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ABSTRACT. Let X be an abstract set and £ a lattice of subsets of X. To each lattice-regular measure p,

we associate two induced measures 1 and j1 on suitable lattices of the Wallman space Ix(£) and another
measure p’ on the space Ig(£). We will investigate the reflection of smoothness properties of  onto ji, i

and p’; and try to set some new criterion for repleteness and measure repleteness.
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1. INTRODUCTION: Let X be an abstract set and L a lattice subsets of X. To each lattice regular
measure ., we associate following Bachman and Szeto [1], two induced measures p and f1 on suitable
lattices of subsets of the Wallman space I(£) of (X, L); we also associate to p a measure p' on the space
IR(£)(see below for definitions). We give in section 2, a brief review of the lattice notation and terminology
relevant to the paper. We will be consistent with the standard terminology as used, for example, in
Alexandroff [2], Frolik [3], Grassi [4), and Nébeling [S]. We also give a brief review of the principal
Theorems of [1] that we need in order to make the paper reasonably self-contained.

2.  DEFINITIONS AND NOTATIONS
Let X be an abstract set, then L is a lattice of subsets of X if for A,B CX then A UB €L and
A NB € L. Throughout this work we will always assume that & and X are in L. If A CX then we will
denote the complement of A by A’ i.e. A'=X -A. If L is a Lattice of subsets of X then L' is defined
L'={L'|LEeL}.
Lattice Terminology
DEFINITIONS 2.1. Let £ be a Lattice of subsets of X. We say that:
1- £ is ad-Lattice if it is closed under countable intersections.
2-  Lisseparatingor T, if forx,y EX;x =y then3L €L suchthatx EL and y €L.
3-  LisHausdorffor T, if forx,y €EX;x =y then3A,B € L suchthatx EA',y EB'andA'NB’' = J.
4- L is disjunctive if for x €EX and L €L where x € L;3A,B €L such that x EA,L CB and
ANB =(.
5- L is regular if forx EX,L €L andx € L;3A,B € L such thatx EA',L CB'andA’'NB' = J.
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6-  Lisnormal if forA,B €L where ANB =JAA,B €L such thatA CA',BCB'andA'NB' = 2.
7- L is compact if X = UL', where L, € L then there exists a finite number of L, that cover X i.e.

X = CJL'(,, where L', EL.

1=

A(L) = the algebra generated by L.

o(L) =~ the o-algebra generated by L.

&(L) = the Lattice of countable intersections of sets of L.

T(£) = the Lattice of arbitrary intersection of sets of L.

p(L£) = the smallest class containing £ and closed under countable unions and intersections.

IfA €a(L) thenA = U(L; - L';) where the union is disjoint and L,,L, € £.
=1

Measure Terminology
Let L be a lattice of subsets of X. M(£) will denote the set of finite valued bounded finitely additive
measures on A(L). Clearly since any measure in M (L) can be written as a difference of two non-negative
measures there is no loss of generality in assuming that the measures are non-negative, and we will assume
so throughout this paper.
DEFINITIONS 2.2.
1- A measure p € M(L) is said to be o-smooth on £ if for L, €L and L, | & then u(L,) — 0.
2- A measure p € M(L) is said to be o-smooth on 4(£) if for A, € a(£),A, | & thenu(A,) — 0.
3- A measure p € M(L) is said to be T-smooth on £ if for L, E L,a € A,L, | & then p(L,) — 0.
4- A measure p € M(L) is said to be L-regular if for any A € 4(L)
WA)= sup wL)
Lec
If £ is a lattice of subsets of X, then we will denote by:
Mg (L) = the set of L-regular measures of M(L)
M (L) = the set of o-smooth measures on £ of M(L)
M°(L)= the set of G-smooth measures on A(£) of M(L)
MZ(L) = the set of regular measures of M°(£)
(L) = the set of t-smooth measures on £ of Mg(L)
M, (L) = the set of tight measures on L of Mg(L).

Clearly
My (L) CMR(L) C My(L)
DEFINITION 2.3. If A € A(L) then p, is the measure concentrated atx € X.
lifx€A
mA=10itx ¢

I(L) is the subset of M (L) which consists of non-trivial zero-one measures which are finitely additive on
A(L).
Ix(£) = the set of L-regular measures of (L)

I1(£) = the set of o-smooth measures on L of I(L)
I°(L)= the set of o-smooth measures on A(L) of 1(£)
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I(£) = the set of t-smooth measures on ¢ of /(¢)

IR(L) = the set of L-regular measures of I°(L)

Ix(L) = the set of L-regular measures of I,(£)
DEFINITION 2.4: If p € M(£) then we define the support of  to be:

S(W=N{L € LML) = WX)}.
Consequently if p €1(£)
Suy=N{L €L/(L)=1}
DEFINITION 2.5. If £ is a Lattice of subsets of X, we say that £ is replete if for any p € Ig(£) then

S(u) = 3.

DEFINITION 2.6. Let £ be a lattice of subsets of X. We say that £ is measure replete if S(n) = &
for all p EMRZ(L),n = 0.
Separation Terminology

Let £, and £, be two Lattices of subsets of X.

DEFINITION 2.7. L, separates L, if for A, B, € £, and A;N B, = & then there exists A,,B, €L,
such that A, CA,B,C B, and A\ NB,=J.

REMARK 2.1. We now list few known facts found in [1] which will enable us to characterize
some previously defined properties in a measure theoretic fashion.
1. L isdisjunctive if and only if p, € [(L),Vx €EX.
2 L is regular if and only if for any p,,p, € I(£) such that p; <, on L we have S(p,) = S(p,).
3. L is T, if and only if S(n) = & or a singleton for any p €I(L).
4 L is compact if and only if S(u) = & for any p € Ip(L).

3. THE INDUCED MEASURES

If £ is a disjunctive lattice of subsets of an abstract set X then there is a Wallman space associated with it.
We will briefly review the fundamental properties of this Wallman space, and then associate with a regular
lattice measure p, two measures j and |1 on certain algebras in the Wallman space (see [1]). We then
investigate how properties of  reflect to those of ju and 1, and conversely, then give a variety of applications
of these results. Let X be an abstract set and £ a disjunctive lattice of subsets of X such that & and X are
inc. Forany A in A(£), define W(A) = {n E (L) (A) = 1}. IfA,B €A(L) then

1) WAUB)=WA)UWB).

2) WANB)=WA)NW(B).

3) wWAH=w@Ay.

4) W@A)CW(B)ifandonly ifA CB.

5) W(A)=W(B)if and only if A = B.

6  WAK)]-aWE)

Let W(£)={W(L),L €.}. Then W(L) is a compact lattice of Ig(£), and Iz(£) with TW(L) as the topology
of closed sets is a compact T, space (the Wallman space) associated with the pair X,£. It is a T,-space if
and only if £ is normal. Forp € M(£) we define ponA(W(L)) by: IW(W(A)) = WA ) where A €A(L). Then
1L E M(W(L)), and L € Mg(W(L)) if and only if 1 € Mg(L).
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Finally, since tW(L) and W(L) are compact lattices, and W(L) separates tW(L), then {1 has a unique
extension to |1 € M(tW(L)). We note that by compactness p and p are in MZ(W(£)) and Mi(TW(£))
respectively, where they are certainly t-smooth and of course o-smooth. fi can be extended to o(W(L))
where itis 9W(£)-regular; while pL can be extended to o(t(W(L))), the Borel sets of Iz(£ ), and istTW(L)-regular
on it. One is now concerned with how further properties of u reflect over to 1 and p respectively. The
following are known to be true (see [1]) and we list them for the reader’s convenience.

THEOREM 3.1. Let L be a separating and disjunctive lattice of subsets of X, and let p € My(L).
Then

1. WEMZL)if and only if (1’ (X) = p(lR(£)).
2. WEM;(L)if and only if }(X) = p(lR(L)).
3. If L is also normal (or T,) then p € Mz(£) if and only if X is p"-measurable and p'(X) = p(/x(£)).

We now give some further results related to the induced measures j1 and fi.

THEOREM 3.2. Let £ be a separating and disjunctive lattice, and u € M,(£) then 1 is W(£) regular
on (TW(L)).

PROOF. We know that W(£) and tW(L£) are compact lattices and that W(L) separates tW(L). Since
n E Mpg(£L) then p € M[W(£)]. Extend pto tW(L). The extension is

p E M[TW(L)] = M[TW(L)] = Mi[TW(L)] = MR[xW(L)].
Let 0 € [xW(£)]' then since p € M[tW(L)] there exists F € TW(£),F C 0 and
| MO0) - (F)| <& €>0.

Since F €tW(L), F = OQA W(L,),L,E€L. Also since FCO then FN0' = i.e. Q W(L,)NO' =T by

compactness there must exist oy € A such that W(L )N 0" = & thus la" CW(Lg)CO0"=0s0
|n(0) - W(W(L )| <€
i.e. o is W(£) regular on (tW(£)).
THEOREM 3.3. Let u € Mg(£) then i’ = 1 on TW(L).
PROOF. Since p. € Mg(£) and W(£) is compact then p € Mg[W(£)] = Mi[W(£)] and since W(L)

separatesTW(L) and tW(L) is compact then i € Mg[TW(£)] = MF[tW(L)] furthermore j1 extends 1 to TW(L)
uniquely. Let F €TtW(L) then

W(F) = infil WA, F C GlA,. and A, €A[W(L)]

and since p € Mi[W(£)] then

WA,) = inf (W(L'),A, CW({L'),L EL

thus F C U W(L',) but since W(£) is compact then F C CJ W(L')=W(L') where L € L and
il

i=]

W(F)=infp[W(L"}; F CW(L")andL €L
Now F CW(L')= FNW(L) = then since W(L) separates TW(L)AL € £ such that F C W(L) and
W(EL)NW(L)=D. Therefore W(L') C W(L') and hence
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W(F)=infu[W()]): where FCW({L),L ¢

i.e. thatp is regular on TW(L). On the other hand since tW(L) is d then
F = NW(L,) and 41[ N W(La)] = inf WW(L,)) = inf l(W(L,))

where F C W(L,), L, € £. Therefore 1" = j on tW(£).

THEOREM 3.4. Let £, and £, be two lattices of subsets of X such that £, C £, and £, separates
L, IfVEM(L,) thenv =p onL';and v = on L', where p=v |, .

PROOF. Letv €Mg(L,) then since L, separates L,, 0 € MZ(L,). Since £, C L, then o(£,) C o(£L-);

Let EC X then
v‘(E)-E inf  v(B)s inf )v(A)-p.'(E)

CB.BEolcy) ECAAEaL,
therefore, v s p’. Now on £,,v' ==’ . Suppose AL, € £, such that v(L,) < pu’(L,) then since
v EMR(L,), V(L) =infv(L',),L,CL',and [, E L,
then L,NL, = & and by separation 3L,,L, € £, such that L, CL,, CL', C L', and therefore
v(L,) = il:f wL,,) where L,CL,,

= inf v(L',) where L, C L',
B

<w(Ly)

Ve>03L, €L, such that L,CL, and w(L,)-€ <V(L,) <p(L,) but since L, CL, then u'(L,) su(l,) <
v(L,) + € which is a contradiction to our assumption. Therefore v = on £, and thus v = . on £’ This
theorem is a generalization of the previous one in which we used the compactness of W(£) to have a regular
restriction of the measure. Next consider the space If(£) and the induced measure p'.

DEFINITION 3.1. Let £ be a disjunctive lattice of subsets of X.
) WW)={peRL)|WL)=1}L €L
2) W)={W.L)L€EL}
3) W) ={neRL)|pA)=1}, A€a()
4) W,)=W()NIk(«)
The following properties hold:

PROPOSITION 3.1. Let £ be a disjunctive lattice then for A,B € 4(£)
1) W, ANB)=W/(A)UW,B)
2)  W(AUB)=W,A)NW,B)
3)  WA)=W, Ay
4) W,(A)C WyB) if and only ifA CB
5) AW, (L) =W a(L)]
The proof is the same as for W(£) by simply using the properties of W(L) and the fact that
W, (A)=W(@A)NIZ(L)and W(B)=W(B)NIZ(L).

REMARK 3.1. It is not difficult to show that oW (£)] = W [o(£)]. Also, for each u EM(L) we
define p' on A[W',(£)] as follows:
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W[W,(A)] = wA)where A € a(L)
u' is defined and the map p — p' from M (L) to M(W,(£)) is onto. In addition, it can readily be checked

that,
THEOREM 3.5. Let £ be disjunctive then

1) pneEM(L)if and only if W’ € M[W,(L)]

2)  WEMg(g) if and only if W' € Me[W,(L)]

3) u€EM,(c)if and only if W EM[W,(L)]

4) pEM°(L)if and only if W’ E M TW,(L)]

5) WEMZ(L)if and only if w € MR[W,(£)]
THEOREM 3.6. Let £ be a separating and disjunctive lattice of subsets of X, and let p € Mg(L).

Then

1. W EMYW,(L))if and only if p’(IF(L)) = WIz(L)).

2. If £ is also normal or T, then u' € Mg(W,(£)) if and only if I3(£) is p*-measurable and
RUR(L)) = WIR(£))-

We note some consequences.
COROLLARY 3.1. If £ is a separating, disjunctive and replete lattice of subsets of X, then
W € [Mz(£)] implies u € Mz(£).
PROOF. Since L is replete then X = Ig(£) then from the previous theorem we have
WIR(L)) = R(IR(L)) = w(X)
i.e. p € Mg(£) from theorem 3.1.

COROLLARY 3.2. Let £ be separating and disjunctive. If p’ € Mg(W,(£)) => p € Mi(L) then L

is replete.

PROOF. Let p €I3(L) then since W, (L) is replete p’' € IF[W,(£)] then by hypothesis p € Iz(L)
therefore Ig(L) = Iz(L) or L is replete. If we combine the two corollaries we get the following:

THEOREM 3.7. Let L be separating and disjunctive. Then L’ is replete if and only if
W EMR(W (L)) = p € Mi(£).

THEOREM 3.8. Let £ be a separating, disjunctive, normal and replete lattice. Then

w € Mg[W,(£)]if and only if p € Mz(L).
PROOF.
1. Let W' € M[W,(£)] then since £ is replete then X = I3(£) and X is p"-measurable and
R UR(L)) = pUR(L)) = (X)
then by theorem 3.1 we get that p € Mz(L).

2. Conversely suppose p € Mz(L) then from theorem 3.1 we get that

B0 = pllp(2)



SPECIAL MEASURES AND REPLETENESS 801

and X is p’-measurable but X C [J(£) C Iz(£) therefore 1’ (I3(£)) = (Ix(£)), then since £ is replete
X = I(L) so W(X) = W (Ig(L)) = i(Ip(£)) then from theorems 3.1 and 3.7 W' € Mi[W,(L)].

4. SPECIAL MEASURES AND REPLETENESS

In this section we define a purely finitely additive measure (p. f. a.), a purely c-additive measure (p.

0. a.) and a purely t-additive measure (p. t. a.) and for each type we give a characterization theorem. Then

we will define strong 0-additive measures (s. 0. a.) and (s. T. a.) measures and give for each a characterization

theorem. Finally we will investigate relationships among these measures under repleteness.

1.
2.

LEMMA 4.1. Let £ be a lattice of subsets of X and p € Mg(L).

Consider it on o[ W(£)}; we saw in earlier work that p is 8(W(£)) regular on of W(£)].

Let H C Iz(£) such that i’(H ) = e = 0 then 3p countably additive on o[tW(£)] and T - W(£) regular
suchthatOsp<pand p’(H) = p(p(£)) =a = 0.

Consider p in o[tW(£)]; we say that p is TW(£) regular on oftTW(L)].

Let H C Iz(£) such that p"(H) = a = 0 then Ip countably additive on tW(£) regular on oftW(£)] such

that0spspand p'(H)=pUF(L)) =a
DEFINITION 4.1.
Let u € Mg(L); we say that pis p. f. a. if fory EM (L) and 0 sy spon A(L) theny = 0.

Let p € Mg(L); we say that pis p. 0. a. if fory EM,(L),y t-smoothon L and 0 sy sptheny=0.
THEOREM 4.1. Let L be a separating and disjunctive lattice and p € Mg(L) then:

pisp. f. a. =p'(X)=0.

pis p. 0. a. = p'(X) =0.

If we further assume that £ is & and o(£) = p(£) then the converses are true.

PROOF. The proof will be given only for part (1) and is similar for the second one.
Suppose p is purely finitely additive. If j1’(X) = 2 = 0 then from previous Lemma 4.1 there exists
P E My[W(L)] = Mg[W(L)] such that

0spspandp (X)=pUg(L)) =2 then

p=yandy EMZ(L)so
Osp=ysp=0syspu=y=0
from the definition of purely finitely additive which is a contradiction because
YUz(£)] = a = 0 and therefore '(X) = 0.
Conversely if p’(X) =0 and 0 <y =<p on A(L) where y EM,(£) and £ is d and p(£) = o(L) then
YEMZ(£)and 0 <y <1 on A[W(L)] then 0 <y = p on A(L); and therefore
0sy =p andsince B'(X) = 0=y’ (X) = 0 = y[[z(£)]

hence y = 0 i.e. p is purely finitely additive.
DEFINITIONS 4.2. Let £ be any lattice of subsets of X.



802 E. YALLAOUL

1. Let u € Mg(L), we say that p is 0. f. a. if for y such that 0 =y < pon A(£) and y' € M[W,(£)] then
y=0.

2. Let pEMJ(L), we say that pu is s. 0. a. if for y such that Osysp on A(L) and
Y €EMTW,(£)],y' t-smooth on W (L) theny = 0.
LEMMA 4.2. Let £ be a disjunctive lattice of subsets of X. If A € Mgx(tW(L)) = Mz(tW(L)) and

NUS(L)) = MIg(£)) then . € Mg(L) such that A = 1 and p' € MR[W,(£)]. The proof is not difficult.
THEOREM 4.2. Let L be a disjunctive lattice of subsets of X. Let u € Mg(£) then:

1. Ifpiss. o.a then p'(I3(£)) = 0.

2. W, (L)is b, o[ W,(L)] = p[W,(c)] and *(J3(£)) = O then pis 5. . a.
PROOF.

1.  Suppose u isstrong G additive but p’(I3(£)) =2 = 0 then from lemma (4.1) 3p countably additive
on oftW(£)] and TW(L) regular such that 0 < p < pLand p (I5(£)) = p(Ix(£L)) = a from previous lemma
4.2 p =y where y' € Mz(W,(L)) then

Osp=ysp=>0sysp=0sysp
and since  is s. 0. a. then y = 0 which is a contradiction to the fact that
PUR(L)) = Y(Ip(L)) =2 = 0

and hence p*(I3(£)) = 0.

2. Suppose W,(£) is 8, o[W,(L)]=p[W,(L)]and p'(r(£))=0. Let YEM(L),0sysp and
Y € M[W,(£)] and T-smooth on W,(£) then Y’ € MJ[W,(£)] and even y' € MR[W,(£)]. So

0<ysponA[W()]

and therefore 0 < y' < ' on A[W,(£)]. Furthermore 0 <" < pi” and since " (/§(£)) = O theny (I5(£)) =
YUR(L)=0ie.y=0ie piss. 0. a.
NOTE. If £ is  and o(£) = p(£) then W (£) is 6 and o W,(£)] = p(W,(£)) will hold.
PROPOSITION 4.1. Let £ be separating and disjunctive if £ is also 8 and o(£) = p(£) then p is s.
C.a.=>Nisp.o.a.
PROOF. piss.o.a. = p(IR(£)) =0= ' (X) = 0:n’(X) =0 and £ is & and
pL)=0o(L)=>pisp. 0. a.
PROPOSITION 4.2. If £ is disjunctive then p is s. f. a. if and only if p is p. f. a.
PROOF.

1. Suppose p iss.f.a.andy EM(L);,0sysptheny EMIW(L)]andO<sysp=>y=0bys.f a.
Therefore p is p. £. a.

2. Suppose pis p. f. a. and Y EM W (L) 0 <y s p theny EM(L) and 0 sy < =y = 0 by purely
finitely additive. Therefore pis s. f. a.
PROPOSITION 4.3. If £ is replete then p is s. 0. a. if and only if pis p. ©. a.
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PROOF. L replete =X =I3(£)=17(£) then £ =W,(L) and so y EM°(£) and x-smooth on

L <>y EM°(W,(£)) and T-smooth or W, therefore the definitions are equivalent.

THEOREM 4.3. Suppose L is separating, disjunctive and d and o(£) = p(£) then L is replete if and

only if forany p EMR(L), pis p. 0. a. = piss. 0. a.

I.

2.

PROOF.

We saw in proposition 4.3 that if L is replete then p. 0. a. <> 5. 0. a.
Conversely suppose that p is p. 0. a. = pis s. 0. a. for any p € MZ(L) but X = Ig(£). Let p € IF(L)

then p is TW(L) regular and S() = {u}, 2’ (X) = 0. Now since pu'(X) = 0,£ is 6 and o(£) = p(L) then
from theorem 4.1 p is purely o additive by assumption; but p is s. ©. a. = p'(I3(£)) = 0 from
proposition 4.2; which is a contradiction because p € Mg() and p[{u}] = 1. Therefore X = I3(L).

DEFINITION 4.3. Letp € Mgz(L).

We say that pis p. t a. if fory EM,(L), 0 <y sy, and yL-tight theny = 0.

We say thatpis s. T. a. if fory EMTW(£),0sysponA(L) and y' is W (L)-tight theny = 0.
THEOREM 4.4. Let L be a separating, disjunctive and normal lattice. If u € Mz(£) then:
pis p. T a. = W (lR(£) - X) = WlR(£)).

wis s. T. a. = 1 (L) - IR(L)) = j(Ix(L)).

If we further assume that £ is d and o(£) = p(£) then the converses are true.

2.a)

PROOF. We will prove only the second proposition and the proof of the first is similar.
Suppose W is s. T. a. but ' (IR(£) - I3(L)) < W(Iz(L)), then there exists G € [tTW(L)]' such that

(L) -IR(L) C G and (G ) < W(r(L)). Let F =Ix(L)-G,F €EtW(L) then F CIJ(L)and F is W, (L)
compact, for if F C U W (L,) = F C U W(L,). Therefore

FCUWL,)=WLYLEL
fin

thus F C Wy(LY since F CI3(c) and p(F) > 0 since i(G) < p(lx(£)). Also since W,(£) is normal
and T, then F € tW,(£). Now pu € Mz(L) projects onto Ig(£) and p' is the projection on W,(£) and
" is the projection ontW,(£). ForE € A(W (L)) let ME) = wW'(E NF)then0 < ME) s w'(E) = W'(E)
so0<sAsp ona[W,(£)] Now if
WL | D,L,E L then W(L)NF | Fand NW(L,)]=w'[W,(L)NF]—0
then
A EM(W (L))
Since A is T-smooth and W,(£) is regular. Also A € Mz[W (£)]since V €> 0, MIZ(L)) = n"(F) then
NF) = (D WolLa)) = inf N W,(L,)]

=infp (W (L)NF]= W' (W(L)NF) = p'(F).
Therefore
N(F) = w'(F) = MIR(L)) > MIF(L)) - &.
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Thus
AEM[W (L))
Therefore
A=y EM[W,(0)]
)

Osy <sp onA[W,(£)]and0<y=<ponA(L)
and y' € Mz[W,(£)] and A = ¥’ = 0 contradiction. Hence
R (IR(L) - IR(L)) = WIR(L))
2.b) Lety €MR(W,(L)) then y € MR(L) also Y’ € Mg[W,(L)] because ¥’ is W, (L)-tight. Now
Osy sponA[W,(£)]=0sy" <p” onA[tW,(L)]
also I3(£) is Y -measurable since y' € MF[W,(£)] then Y (IS(£)) = Y(Ip(£)) from previous work.
Therefore 3F, W(L)-compact, F C Ij(£) such that
Y(F)> Y3 = Y URE)
)
Y'(F)s p'(F)=0since F CI3(L)

and since by hypothesis
WUR(L) ~ IR(L)) = PlIR(£)]

then
RUR(L) =0
and
AW(F) =0
but then

YI(L)=0=y=0=y=0

therefore p is s. T. a.
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