

SOLUTION TO A PARABOLIC EQUATION WITH INTEGRAL TYPE BOUNDARY CONDITION

IGNACIO BARRADAS

Centro de Investigación en Matemáticas, A.C.
Apartado Postal 402
36000 - Guanajuato Gto. México

SALVADOR PEREZ-ESTEVA

Instituto de Matemáticas,
Universidad Nacional Autónoma de México,
Ciudad Universitaria,
04510, México, D.F., México.

(Received September 28, 1992 and in revised form January 21, 1993)

ABSTRACT In this paper we study the existence, and continuous dependence of the solution $\vartheta = \vartheta(x, t)$ on a Hölder space $H^{2+\gamma, 1+\gamma/2}(\bar{Q}_\tau)$ ($\bar{Q}_\tau = [0, 1] \times [0, \tau]$, $0 < \gamma < 1$) of a linear parabolic equation, prescribing $\vartheta(x, 0) = f(x)$, $\vartheta_x(1, \tau) = g(\tau)$ the integral type condition $\int_0^b \vartheta(x, \tau) dx = E(\tau)$.

KEY WORD AND PHRASES. Parabolic equation, integral boundary condition.

1991 AMS SUBJECT CLASSIFICATION CODE: 35K20.

1. INTRODUCTION.

Consider the problem of finding $\vartheta = \vartheta(x, \tau)$ such that

$$\vartheta_\tau = (r(x, \tau)\vartheta_x)_x, \quad 0 < x < 1, \quad 0 < \tau \leq T, \quad (1.1)$$

$$\vartheta_x(1, \tau) = g(\tau), \quad 0 \leq \tau \leq T, \quad (1.2)$$

$$\vartheta(x, 0) = f(x), \quad 0 \leq x \leq 1, \quad (1.3)$$

$$\int_0^b \vartheta(x, \tau) dx = E(\tau), \quad 0 \leq \tau \leq T, \quad (1.4)$$

with $E(0) = \int_0^b f(x) dx$, for b fixed with $0 < b < 1$ and $r(x, \tau) \geq r_0 > 0$ on $[0, 1] \times [0, T]$.

In Cannon, Yanpin Lin [1] it is proved a result on existence, uniqueness and continuous dependence for this problem. In this paper we give conditions for which the solution of (1.1)-(1.4) belongs to a Hölder space and we prove that this solution depends continuously upon the data with respect to the corresponding Hölder norms. Similar problems are considered in [2,3,5,6,8,9,10].

Notice that function ϑ satisfies (1.1)-(1.4) if and only if $u(x, t) = \vartheta(x, \tau)$, with $t = \int_0^x \frac{ds}{r(s, \tau)}$.

satisfies

$$\begin{aligned} u_t &= u_{xx} + \left[\left(\frac{a(x, t) - a(b, t)}{a(b, t)} \right) u_x \right]_x \\ &= \left(\frac{a(x, t)}{a(b, t)} u_x \right)_x, \quad 0 < x < 1, \quad 0 < t \leq T, \end{aligned} \quad (1.5)$$

$$u_x(1, t) = \tilde{g}(t), \quad 0 < t \leq T, \quad (1.6)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq 1, \quad (1.7)$$

$$\int_0^b u(x, t) dx = \tilde{E}(t), \quad 0 \leq t \leq T, \quad (1.8)$$

where $\tilde{E}(t) = E(\tau)$, $\tilde{g}(t) = g(\tau)$, $a(x, t) = r(x, \tau)$, $T = \int_0^T \frac{ds}{r(b, s)}$, and $\tilde{E}(0) = E(0) = \int_a^b f(x) dx$.

(A) and (B) will denote problems (1.1)-(1.4) and (1.5)-(1.8), respectively. The results on existence, uniqueness and continuous dependence will be based on a standard fixed point argument for a contraction defined on a subset of an appropriate functional space. We shall follow Ladyzenskaja et al. [11] to define the spaces of Hölder continuous functions:

Let $Q_T = (0, 1) \times (0, T)$, $\bar{Q}_T = [0, 1] \times [0, T]$. For $M > 0$, $k = 0, 1, 2$ and $0 < \gamma < 1$, $H^{k+\gamma}[0, M]$ shall denote the spaces of functions $h = h(t)$ in $[0, M]$, with $\|h\|_M^{(k+\gamma)} < \infty$; where

$$\|h\|_M^{(k+\gamma)} = \sum_{n=0}^k \|h^{(n)}\|_M + \|h^{(k)}\|_M^{(\gamma)},$$

$$\|h\|_M = \sup_{t \in [0, M]} |h(t)|,$$

$$\|h\|_M^{(\gamma)} = |h(0)| + \sup_{t, t' \in [0, M]} \frac{|h(t) - h(t')|}{|t - t'|^\gamma},$$

where $h^{(n)}$ denotes the derivative of h of order n .

For $u : \bar{Q}_T \rightarrow \mathbf{R}$, let

$$H_{x,\gamma}^T(u) = \sup_{\substack{x, x' \in [0, 1] \\ t \in [0, T]}} \frac{|u(x, t) - u(x', t)|}{|x - x'|^\gamma}$$

$$H_{t,\gamma}^T(u) = \sup_{\substack{x \in [0, 1] \\ t, t' \in [0, T]}} \frac{|u(x, t) - u(x, t')|}{|t - t'|^\gamma}$$

$$\|u\|_{Q_T} = \sup_{(x,t) \in Q_T} |u(x, t)|$$

Then $H^{\gamma, \gamma/2}(\bar{Q}_T)$ and $H^{2+\gamma, 1+\gamma/2}(\bar{Q}_T)$ will denote the space of all functions $u : \bar{Q}_T \rightarrow \mathbf{R}$ such that

$$\|u\|_T^{\gamma, \gamma/2} = \|u\|_{Q_T} + H_{x,\gamma}^T(u) + H_{t,\gamma/2}^T(u) < \infty$$

and

$$\begin{aligned}\|u\|_T^{2+\gamma,1+\gamma/2} &= \|u\|_{Q_T} + \|u_x\|_{Q_T} + \|u_{xx}\|_{Q_T} + \|u_t\|_{Q_T} \\ &+ H_{t,\frac{x+1}{2}}^T(u_x) + H_{x,\gamma}^T(u_t) + H_{x,\gamma}^T(u_{xx}) < \infty,\end{aligned}$$

respectively.

$K = K(x, t)$ will denote the fundamental solution to the heat equation

$$K(x, t) = \frac{1}{(4\pi t)^{1/2}} e^{-\frac{x^2}{4t}}, \quad x \in \mathbf{R}, \quad t > 0,$$

and $\theta = \theta(x, t)$ shall be the Theta function

$$\theta(x, t) = \sum_{m=-\infty}^{\infty} K(x + 2m, t), \quad (\text{see [4]}).$$

2. EXISTENCE, UNIQUENESS AND CONTINUOUS DEPENDENCE.

DEFINITION. A function $u(x, t)$ on \bar{Q}_T is called a solution of problem (B), if

- 1) u and u_x are continuous in \bar{Q}_T ,
- 2) u_{xx} is bounded in \bar{Q}_T ,
- 3) u satisfies (1.5)-(1.8).

We notice that if u is such that u_x is continuous in \bar{Q}_T and satisfies (1.5)-(1.7), then u is a solution of problem (B) if and only if

$$a(b, t)\tilde{E}'(t) = a(b, t)u_x(b, t) - a(0, t)u_x(0, t) \quad (2.1)$$

or

$$E'(\tau) = r(b, \tau)\vartheta_x(b, \tau) - r(0, \tau)\vartheta_x(0, \tau), \quad (2.2)$$

for $0 \leq \tau \leq T$, $0 \leq t \leq T$, provided E is differentiable.

We shall assume the following compatibility hypothesis:

$$\text{H1)} \quad \tilde{g}(0) = f'(1),$$

$$\text{H2)} \quad a(b, 0)\tilde{E}'(0) = a(b, 0)f'(b) - a(0, 0)f'(0), \quad \text{and the regularity conditions:}$$

$$\text{R1)} \quad \tilde{E} \in H^{1+(\frac{1+\gamma}{2})}[0, T], \quad \tilde{g} \in H^{\frac{1+\gamma}{2}}[0, T], \quad f \in H^{2+\gamma},$$

$$\text{R2)} \quad a, a_x, a_{xx} \in H^{\gamma, \gamma/2}(\bar{Q}_T) \text{ and } H_{x,\delta}^T(a_t) < \infty \text{ for some } \delta > 0.$$

Let $V_T = \{\varphi \in H^{(\frac{1+\gamma}{2})}[0, T] : \varphi(0) = f'(0)\}$. We define a nonlinear operator $\mathcal{F} : V_T \rightarrow V_T$ as follows: For $\varphi \in V_T$, let u^φ be the unique solution in $H^{2+\gamma, 1+\gamma/2}(\bar{Q}_T)$ of (1.5)-(1.7), with $u_x(0, t) = \varphi(t)$, (cf [11], Theorem 5.3 p. 320). Then we define

$$\mathcal{F}\varphi(t) = \frac{a(b, t)}{a(0, t)}(u_x^\varphi(b, t) - \tilde{E}'(t)).$$

Since $u^\varphi \in H^{2+\gamma, 1+\gamma/2}(\bar{Q}_T)$ and (H2) holds, we have $\mathcal{F}\varphi \in V_T$, furthermore, if φ is a fixed point of \mathcal{F} then u^φ is a solution of problem (B) and conversely.

LEMMA 2.1. There exists $\epsilon > 0$ not depending on f, \tilde{g}, \tilde{E} , such that if $0 < T^* < \epsilon$ then

- a) $\|\mathcal{F}\varphi - \mathcal{F}\psi\|_{T^*} \leq \frac{1}{2}\|\varphi - \psi\|_{T^*}, \quad \varphi, \psi \in V_T,$
- b) $\|\mathcal{F}\varphi - \mathcal{F}\psi\|_{T^*}^{(\frac{1+\gamma}{2})} \leq \frac{1}{2}\|\varphi - \psi\|_{T^*}^{(\frac{1+\gamma}{2})}, \quad \varphi, \psi \in V_T.$

PROOF. Let $T^* \leq T$, φ and ψ in V_{T^*} , $h = \varphi - \psi$ and $w = u^\varphi - u^\psi$. Then

$$\begin{aligned} w(x, t) &= -2 \int_0^t \theta(x, t - \tau) h(\tau) d\tau + \\ &\quad \int_0^t \int_0^1 \{\theta(x - \xi, t - \tau) + \theta(x + \xi, t - \tau)\} F(\xi, \tau) d\xi d\tau, \end{aligned} \quad (2.3)$$

with $F(x, t) = \left(\frac{a(x, t) - a(b, t)}{a(b, t)} w_x\right)_x$ (cf [4] p. 339).

It follows that for $t \in [0, T^*]$,

$$\begin{aligned} w_x(b, t) &= -2 \int_0^t \theta_x(b, t - \tau) h(\tau) d\tau \\ &\quad + \int_0^t \int_0^1 \theta_x(b + \xi, t - \tau) F(\xi, \tau) d\xi d\tau + \int_0^t \int_0^1 \theta_x(b - \xi, t - \tau) F(\xi, \tau) d\xi d\tau \\ &= I_1 + I_2 + I_3. \end{aligned}$$

We clearly have

$$|I_1| \leq 2\|\varphi - \psi\|_{T^*} \int_0^{T^*} |\theta_x(b, \tau)| d\tau \leq C_1 T^* \|h\|_{T^*}.$$

Since term by term differentiation of the series in I_2 is possible, then we have

$$\begin{aligned} I_2 &= \int_0^t \int_0^1 \theta_x(b + \xi, t - \tau) \left(\frac{a(\xi, \tau) - a(b, \tau)}{a(b, \tau)} w_\xi(\xi, \tau) \right)_\xi d\xi d\tau \\ &= - \int_0^t \theta_x(b, t - \tau) \left(\frac{a(0, \tau) - a(b, \tau)}{a(b, \tau)} \right) w_\xi(0, \tau) d\tau \\ &\quad - \int_0^t \int_0^1 \theta_{xx}(b + \xi, t - \tau) \left(\frac{a(\xi, \tau) - a(b, \tau)}{a(b, \tau)} \right) w_\xi(\xi, \tau) d\xi d\tau. \end{aligned}$$

Condition (R2) implies that equation (1.5) (satisfied by w) can be differentiated (see [7, Sec. 3.5]) and then w_x satisfies a linear parabolic equation. Thus, by the weak maximum principle it follows that

$$\|w_x\|_{\bar{Q}_{T^*}} \leq e^{MT^*} \|\varphi - \psi\|_{T^*} = e^{MT^*} \|h\|_{T^*}, \text{ where } M = \sup_{\bar{Q}_T} \left| \left(\frac{a(x, t)}{a(b, t)} \right)_{xx} \right|,$$

(cf. [7, Th. 2.3.8]).

Then $|I_2| \leq C_2 T^* \|h\|_{T^*}$. Finally, if we write $\theta(x, t) = K(x, t) + H(x, t)$, with $H(x, t) = \sum_{\substack{m=-\infty \\ m \neq 0}}^{\infty} K(x + 2m, t)$, then

$$\begin{aligned} I_3 &= \int_0^t \int_0^1 H_x(b - \xi, t - \tau) F(\xi, \tau) d\xi d\tau \\ &\quad + \int_0^t \int_0^1 K_x(b - \xi, t - \tau) F(\xi, \tau) d\xi d\tau \\ &= J_1 + J_2. \end{aligned}$$

J_1 can be estimated just as J_2 , to obtain

$$|J_1| \leq C_3 T^* \|h\|_{T^*} \text{ for } t \leq T.$$

To estimate J_2 we have to take care of the singularity of $K(x, t)$ at $(0, 0)$.

Since $\left| \frac{a(\xi, \tau) - a(b, \tau)}{a(b, \tau)} \right| \leq C_4 |\xi - b|$, then integrating by parts as before, we have

$$\begin{aligned} |J_2| &\leq \int_0^t |K_x(\cdot, t - \tau)| \left(\frac{a(0, \tau) - a(b, \tau)}{a(b, \tau)} \right) w_\xi(0, \tau) |d\tau \\ &\quad + C_5 \|h\|_{T^*} \int_0^t \int_0^1 |K_{xx}(b - \xi, t - \tau)(\xi - b)| d\xi d\tau \\ &\leq C_6 (T^* + T^{*1/2}) \|h\|_{T^*}. \end{aligned}$$

Hence $|w_x(b, t)| \leq |I_1| + |I_2| + |I_3| \leq CT^{*1/2} \|h\|_{T^*}$, $t \leq T^*$, where C depends on T , b and function $a(x, t)$. From this (a) follows immediately.

Now we estimate $\|w_x(b, \cdot)\|_{T^*}^{(1+\gamma)/2}$:

For $t < s$ we have

$$\begin{aligned} w_x(b, s) - w_x(b, t) &= -2 \int_0^t \theta_x(b, \tau) (h(s - \tau) - h(t - \tau)) d\tau \\ &\quad - 2 \int_t^s \theta_x(b, \tau) h(s - \tau) d\tau \\ &\quad + \int_0^t \int_0^1 \theta_x(b + \xi, \tau) (F(\xi, s - \tau) - F(\xi, t - \tau)) d\xi d\tau \\ &\quad + \int_t^s \int_0^1 \theta_x(b + \xi, \tau) F(\xi, s - \tau) d\xi d\tau \\ &\quad + \int_0^t \int_0^1 H_x(b - \xi, \tau) (F(\xi, s - \tau) - F(\xi, t - \tau)) d\xi d\tau \\ &\quad + \int_t^s \int_0^1 H_x(b - \xi, \tau) F(\xi, s - \tau) d\xi d\tau \\ &\quad + \int_0^t \int_0^1 K_x(b - \xi, \tau) (F(\xi, s - \tau) - F(\xi, t - \tau)) d\xi d\tau \\ &\quad + \int_t^s \int_0^1 K_x(b - \xi, \tau) F(\xi, s - \tau) d\xi d\tau \\ &= L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 + L_8. \end{aligned}$$

We claim that

$$|L_i| \leq M_i T^* \|h\|_{T^*}^{(1+\gamma)/2} |s - t|^{1+\gamma/2}, \quad i = 1, \dots, 6, \quad (2.4)$$

$$|L_7| \leq M_7 T^{*\delta/2} \|h\|_{T^*}^{(1+\gamma)/2} |s - t|^{1+\gamma/2}, \quad (2.5)$$

$$|L_8| \leq M_8 T^{*\frac{1}{2}} \|h\|_{T^*}^{(1+\gamma)/2} |s - t|^{1+\gamma/2}, \quad (2.6)$$

where M_i depends on T , b and function $a(x, t)$, $i = 1, \dots, 8$.

The proof of (2.4) follows as the proof of part (a). For (2.5) we let $c(x, t) = \frac{a(x, t) - a(b, t)}{a(b, t)}$, then

$$L_7 = - \int_0^t K_x(b, \tau) (c(0, s - \tau) w_x(0, s - \tau) - c(0, t - \tau) w_x(0, t - \tau)) d\tau$$

$$\begin{aligned}
& + \int_0^t \int_0^1 K_{xx}(b - \xi, \tau) c(\xi, s - \tau) (w_x(\xi, s - \tau) - w_x(\xi, t - \tau)) d\xi d\tau \\
& + \int_0^t \int_0^1 K_{xx}(b - \xi, \tau) (w_x(\xi, t - \tau) (c(\xi, s - \tau) - c(\xi, t - \tau))) d\xi d\tau \\
= & J_1 + J_2 + J_3.
\end{aligned}$$

Since $c(\xi, t) = \mathcal{O}(|\xi - b|)$, we obtain

$$|J_1| \leq K_1 T^* \|h\|_{T^*}^{(1+\gamma)/2} |t - s|^{1+\gamma} \quad (2.7)$$

$$|J_2| \leq K_2 T^{*1/2} \|w\|_{T^*}^{2+\gamma, 1+\gamma/2} |t - s|^{1+\gamma}, \quad (2.8)$$

and by (R2),

$$J_3 = \int_0^t \int_0^1 |\xi - b|^\delta K_{xx}(b - \xi, \tau) w_x(\xi, t - \tau) \int_t^\infty \frac{\partial}{\partial r} \frac{c(\xi, r - \tau)}{|\xi - b|^\delta} d\xi d\tau.$$

Hence

$$|J_3| \leq K_3 T^{*\delta/2} \|w\|_{T^*}^{2+\gamma, 1+\gamma/2} |t - s|. \quad (2.9)$$

We obtain (2.5) from (2.7), (2.8), (2.9) and the fact that $\|w\|_{T^*}^{2+\gamma, 1+\gamma/2} \leq M \|h\|_{T^*}^{(1+\gamma)/2}$, where M does not depend on T^* (see [11] Theorem 5.4, p. 322). With a similar argument we obtain (2.6), and the proof of the Lemma follows from (2.4) (2.5) and (2.6).

REMARK. Notice that Lemma 2.1(a) holds for any two functions φ, ψ for which u^φ, u^ψ are well defined, u_x^φ, u_x^ψ are continuous in \bar{Q}_{T^*} and $u_{xx}^\varphi, u_{xx}^\psi$ are bounded in \bar{Q}_{T^*} .

THEOREM 2.2. Assume that H_1, H_2, R_1, R_2 hold. Then there exists a unique solution $u = u(x, t)$ of Problem (B). This solution belongs to $H^{2+\gamma, 1+\gamma/2}(\bar{Q}_T)$ and satisfies

$$\|u\|_T^{2+\gamma, 1+\gamma/2} \leq C(T) \left\{ \|\tilde{E}\|^{1+(1+\gamma)/2} + \|\tilde{g}\|_T^{(1+\gamma)/2} + \|f\|_1^{2+\gamma} \right\}.$$

PROOF. Let $\epsilon > 0$ as in Lemma 2.1 and $T^* < \epsilon$, then if we define the sequence $\varphi_i(x) = f'(0), \varphi_{i+1} = \mathcal{F}\varphi_i, i = 1, 2, \dots$, then Lemma 2.1 implies that the sequence of restrictions $\{\varphi_i|_{[0, T^*]}\}_{i \in \mathbb{N}}$ converges in $C[0, T^*]$ and in $H_T^{(1+\gamma)/2}$ to a function φ_0 .

Furthermore

$$\begin{aligned}
\|\varphi_n\|_{T^*}^{(1+\gamma)/2} & \leq \sum_{i=1}^{\infty} \|\varphi_{i+1} - \varphi_i\|_{T^*}^{(1+\gamma)/2} + \|\varphi_1\|_{T^*}^{(1+\gamma)/2} \\
& \leq 2\|\varphi_2 - \varphi_1\|_{T^*}^{(1+\gamma)/2} + \|\varphi_1\|_{T^*}^{(1+\gamma)/2} \\
& \leq C_1 \left\{ \|\tilde{E}\|_{T^*}^{1+(1+\gamma)/2} + \|\tilde{g}\|_{T^*}^{(1+\gamma)/2} + \|f\|_1^{2+\gamma} \right\}.
\end{aligned}$$

Then for $u : \bar{Q}_{T^*} \rightarrow \mathbb{R}$ defined by $u = u^{\varphi_0}$, we have

$$\|u\|_{T^*}^{2+\gamma, 1+\gamma/2} \leq C_2 \left\{ \|\tilde{E}\|_{T^*}^{1+(1+\gamma)/2} + \|\tilde{g}\|_{T^*}^{(1+\gamma)/2} + \|f\|_1^{2+\gamma} \right\}.$$

Hence u is solution to the local problem. Since C_1 and C_2 depend on T^* only, a global solution u can be obtained by a standard step by step construction, and u satisfies

$$\|u\|_T^{2+\gamma, 1+\gamma/2} \leq C \left\{ \|\tilde{E}\|_T^{1+(1+\gamma)/2} + \|\tilde{g}\|_T^{(1+\gamma)/2} + \|f\|_1^{2+\gamma} \right\}.$$

Finally, the remark after Lemma 2.1 implies that any solution of (B) in \bar{Q}_T has to be u .

REFERENCES

- [1] CANNON, J. R., YAMPIN LIN, J. and VAN DER HOEK, J. A Quasi-Linear Parabolic Equation with Nonlocal Boundary Condition. Rend. di Matematica, Serie VII, Vol. 9, 1989, 239-264.
- [2] CANNON, J. R. The Solution of the Heat Equation Subject to the Specification of Energy. Quart. Appl. Math. 21 (1963), 155-160.
- [3] CANNON, J. R. and VAN DER HOEK, J. The Existence of and a Continuous Dependence Result for the Heat Equation subject to the Specification of Energy, Supplemento Bollettino Unione Matematica Italiana, Vol. 1 (1981), 253-282.
- [4] CANNON, J. R. The one Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 29, Addison-Wesley, New York, 1984.
- [5] CANNON, J. R. and VAN DER HOEK, J. Diffusion subject to the Specification of Mass, J. Math. Anal. Appl. 15 (1986), No. 2, 517-529.
- [6] DECKERT, K. L. and MAPLE, C. G. Solution for Diffusion with Integral Type Boundary Conditions, Proc. Iowa Acad. Sc. 70 (1963) pp. 354-361.
- [7] FRIEDMAN, A. Partial Differential Equations of Parabolic Type, Prentice Hall, Inc., New York 1964.
- [8] IONKIN, N. I. The Solution of a Boundary Value Problem in Heat Conduction with a non-Clasical Boundary Condition. Differential'nye Uravnenija, 19 (177), pp. 294-304 (Differential Equations, 13 (1977) pp. 204-211).
- [9] ————— Stability of a Problem in Heat-Transfer Theory with a non-Classical Boundary Condition, Differential'nye Uravnenija, 15 (1979), pp. 1279-1283 (Differential Equations, 15 (1980), pp. 911-914).
- [10] KAMYNIN, L. I. A Boundary Value Problem in the Theory of Heat Conduction with a non-Classical Boundary Condition, Zh. Vichisl. Mat.; Mat. Fis., 4 (1964), pp. 1006-1024 (U.S.S.R. Comput. Math. and Math. Phys., 4 (1964), pp. 33-59).
- [11] LADYZENSKAYA, Q. A., SOLONNIKOV, V. A. and URAL'CEVA, N. N., Linear and Quasilinear Equations of Parabolic Type, Vol. 23, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk