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ABSTRACT. This paper presents a new complete orthonormal system of functions
defined on the interval [0,1] and whose supports shrink to nothing. This
system related to the construction of the Cantor ternary set. We defined the
canonical map £ and proved the equivalence between this system and the Walsh
§ystem. The generalized Cantor set with any dissection ratio is established

and the constructed system is defined in the general case.
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1.  INTRODUCTION.

We shall denote the set of positive integers by P,the set of non-negative
integers by N, the set of real numbers by R, and the set of dyadic rationals
in the unit interval [0,1) by Q. In particular, each element of Q has the form
p/Zn for some p,n € N, 0 s p < 2". Each n € N has a unique dyadic expansion

]
k
n=Y% 2 , € {0,1} (1.1)
ko * ®

where n,  are called the dyadic coefficients of n. Likewise each x € [0,1) has
a (unique) dyadic expansion

x=Y

k=0

the finite expansion being chosen in case x belongs to the dyadic rationals Q.
In terms of the dyadic expansions, the dyadic sum of two numbers x,y € [0,1)

is defined by

(k) %€ 0,1} (1.2)

]
x3y= L |x -y |2 %D (1.3)
k=0
The dyadic sum of a pair of 1nte5ers n,m € N is defined by
nem= ¥ | n - m | 27k (1.4)
k=0

where (nk ,k € N) and (mk ,k € N) are the dyadic coefficients of n and m.

Let r be the function defined on [0,1) by
1
1 x € [0,5)
2
r(x) = 1
-1 X € ['2',1)

extended to R by periodicity of period 1. The Rademacher system (rn ,n € N) is
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defined by, rn(x) = r(Zn x), x € R,n € N. The first three Rademacher functions
are shown in Figure 1.
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Fig. 1.

The Rademacher functions form an incomplete set of orthonormal functions on
[0,1). The Walsh system ( w ., neN ) was introduced by Paley [11] in 1932
as products of Rademacher functions in the following way. If n € N has dyadic
coefficients (n , k € N ) then

L]
v =T r:k (1.5)
k=0
Walsh functions belong to the class of pilecewise constant basis

functions that have been developed in the twentieth century and have played an
important role in scientific applications. The foundations of the Walsh
functions field were made by Rademacher [12], Walsh [16], Fine [10), and Paley
[11). Owing to their salient properties, Walsh functions proved to be very
powerful in solving various problems such as the analysis of dynamic systems
{4-8], the design of optimal controllers [3], and the identification problem
of dynamic systems [2],(14]. The first eight Walsh functions are shown in
Figure 2.
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Notice by definition that LA 1, w2n= L for n € N, and each Walsh
function is piecewise constant with finitely many Jjump discontinuities on

{0,1) and takes only the values +1 or -1. The Walsh system is orthonormal on

[0,1) and possess the properties (see [131),

= (1.6)
n m - "nenm

wn(x iy) = un(x) wn(y) (1.7)
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By a dyadic interval in [0,1) we shall mean an interval of the form
p p+1

o)
2" 2"

I(p,n) = [ (0=spc< 20 , n,peN)

For each x € [0,1) and n € N we shall denote the dyadic interval of
length 2™ which contains x by In(x) = I(p,n) where 0 =p < 2" is uniquely
determined by the relationship x € I(p,n). The Walsh functions, being a
complete orthonormal system (see [1],[16]) allows a representation of every

absolutely integrable function f(x) on [0,1) in Walsh series in the form
® 1
f(x) =n§0 a, un(x) where a = OI f(x) un(x) dx
being the Walsh-Fourler coefficlents of f. The n-th partial sum of Walsh

series and the Dirichlet kernel are denoted respectively by [15]
n-1 n-1
Sf=Y a w and D = Y w
n k=0 k 'k . no5 k
Fine[10], has shown that Snf(x) = OI f(t) Dn(x % y) dt . The Dirichlet kernel

satisfies D n(x) =2" forx e In(O) = [0.2—n) and zero elsewhere.
2

2. THE CANTOR SET AND THE CANTOR FUNCTION

. The Cantor ternary set C formed by removing middle thirds from the
interval [0,1] can be defined as follows : for each n € N, construct the
closed intervals .

L ]
I, =[35,;.2k;1] , 0sk<2® (2.1)

2 +k 3 3

where k. is defined by

. ® i

k = Y k1 3 (2.2)
i=0

k1 being the dyadic coefficients of k in (1.1). Then the Cantor ternary set

( of ratio 1/3 ) or more briefly the Cantor set C is

] Zn-l
C=n U J
n=0 k=0 2%

The middle open intervals removed in the above construction are defined by

n
o 2°-1 hd . .
E=U U E where E = ( 6kn:: , 95—;% )
n=0 k=0 2" 2"k 3 3"

Arithmetically, the Cantor set consists exactly of those points which can be
expanded in the ternary system without using the digit 1 ,i.e. for every x € C

~(k+1)
x=7 .3 , e {0,2) (2.3)
k=0 xk xk
We define a class of closed intervals
4 ={Jn_ :0sk<2") , neN
n 2 +k

For each n € N, An contains 2n closed interval each of length 3 ™. The Cantor
set can be associated with a monotone non-decreasing continuous function
called the Cantor - Lebesgue function and defined by the following process.
For each closed interval I, let

1 tel

xl(t)
R, (x) = Ix —_—dt where xl(t) = {
! o |1 0 tel

Xy and ' I | represents the characteristic function and the length of the
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interval I, respectively. For each n € N, let

2"
-n
F (x) =2 I Ry (x) (2.4)
k= 2 +k
Since
x (t) x
R, (x) = T dt = 3“0I x (t)  dt
2"k o 3 J.n
I zn'k | 2 ¢k
L) -
0 x <2k .3"
n L ]
= 3'x - 2k X € Jznﬂl
. -n
1 x > (2k +1).3
Hence, from (2.4), Fo(x) =x , X € J1 = [0,1) , and for n € P
- L
273" - 2 + k) xedn o, 0sk<2"
Fn(x) = ) »
(2k+1).27" .erz--x’ﬁ,05k<2m ,1smsn

Fo(xi"/,,,,r””,,af””””/ Fl(x)
F2()()/_/_-r/ /_/__-/_/Fa"‘)
1 o 1

o
Fig.3.
We observe that, for each n € N, the function Fn(x) is continuous, non-
decreasing on [0,1],and satisfies Fn(O) =0, Fn(l) =1 (see figure 3). Indeed,

2k eEm1 ,0sk<2"! ,1s5m<o
2 <k ‘

lim F _(x) =
n
n-ow 2

It is easy to see that F(x) = lim Fn(x), x € [0,1]) exists, is continuous,
n-+w
monotone non-decreasing and satisfies F(0) = 0, F(1) = 1. This function is

called the Cantor-Lebesgue function associated with the Cantor set C.

Now, we introduce the mapping E: C—— [0,1)
[ J

€00 = % .27 ,xeC (2.5)
k=0
where 0 if X = 0
*x { 1 if x= 2,

X being the coefficients in the ternary expansion of x in (2.3). The mapping
€ satisfies the following properties:
1- € is one-to-one mapping from C/C‘ onto [0,1) where C‘ is a countable set
contains all x € C which has ternary expansion terminates in 2's. In fact,
C. ={ Zk‘;l
3

, 0sk«< 2" , neN ).
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2- For eachne€ N, 0 = k < Zn &(

)=——n and

xe(ccq Ia, Uf Ex) el 'EE ),
2

where In(y) is the dyadic interval of length 2™ uhich contains y.

Define the Lebesgue-stieltjes measure M [e,B) = F(B) - F(a) where F is
the Cantor function. Indeed, for each 0 = k < 2n , h €N

e (3, ) =2 =] 1 (X |
2

3. AN ORTHONORMAL SYSTEM OF FUNCTIONS

We construct a function system ¢ = { $, i DnE N } on the interval [0,1)

+

in the following way : for each x € [0,1) and neN, 0=k <2™!, i

n
k = Z:k1 21 , define

i=0 X

(-1) 0 X € Jzn01’

v, (x) = { x (3.1)

It is obvious that ’ has the constant value +1 on half of the closed

0 otherwise

intervals in o while on the other half %y has constant value -1.

. n+1
Indeed, %0 is odd function about t = 1/2 (see figure 4). Consequently,
1
oI ¢, =0 , neN
vy | I
0
L |
ey 1 [ ]
L L1
v, [l [1 [1 1
L ] U L
+1
of ] ] ] ] 1 ] )
4l 179 279  3/9 6/9 7/9  8/9 1

Fig. 4.

THEOREM 1. The system { ¢, D€ N } is orthonormal with respect to the

measure "F , 1.e.

1 V] ,n#m
OI Pn P GHp = { (3.2)
1 , L =m
PROOF. let n>m20 and Je o Since ¢_ has constant value +1 or

m+1’
-1 on J, and J contains an even number (namely 2™ ) of closed intervals in
dn 4+ ¢ OR half of these intervals * has the constant value +1 while on the
other half LN has constant value -1, consequently,

+
[ 90 0y aip = * [0, au =o.
F J
1
Summing over all J e "m+1 we get (J f, ®n du.F =0. If n=m, then
1

2
Jow s Jap =T kW
n
Je‘udn+l J Je.dn+1
_ o—(n+1) n+1
Since MF(J) =2 vVJe “n+1 , ne€N and ‘n+1 contains 2 closed
interval, then 1

0,[¢r21d"!-‘=1 , n€N.
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L
COROLLARY 1. For each x e C/C , n € N

x
= - n = o .
wn(x) = (-1) ( L € )(x) (3.3)

where ( rn , n € N ) be the Rademacher system.

1

*
PROOF. LetneN, 0=k <2" and xe (C/C)pJpnn, . From the

kK ), % =k.. Since

properties of the mapping £ we have §£(x) € ln*l( EE;T n 0

k X
o, (x) = (-1)° | x€JTpa, and (ro€)x)=r (Ex)) = (-1) "
then -
Xn ™
wn(x) = (-1) = ( re € )(x) , Xe€eC/ , neN.
Now, we define the product system V¥ = { wn , n€NY} by
(]
V=1 e , neN (3.4)
N0 k

where (nk ,k € N) are the dyadic coefficients of n.

v
. C ] [ )
v, 1 ]
v, [ —
v, 0O N O N
0 0 0 T

+1

o[ 1 1 | | 1 | ;|
_Ir 1/9 279 379 6/9 7/9 879 1

Fig. 5.

The function system ¥ satisfies the following properties:

1. For each n,m € N, Yo Y% =Y enm

where © is the dyadic sum.
2. For eachn,me N, m = 2n+k, 0 <k« Zn, wn is even function with respect
1

is odd function with respect to 5 (see figure 5).

2

1
to 5 and ¢2n = e,

3. For each n,me N, 2n =m< 2n+1. ¢. has constant value +1 on half of the
closed intervals in ‘n+1 while on the other half wn has constant value -1,
consequently,

1 n n+1
OI Y. duF =0 , 2 =sm<2 , n€N.

In general,

ijndu}.=0 ., neP (3.5)

*
4. Let n € N with dyadic coefficients ( oo k €e N) and x € C/C . From
equations (3.3),(3.4), we have

Wk _ (L)@ EBD)

[
v (x) = q1 (-1)
n k=0
where

@EX)D = Enox (mod 2)
k=0
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COROLLARY 2. For each x € C/C. , neN
wn(x) = ( w.e £ )(x) (3.6)

where ( w .ne N ) be the Walsh system.

PROOF. From equations (1.5),(3.3) and (3.4), we have

"k

[

n ( ¢’k(x))nk = kno ((ry° €)(x))

¥ (x)
n k=0

n (rk(E(x)))nk= wn(e(x))

( woe € )(x).

According to corollary 2 and the properties of the mapping §, it is
obvious that

,0=k<2" , neN (3.7)
n 3n n n

THEOREM 2. The system { wn' n € N } is orthonormal with respect to the
measure “F , l.e.

1 0 » 1#)
v, ¥ = { (3.8)
oj 1Yy ¥ 1 . 1=§

PROOF. First, let i#j. Since wi’*J = inJ , it suffices to show that
ajﬁ" du}. =0, meN, which is clear from (3.5). Second, in case i = J,
let n,me N, 2n =m < 2n+1 , then

1
2 _ _ ,n+l _-(n+1) _
J“’md“y‘z IduF=):uF(J)—2 .2 =1
Jed J Jed
n+l n+1

THEOREM 3. The system \l‘=(wn, neN}
the measure “F , on the Cantor set C.

PROOF. Let n,m € N
function for which

is complete, with respect to

» 0 =mc«< 2" and suppose that f is integrable

1
= n
wa.dpr—o ,0sm<2 (3.9)
Since each function ¢y , 0 = m < Zn , has only one fixed value on each interval
Jzn‘k . Let . }
(2k +1).37"
(k) _ n
l‘n -JJ fd#l_. J , 0sk <2,
2 +k
Then (3.9) gives,
2>- r (k) 2%
_ n
J!wd“]_- wm(?)-o , 0sm<2
From (3.7), we get
*
v (ZE ) =-u (X, 0=k<2" 0=m<2® neN,
m n m n
3 2
then n
2°-1
rd Xy <o 0sm<2® (3.10)

k=0 n m ,n !
k n n n

Now, the determinant | um( —5 )| ,0=k<2 ,0=mc<2 is of order 2
2

and does not vanish. Thus the numbers um( Ln ) are linearly independent and
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it follows from (3.10) that

]_r()k) =0 0=k<2" (3.11)

Suppose that (3.9) is satisfied for all m € N and let G(x) denote the

»

continuous function G(x) = Or f duF . Using (3.11), we get

-
2k+1)=G(2k
3

n n
3
and so G(x) is a constant on C. It follows that f is equivalent to zero on the

n

G( ) , 0=k<2

Cantor set C. Thus the proof is completed.
Let £ be an absolutely integrable function on the interval [0,1). The

¥ - Fourier series of f with respect to the system { wn , ne€ N} is defined
© 1
by Sf=% a, U where a = OI £(x) wn(x) fup - The n-th partial sums of
n=0
n-1
this series will be denoted by Snf = ¥ ay wk , neN Notice forneP
k=0
and x € [0,1]

n-1 1 1
(S,£)(x) =k§0 (J £08) ¥ (£) dup (1)) ¥y () =0[ £0t) D, (x,t) dug(t)

where n-1

Dn(x,t)= kgo wk(x) wk(t) (3.12)
denote to the n-th Dirichlet kernel.

COROLLARY 3. lLet ne N, x,t € C/C‘
n-1

nm 1+ ”i(X) "i(“ )
i=0

(1) D (x,t)
oD

(11) Dzn(x.t)

n
27 x (t) ,XEJzn* forsomek.osk<2n

J.n
2 +k

k

-
PROOF. let ne€ Nand x,t € C\C. (i) Using (1.7), (3.6), and (3.12),

we have

21 2"y 2"y

D, (x,t) = (x) t) = = ;
n 1§0 ¥, (x) ¥, () 150 w, (€(x)) w (§(2)) 1§0 w (E(x) + £(t))

n-1 n-1
= 120( 1+ r1(€(x)) r1(€(t)) ) = iLIO( 1+ pi(x) ¢1(t) ).

L] -
(11) Fix ke { 0,1, ... ,2"1), andlet xed =25, 6 =21,
n n ’ n ’
then £(x) € I (k.2 ™ S , ’
ok . Using the properties of the mapping § and the

Dirichlet kernel D_n in the Walsh case, we get

2
2" N
D, Gut) = L w (66 + &) =27 x (E(t)) = 2" 2 (1)
2 i=0 ! I (k2™ I,

*
THEOREM 4. Let f be a continuous function on C\C , then § nf converges

uniformly to f . 2

*
PROOF. For every x € C\C and n € N, we define

* -
- _ 2k 2k +1
o an(x) and ﬂn = Bn(x) by o = ? x < .

*
where k is defined in (2.2). By the canonical map £ the set (C\C‘)n [, B)
i _ n’ 'n
maps onto the dyadic interval ln(k.z ™) and uF([a , B)) = 2™ . Then the
n n

=anorsomek,Osk<2rl
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function f can be written as
B

n
f(x) = 2" J £0x) dur(t) (3.13)

n
Using corollary 3

1 1
(S . £)(x) =0J' £ D () du(t) = 2" [ £(e) x (t) (t)
2" 2" Y o'[ (e .B )d".F
B n n
n

= z“J £(t) dyy

n
From (3.13) and since f is continuous, i.e Ve>0 3 &> 0 :

| £() - £(x) | < € whenever | t - x | <&, x,t € la) .B,). Therefore,
n
I (S n D)0 - £00 | = | z"J (£(8) - £00) du(t) |
n

ﬂn
n
s zJ [£06) - £60| due(t) < €

n
and the proof is completed.

4. THE CANTOR SET WITH CONSTANT DISSECTION RATIO
The constructed system ¢ in (3.1) can be describe on any Cantor set
with constant dissection ratio. The generating intervals of the Cantor set of

general ratio p/q, 0 < p<q, p,q € P are defined by

n
p/q An - (g-p) An
J =[z.nn ' 2oun] L osk<2"
2"k (2q) (2q)
where 7\1 are determined by the recursive formula
1-k
A =1 and A = (q-p) "'a +x _ (gep) 2™
1 n-1 n-1
2 +k 2 ek

k1 being the dyadic coefficients of k in (1.1). It is easy to see that Azn 2"
for each n € N. Then the Cantor set C*9 ?;f ratio p/q is

pra © 2 -1 p/q
c =n U J n
n=0 k=0 2 +k »/q
c*d contains the end-points of each closed interval J n The closed
p/q 2 +k

intervals J. = [ o« B. ] satisfies the following four properties:

) p/q p/q p/q p/q
i J < J , 8=0,1 (ii) J n J =
2™ akes 2"k PRt 2™ tiaka
(111) « =« , B =8 for 0sk <2, neN, and
n n+1 n n+l
2 +k 2 +2k 2 +k 2  +2k+1
p/q
(iv) lim  max | J | =0
n — o o0sk<a” 2"k
The open intervals removed in this construction are defined by
p/q o 2"-1 psq »/g An+1 An+t - (t:{--p)n+1
2 +2k 2 e2k+1
E =U U E where E =[ =T s ]
n=o k=0 2"k 2" (2q) (2q)
p/q p/q n n
For each n € N, the class ln = { J n 0sk«<2 } , contains 2 closed
2 +k
2"
interval each of length [ 2] , and Fn(x) =2 z R P/‘(Ix) . where
2q k=0 J.n

2 +k
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2q n
= | —— dt
R p/g)() [ qa-p ] o-l)( * pra 2

Jznok Jznok n
A_n « (q-p)
0 s x < o
(2q)
A
2q \n FLIN p/q
( —_ ] x - 1, xey
q-p (g-p)"° ; +k
n
1 , x > 2 okn
(2q)
Hence, A
29 n LI p/q n
2" -—-—] x-—f—’—-—+1+k] , x€eJ , 0=k <2
q-p (q-p)n 2"k
F (x) =
n
p/a m-1
2k+1 . x€E ,0=k<2 ,1=ms=n
2m 2:-1‘“
Observe by properties (i), (ii), and (1ii) above that F is continuous and
' p/q
non-decreasing on [0,1]). In fact, each Fn is linear on the intervals J and
£ a1 »/a 2 +k
constant on each component of the set {0,1}/( U J o ). The Cantor function
k=0 2 +k
associated with the Cantor set ™ is
p/q -
F(x) = lim F(x)=2k+1.er L0sk<2!  1sm<n
n m-1
n-w 2 2 ek

THEOREM 5. If % g < 1, then there is a continuous strictly increasing
function L on [0,1] such that L(C*9) = C

PROOF. For eachn € N, 0 = k < 2“, we have
P/q

E ;

n n
= [ aPr | = o where 7= [ 3(a-p)
2q 3 2q

= g < 1,then O0sy<1. Let Ln be the monotone-increasing piecewise linear

n
2 +k

1

Since 3
p/q

function, Ln: [0,1]1—[0,1], mapping the end-points of Jn onto those of Jn ,

2 *k 2 4k
p/q

0 s k < 2. Then for n>m, Ln and L differ only on J. , 0=k <2 in fact,
2 +k
_ 1
| Ln - Lmlsl.lz-*| = —3_6' So, for each x, the sequence ( l.m(x)) converges and
defines a function L(x) on [0,1). As [L_(x)-L00)|= lim |L GO-L ()] = o,
n— o 3
< L. > converges uniformly to L [9]. So L 1is continuous and is clearly

monotone increasing. We have L([0,1]) = [0,1] and

P/q

L[J ]=Jn for each n and k, 0 sk < 2",

n 2 +k

2 vk
so L(c? /q) = C. We need only to show that L is one-to-one. Suppose
(x,y) c [0,1]. If either x or y lies in removed interval it is easy to see
that L(y) > L(x). So suppose , x and y are in C”% ; then as €% 1is

pP/q

nowhere dense there is an interval J o < (x,y) for some n,k. But then

2 +k
L(y) - L(x) = —13 , so L 1s strictly increasing and the proof is completed.
3

According to theorem S5, for each n € N, 0 s k < Zn, and 1 s 5 <1,

3
- (q-p)® . .
L Ar,, ~ (ap) _ 2k APk _2k #1
= = and L .
(2q)

(2q)" 3"
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Now, the constructed system ¢ in (3.1) can be generalized for any Cantor
set C”% in the following way : for each x € [0,1), p,qe P and n €N,

+1 n i
0sk<2™, 1e k=Lk 2", define
i=0
ko P/q
(-1) , x€]J
o, () ={ 2"
0 otherwise

The product system ¥ 1is defined as in (3.4), it is orthonormal and complete
system with respect to the measure e on the general Cantor set C”q. Using
theorem 5 and the mapping L, the results obtained in section 3 , for the

ternary Cantor set C can be easily generalized for the case 9,
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