}_1 \subset \mathcal{L}_2$ and \mathcal{L}_1 separates \mathcal{L}_2 . If $v \in M_R^o(\mathcal{L}_2)$ then $v = \mu^*$ on \mathcal{L}_2 and $v = \mu_*$ on \mathcal{L}_2' where $\mu = v|_{\mathcal{L}_1}$.

PROOF. Let $v \in M_R^o(\mathcal{L}_2)$ then since \mathcal{L}_1 separates $\mathcal{L}_2, \mu \in M_R^o(\mathcal{L}_1)$. Since $\mathcal{L}_1 \subset \mathcal{L}_2$ then $\sigma(\mathcal{L}_2) \subset \sigma(\mathcal{L}_1)$; Let $E \subset X$ then

$$v^*(E) = \inf_{E \subset B, B \in \sigma(\mathcal{L}_2)} v(B) \leq \inf_{E \subset A, A \in \sigma(\mathcal{L}_1)} v(A) = \mu^*(E)$$

therefore, $v^* \leq \mu^*$. Now on $\mathcal{L}_2, v^* \leq \mu^*$. Suppose $\exists L_2 \in \mathcal{L}_2$ such that $v(L_2) < \mu^*(L_2)$ then since

$$v \in M_R^o(\mathcal{L}_2), v(L_2) = \inf v(\tilde{L}'_2), L_2 \subset \tilde{L}'_2 \text{ and } \tilde{L}_2 \in \mathcal{L}_2$$

then $L_2 \cap \tilde{L}_2 = \emptyset$ and by separation $\exists L_1, \tilde{L}_2 \in \mathcal{L}_1$ such that $L_2 \subset L_1, \tilde{L}_2 \subset \tilde{L}'_1 \subset \tilde{L}'_2$ and therefore

$$\begin{aligned} v(L_2) &= \inf_a \mu(L_{1a}) \text{ where } L_2 \subset L_{1a} \\ &= \inf_{\beta} v(\tilde{L}'_{2\beta}) \text{ where } L_2 \subset \tilde{L}'_{2\beta} \\ &< \mu^*(L_2) \end{aligned}$$

$\forall \epsilon > 0 \exists L_1 \in \mathcal{L}_1$ such that $L_2 \subset L_1$ and $\mu(L_1) - \epsilon < v(L_2) < \mu(L_1)$ but since $L_2 \subset L_1$ then $\mu^*(L_2) \leq \mu(L_1) < v(L_2) + \epsilon$ which is a contradiction to our assumption. Therefore $v = \mu^*$ on \mathcal{L}_2 and thus $v = \mu_*$ on \mathcal{L}_2' . This theorem is a generalization of the previous one in which we used the compactness of $W(\mathcal{L})$ to have a regular restriction of the measure. Next consider the space $I_R^o(\mathcal{L})$ and the induced measure μ' .

DEFINITION 3.1. Let \mathcal{L} be a disjunctive lattice of subsets of X .

- 1) $W_o(\mathcal{L}) = \{\mu \in I_R^o(\mathcal{L}) \mid \mu(L) = 1\}; L \in \mathcal{L}$
- 2) $W_o(\mathcal{L}) = \{W_o(L), L \in \mathcal{L}\}$
- 3) $W_o(A) = \{\mu \in I_R^o(\mathcal{L}) \mid \mu(A) = 1\}, A \in \mathcal{A}(\mathcal{L})$
- 4) $W_o(\mathcal{L}) = W(\mathcal{L}) \cap I_R^o(\mathcal{L})$

The following properties hold:

PROPOSITION 3.1. Let \mathcal{L} be a disjunctive lattice then for $A, B \in \mathcal{A}(\mathcal{L})$

- 1) $W_o(A \cap B) = W_o(A) \cup W_o(B)$
- 2) $W_o(A \cup B) = W_o(A) \cap W_o(B)$
- 3) $W_o(A') = W_o(A)'$
- 4) $W_o(A) \subset W_o(B)$ if and only if $A \subset B$
- 5) $\mathcal{A}[W_o(\mathcal{L})] = W_o[\mathcal{A}(\mathcal{L})]$

The proof is the same as for $W(\mathcal{L})$ by simply using the properties of $W(\mathcal{L})$ and the fact that $W_o(A) = W(A) \cap I_R^o(\mathcal{L})$ and $W_o(B) = W(B) \cap I_R^o(\mathcal{L})$.

REMARK 3.1. It is not difficult to show that $\sigma[W_o(\mathcal{L})] = W_o[\sigma(\mathcal{L})]$. Also, for each $\mu \in M(\mathcal{L})$ we define μ' on $\mathcal{A}[W'_o(\mathcal{L})]$ as follows:

$$\mu'[W_o(A)] = \mu(A) \text{ where } A \in \mathcal{A}(\mathcal{L})$$

μ' is defined and the map $\mu \rightarrow \mu'$ from $M(\mathcal{L})$ to $M(W_o(\mathcal{L}))$ is onto. In addition, it can readily be checked that,

THEOREM 3.5. Let \mathcal{L} be disjunctive then

- 1) $\mu \in M(\mathcal{L})$ if and only if $\mu' \in M[W_o(\mathcal{L})]$
- 2) $\mu \in M_R(\mathcal{L})$ if and only if $\mu' \in M_R[W_o(\mathcal{L})]$
- 3) $\mu \in M_o(\mathcal{L})$ if and only if $\mu' \in M_o[W_o(\mathcal{L})]$
- 4) $\mu \in M^o(\mathcal{L})$ if and only if $\mu' \in M^o[W_o(\mathcal{L})]$
- 5) $\mu \in M_R^o(\mathcal{L})$ if and only if $\mu' \in M_R^o[W_o(\mathcal{L})]$

THEOREM 3.6. Let \mathcal{L} be a separating and disjunctive lattice of subsets of X , and let $\mu \in M_R^o(\mathcal{L})$.

Then

1. $\mu' \in M_R^o(W_o(\mathcal{L}))$ if and only if $\hat{\mu}^*(I_R^o(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L}))$.
2. If \mathcal{L} is also normal or T_2 then $\mu' \in M_R^o(W_o(\mathcal{L}))$ if and only if $I_R^o(\mathcal{L})$ is $\hat{\mu}^*$ -measurable and $\hat{\mu}^*(I_R^o(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L}))$.

We note some consequences.

COROLLARY 3.1. If \mathcal{L} is a separating, disjunctive and replete lattice of subsets of X , then $\mu' \in [M_R^o(\mathcal{L})]$ implies $\mu \in M_R^o(\mathcal{L})$.

PROOF. Since \mathcal{L} is replete then $X = I_R^o(\mathcal{L})$ then from the previous theorem we have

$$\hat{\mu}(I_R(\mathcal{L})) = \hat{\mu}^*(I_R^o(\mathcal{L})) = \hat{\mu}^*(X)$$

i.e. $\mu \in M_R^o(\mathcal{L})$ from theorem 3.1.

COROLLARY 3.2. Let \mathcal{L} be separating and disjunctive. If $\mu' \in M_R^o(W_o(\mathcal{L})) \Rightarrow \mu \in M_R^o(\mathcal{L})$ then \mathcal{L} is replete.

PROOF. Let $\mu \in I_R^o(\mathcal{L})$ then since $W_o(\mathcal{L})$ is replete $\mu' \in I_R^o[W_o(\mathcal{L})]$ then by hypothesis $\mu \in I_R^o(\mathcal{L})$ therefore $I_R^o(\mathcal{L}) = I_R^o(\mathcal{L})$ or \mathcal{L} is replete. If we combine the two corollaries we get the following:

THEOREM 3.7. Let \mathcal{L} be separating and disjunctive. Then \mathcal{L}' is replete if and only if $\mu' \in M_R^o(W_o(\mathcal{L})) \Rightarrow \mu \in M_R^o(\mathcal{L})$.

THEOREM 3.8. Let \mathcal{L} be a separating, disjunctive, normal and replete lattice. Then

$$\mu' \in M_R^o[W_o(\mathcal{L})] \text{ if and only if } \mu \in M_R^o(\mathcal{L}).$$

PROOF.

1. Let $\mu' \in M_R^o[W_o(\mathcal{L})]$ then since \mathcal{L} is replete then $X = I_R^o(\mathcal{L})$ and X is $\hat{\mu}^*$ -measurable and

$$\hat{\mu}^*(I_R^o(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L})) = \hat{\mu}(X)$$

then by theorem 3.1 we get that $\mu \in M_R^o(\mathcal{L})$.

2. Conversely suppose $\mu \in M_R^o(\mathcal{L})$ then from theorem 3.1 we get that

$$\hat{\mu}^*(X) = \hat{\mu}(I_R(\mathcal{L}))$$

and X is $\hat{\mu}^*$ -measurable but $X \subset I_R^\sigma(\mathcal{L}) \subset I_R(\mathcal{L})$ therefore $\hat{\mu}^*(I_R^\sigma(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L}))$, then since \mathcal{L} is replete $X = I_R^\sigma(\mathcal{L})$ so $\hat{\mu}^*(X) = \hat{\mu}^*(I_R^\sigma(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L}))$ then from theorems 3.1 and 3.7 $\mu' \in M_R^\sigma[W_\sigma(\mathcal{L})]$.

4. SPECIAL MEASURES AND REPLETENESS

In this section we define a purely finitely additive measure (p. f. a.), a purely σ -additive measure (p. σ . a.) and a purely τ -additive measure (p. τ . a.) and for each type we give a characterization theorem. Then we will define strong σ -additive measures (s. σ . a.) and (s. τ . a.) measures and give for each a characterization theorem. Finally we will investigate relationships among these measures under repleteness.

LEMMA 4.1. Let \mathcal{L} be a lattice of subsets of X and $\mu \in M_R(\mathcal{L})$.

1. Consider $\hat{\mu}$ on $\sigma[W(\mathcal{L})]$; we saw in earlier work that $\hat{\mu}$ is $\delta(W(\mathcal{L}))$ regular on $\sigma[W(\mathcal{L})]$.

Let $H \subset I_R(\mathcal{L})$ such that $\hat{\mu}^*(H) = a \neq 0$ then $\exists \rho$ countably additive on $\sigma[\tau W(\mathcal{L})]$ and $\tau = W(\mathcal{L})$ regular such that $0 \leq \rho \leq \hat{\mu}$ and $\rho^*(H) = \rho(I_R(\mathcal{L})) = a \neq 0$.

2. Consider $\tilde{\mu}$ in $\sigma[\tau W(\mathcal{L})]$; we say that $\tilde{\mu}$ is $\tau W(\mathcal{L})$ regular on $\sigma[\tau W(\mathcal{L})]$.

Let $H \subset I_R(\mathcal{L})$ such that $\tilde{\mu}^*(H) = a \neq 0$ then $\exists \rho$ countably additive on $\tau W(\mathcal{L})$ regular on $\sigma[\tau W(\mathcal{L})]$ such that $0 \leq \rho \leq \tilde{\mu}$ and $\rho^*(H) = \rho(I_R^\sigma(\mathcal{L})) = a$

DEFINITION 4.1.

1. Let $\mu \in M_R(\mathcal{L})$; we say that μ is p. f. a. if for $\gamma \in M_\sigma(\mathcal{L})$ and $0 \leq \gamma \leq \mu$ on $\mathcal{A}(\mathcal{L})$ then $\gamma = 0$.
2. Let $\mu \in M_R(\mathcal{L})$; we say that μ is p. σ . a. if for $\gamma \in M_\sigma(\mathcal{L})$, γ τ -smooth on \mathcal{L} and $0 \leq \gamma \leq \mu$ then $\gamma = 0$.

THEOREM 4.1. Let \mathcal{L} be a separating and disjunctive lattice and $\mu \in M_R(\mathcal{L})$ then:

1. μ is p. f. a. $\Rightarrow \hat{\mu}^*(X) = 0$.
2. μ is p. σ . a. $\Rightarrow \tilde{\mu}^*(X) = 0$.

If we further assume that \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then the converses are true.

PROOF. The proof will be given only for part (1) and is similar for the second one.

1. Suppose μ is purely finitely additive. If $\hat{\mu}^*(X) = a \neq 0$ then from previous Lemma 4.1 there exists $\rho \in M_R[W(\mathcal{L})] = M_R^\sigma[W(\mathcal{L})]$ such that

$$0 \leq \rho \leq \hat{\mu} \text{ and } \rho^*(X) = \rho(I_R(\mathcal{L})) = a; \text{ then}$$

$$\rho = \gamma \text{ and } \gamma \in M_R^\sigma(\mathcal{L}) \text{ so}$$

$$0 \leq \rho = \hat{\mu} \Rightarrow 0 \leq \gamma \leq \hat{\mu} \Rightarrow \gamma = 0$$

from the definition of purely finitely additive which is a contradiction because

$$\hat{\mu}[I_R(\mathcal{L})] = a \neq 0 \text{ and therefore } \hat{\mu}^*(X) = 0.$$

2. Conversely if $\hat{\mu}^*(X) = 0$ and $0 \leq \gamma \leq \mu$ on $\mathcal{A}(\mathcal{L})$ where $\gamma \in M_\sigma(\mathcal{L})$ and \mathcal{L} is δ and $\rho(\mathcal{L}) = \sigma(\mathcal{L})$ then $\gamma \in M_R^\sigma(\mathcal{L})$ and $0 \leq \hat{\mu} \leq \hat{\mu}$ on $\mathcal{A}(\mathcal{L})$ then $0 \leq \gamma \leq \hat{\mu}$ on $\mathcal{A}(\mathcal{L})$; and therefore

$$0 \leq \hat{\mu} \leq \hat{\mu} \text{ and since } \hat{\mu}^*(X) = 0 \Rightarrow \hat{\mu}^*(X) = 0 = \hat{\mu}[I_R(\mathcal{L})]$$

hence $\gamma = 0$ i.e. μ is purely finitely additive.

DEFINITIONS 4.2. Let \mathcal{L} be any lattice of subsets of X .

- Let $\mu \in M_R(\mathcal{L})$, we say that μ is σ . f. a. if for γ such that $0 \leq \gamma \leq \mu$ on $\mathcal{A}(\mathcal{L})$ and $\gamma' \in M^o[W_o(\mathcal{L})]$ then $\gamma = 0$.
- Let $\mu \in M_R^o(\mathcal{L})$, we say that μ is s. σ . a. if for γ such that $0 \leq \gamma \leq \mu$ on $\mathcal{A}(\mathcal{L})$ and $\gamma' \in M^o[W_o(\mathcal{L})]$, γ' τ -smooth on $W_o(\mathcal{L})$ then $\gamma = 0$.

LEMMA 4.2. Let \mathcal{L} be a disjunctive lattice of subsets of X . If $\lambda \in M_R(\tau W(\mathcal{L})) = M_R^o(\tau W(\mathcal{L}))$ and $\lambda^*(I_R^o(\mathcal{L})) = \lambda(I_R(\mathcal{L}))$ then $\exists \mu \in M_R(\mathcal{L})$ such that $\lambda = \tilde{\mu}$ and $\mu' \in M_R^o[W_o(\mathcal{L})]$. The proof is not difficult.

THEOREM 4.2. Let \mathcal{L} be a disjunctive lattice of subsets of X . Let $\mu \in M_R^o(\mathcal{L})$ then:

- If μ is s. σ . a. then $\tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$.
- If $W_o(\mathcal{L})$ is δ , $\sigma[W_o(\mathcal{L})] = \rho[W_o(\mathcal{L})]$ and $\tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$ then μ is s. σ . a.

PROOF.

- Suppose μ is strong σ additive but $\tilde{\mu}^*(I_R^o(\mathcal{L})) = a \neq 0$ then from lemma (4.1) $\exists \rho$ countably additive on $\sigma[\tau W(\mathcal{L})]$ and $\tau W(\mathcal{L})$ regular such that $0 \leq \rho \leq \tilde{\mu}$ and $\rho^*(I_R^o(\mathcal{L})) = \rho(I_R(\mathcal{L})) = a$ from previous lemma 4.2 $\rho = \tilde{\gamma}$ where $\gamma' \in M_R^o(W_o(\mathcal{L}))$ then

$$0 \leq \rho = \tilde{\gamma} \leq \tilde{\mu} \Rightarrow 0 \leq \tilde{\gamma} \leq \tilde{\mu} \Rightarrow 0 \leq \gamma \leq \mu$$

and since μ is s. σ . a. then $\gamma = 0$ which is a contradiction to the fact that

$$\rho(I_R(\mathcal{L})) = \tilde{\gamma}(I_R(\mathcal{L})) = a \neq 0$$

and hence $\tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$.

- Suppose $W_o(\mathcal{L})$ is δ , $\sigma[W_o(\mathcal{L})] = \rho[W_o(\mathcal{L})]$ and $\tilde{\mu}^*(I_R(\mathcal{L})) = 0$. Let $\gamma \in M(\mathcal{L})$, $0 \leq \gamma \leq \mu$ and $\gamma' \in M^o[W_o(\mathcal{L})]$ and τ -smooth on $W_o(\mathcal{L})$ then $\gamma' \in M_R^o[W_o(\mathcal{L})]$ and even $\gamma' \in M_R^o[W_o(\mathcal{L})]$. So

$$0 \leq \tilde{\gamma} \leq \tilde{\mu} \text{ on } \mathcal{A}[W(\mathcal{L})]$$

and therefore $0 \leq \gamma' \leq \mu'$ on $\mathcal{A}[W_o(\mathcal{L})]$. Furthermore $0 \leq \tilde{\gamma}' \leq \tilde{\mu}'$ and since $\tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$ then $\tilde{\gamma}^*(I_R^o(\mathcal{L})) = \tilde{\gamma}(I_R^o(\mathcal{L})) = 0$ i.e. $\gamma = 0$ i.e. μ is s. σ . a.

NOTE. If \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then $W_o(\mathcal{L})$ is δ and $\sigma[W_o(\mathcal{L})] = \rho(W_o(\mathcal{L}))$ will hold.

PROPOSITION 4.1. Let \mathcal{L} be separating and disjunctive if \mathcal{L} is also δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then μ is s. σ . a. $\Rightarrow \mu$ is p. σ . a.

PROOF. μ is s. σ . a. $\Rightarrow \tilde{\mu}^*(I_R^o(\mathcal{L})) = 0 \Rightarrow \tilde{\mu}^*(X) = 0$: $\tilde{\mu}^*(X) = 0$ and \mathcal{L} is δ and

$\rho(\mathcal{L}) = \sigma(\mathcal{L}) \Rightarrow \mu$ is p. σ . a.

PROPOSITION 4.2. If \mathcal{L} is disjunctive then μ is s. f. a. if and only if μ is p. f. a.

PROOF.

- Suppose μ is s. f. a. and $\gamma' \in M_o(\mathcal{L})$; $0 \leq \gamma \leq \mu$ then $\gamma' \in M^o[W_o(\mathcal{L})]$ and $0 \leq \gamma \leq \mu \Rightarrow \gamma = 0$ by s. f. a. Therefore μ is p. f. a.
- Suppose μ is p. f. a. and $\gamma' \in M^o[W_o(\mathcal{L})]$; $0 \leq \gamma \leq \mu$ then $\gamma \in M^o(\mathcal{L})$ and $0 \leq \gamma \leq \mu \Rightarrow \gamma = 0$ by purely finitely additive. Therefore μ is s. f. a.

PROPOSITION 4.3. If \mathcal{L} is replete then μ is s. σ . a. if and only if μ is p. σ . a.

PROOF. \mathcal{L} replete $\Rightarrow X = I_R^*(\mathcal{L}) = I_R^o(\mathcal{L})$ then $\mathcal{L} = W_o(\mathcal{L})$ and so $\gamma \in M^o(\mathcal{L})$ and τ -smooth on $\mathcal{L} \Leftrightarrow \gamma' \in M^o(W_o(\mathcal{L}))$ and τ -smooth or W_o therefore the definitions are equivalent.

THEOREM 4.3. Suppose \mathcal{L} is separating, disjunctive and δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then \mathcal{L} is replete if and only if for any $\mu \in M_R^o(\mathcal{L})$, μ is p. σ . a. $\Rightarrow \mu$ is s. σ . a.

PROOF.

1. We saw in proposition 4.3 that if \mathcal{L} is replete then p. σ . a. \Leftrightarrow s. σ . a.
2. Conversely suppose that μ is p. σ . a. $\Rightarrow \mu$ is s. σ . a. for any $\mu \in M_R^o(\mathcal{L})$ but $X \neq I_R^o(\mathcal{L})$. Let $\mu \in I_R^o(\mathcal{L})$ then $\tilde{\mu}$ is $\tau W(\mathcal{L})$ regular and $S(\tilde{\mu}) = \{\mu\}$, $\tilde{\mu}^*(X) = 0$. Now since $\tilde{\mu}^*(X) = 0$, \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then from theorem 4.1 μ is purely σ additive by assumption; but μ is s. σ . a. $\Rightarrow \tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$ from proposition 4.2; which is a contradiction because $\mu \in M_R^o(\mathcal{L})$ and $\tilde{\mu}[\{\mu\}] = 1$. Therefore $X = I_R^o(\mathcal{L})$.

DEFINITION 4.3. Let $\mu \in M_R^*(\mathcal{L})$.

1. We say that μ is p. τ a. if for $\gamma \in M_o(\mathcal{L})$, $0 \leq \gamma \leq \mu$, and $\gamma \mathcal{L}$ -tight then $\gamma = 0$.
2. We say that μ is s. τ . a. if for $\gamma' \in M^o(W_o(\mathcal{L}))$, $0 \leq \gamma' \leq \mu$ on $\mathcal{A}(\mathcal{L})$ and γ' is $W_o(\mathcal{L})$ -tight then $\gamma' = 0$.

THEOREM 4.4. Let \mathcal{L} be a separating, disjunctive and normal lattice. If $\mu \in M_R^*(\mathcal{L})$ then:

1. μ is p. τ . a. $\Rightarrow \tilde{\mu}^*(I_R(\mathcal{L}) - X) = \tilde{\mu}(I_R(\mathcal{L}))$.
2. μ is s. τ . a. $\Rightarrow \tilde{\mu}^*(I_R(\mathcal{L}) - I_R^o(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$.

If we further assume that \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then the converses are true.

PROOF. We will prove only the second proposition and the proof of the first is similar.

2.a) Suppose μ is s. τ . a. but $\tilde{\mu}^*(I_R(\mathcal{L}) - I_R^o(\mathcal{L})) < \tilde{\mu}(I_R(\mathcal{L}))$, then there exists $G \in [\tau W(\mathcal{L})]'$ such that $I_R(\mathcal{L}) - I_R^o(\mathcal{L}) \subset G$ and $\tilde{\mu}(G) < \tilde{\mu}(I_R(\mathcal{L}))$. Let $F = I_R(\mathcal{L}) - G$, $F \in \tau W(\mathcal{L})$ then $F \subset I_R^o(\mathcal{L})$ and F is $W_o(\mathcal{L})$ compact, for if $F \subset \bigcup_a W_o(L_a)' \Rightarrow F \subset \bigcup_a W(L_a)$. Therefore

$$F \subset \bigcup_{fin} W(L_\alpha) = W(\hat{L}) \gamma \hat{L} \in \mathcal{L}$$

thus $F \subset W_o(\hat{L})'$ since $F \subset I_R^o(\mathcal{L})$ and $\tilde{\mu}(F) > 0$ since $\tilde{\mu}(G) < \tilde{\mu}(I_R(\mathcal{L}))$. Also since $W_o(\mathcal{L})$ is normal and T_2 then $F \in \tau W_o(\mathcal{L})$. Now $\mu \in M_R^*(\mathcal{L})$ projects onto $I_R^o(\mathcal{L})$ and μ' is the projection on $W_o(\mathcal{L})$ and μ'' is the projection on $\tau W_o(\mathcal{L})$. For $E \in \mathcal{A}(W_o(\mathcal{L}))$ let $\lambda(E) = \mu''(E \cap F)$ then $0 \leq \lambda(E) \leq \mu''(E) = \mu'(E)$ so $0 \leq \lambda \leq \mu'$ on $\mathcal{A}(W_o(\mathcal{L}))$. Now if

$$W_o(L_\alpha) \downarrow \emptyset, L_\alpha \in \mathcal{L} \text{ then } W_o(L_\alpha) \cap F \downarrow \emptyset \text{ and } \lambda[W_o(L_\alpha)] = \mu''[W_o(L_\alpha) \cap F] \rightarrow 0$$

then

$$\lambda \in M_R^*(W_o(\mathcal{L})).$$

Since λ is τ -smooth and $W_o(\mathcal{L})$ is regular. Also $\lambda \in M_R^*[W_o(\mathcal{L})]$ since $\forall \epsilon > 0$, $\lambda(I_R^o(\mathcal{L})) - \mu''(F) < \epsilon$ then

$$\begin{aligned} \lambda^*(F) &= \lambda^*\left(\bigcap_\alpha W_o(L_\alpha)\right) = \inf \lambda[W_o(L_\alpha)] \\ &= \inf \mu''[W_o(L_\alpha) \cap F] = \mu''(W_o(L_\alpha) \cap F) = \mu''(F). \end{aligned}$$

Therefore

$$\lambda^*(F) = \mu''(F) = \lambda(I_R^o(\mathcal{L})) > \lambda(I_R^o(\mathcal{L})) - \epsilon.$$

Thus

$$\lambda \in M_R^a[W_o(\mathcal{L})]$$

Therefore

$$\lambda - \gamma' \in M_R^a[W_o(\mathcal{L})]$$

so

$$0 \leq \gamma' \leq \mu' \text{ on } \mathcal{A}[W_o(\mathcal{L})] \text{ and } 0 \leq \gamma \leq \mu \text{ on } \mathcal{A}(\mathcal{L})$$

and $\gamma' \in M_R^a[W_o(\mathcal{L})]$ and $\lambda - \gamma' \neq 0$ contradiction. Hence

$$\tilde{\mu}^*(I_R(\mathcal{L}) - I_R^o(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$$

2.b) Let $\gamma' \in M_R^a(W_o(\mathcal{L}))$ then $\gamma \in M_R^a(\mathcal{L})$ also $\gamma' \in M_R^a[W_o(\mathcal{L})]$ because γ' is $W_o(\mathcal{L})$ -tight. Now

$$0 \leq \gamma' \leq \mu' \text{ on } \mathcal{A}[W_o(\mathcal{L})] \Rightarrow 0 \leq \gamma'' \leq \mu'' \text{ on } \mathcal{A}[\tau W_o(\mathcal{L})]$$

also $I_R^o(\mathcal{L})$ is $\tilde{\gamma}^*$ -measurable since $\gamma' \in M_R^a[W_o(\mathcal{L})]$ then $\tilde{\gamma}^*(I_R^o(\mathcal{L})) = \tilde{\gamma}(I_R(\mathcal{L}))$ from previous work.

Therefore $\exists F, W_o(\mathcal{L})$ -compact, $F \subset I_R^o(\mathcal{L})$ such that

$$\gamma''(F) > \frac{1}{2}\gamma''(I_R^o(\mathcal{L})) = \frac{1}{2}\gamma'[I_R^o(\mathcal{L})]$$

so

$$\gamma''(F) \leq \mu''(F) = 0 \text{ since } F \subset I_R^o(\mathcal{L})$$

and since by hypothesis

$$\tilde{\mu}^*(I_R(\mathcal{L}) - I_R^o(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$$

then

$$\tilde{\mu}^*(I_R^o(\mathcal{L})) = 0$$

and

$$\tilde{\mu}(F) = 0$$

but then

$$\gamma'(I_R^o(\mathcal{L})) = 0 \Rightarrow \gamma' = 0 \Rightarrow \gamma = 0$$

therefore μ is s. t. a.

REFERENCES

1. Bachman, G. and Szeto, M., On Strongly Measure Replete Lattices, Support of a Measure and the Wallman Remainder, Per. Math. Hung., 15(2) (1981), 127-155.
2. Alexandroff, A. D., Additive Set Functions in Abstract Spaces, Mat. Sb. (N.S.) 8, 50 (1940), 307-348.
3. Frolík, Z., Prime Filter with C.I.P., Comment. Math. Univ. Carolina, 13, No. 3 (1972), 553-573.
4. Grassi, P., On Subspaces of Replete and Measure Replete Spaces, Canad. Math. Bull., 27(1), (1984), 58-64.
5. Nöbeling, G., Grundlagender Analytischen Topologie, Springer-Verlag, Berlin, 1954.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru