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1. INTRODUCTION.

Equivalence between isometric immersions of a Riemannian manifold into another one has
been an interesting fruitful area of research for a long time ([1], {4], [6], [7], [12]). The concept of
equivalence between two isometric immersions may be given as follows.

Let f;:M—N and fo: M—N be two different isometric immersions of a Riemannian manifold
M into another Riemannian manifold N. The immersion f; will be equivalent to f, (up to an
isometry r and N) if there exists an isometry r: N—N such that r o f; = f,. We may write f; = f,
(med. T).

If the above mentioned concept is satisfied for each pair of isometric immersions of M into
N, we say that M is uniquely isometrically immersed in N. In classical differential geometry M is
said to be rigid.

If for each pair of isometric immersions fi:M—N and f2:M—»N' there exists a continuous
curve r,, s €[0,a] in the group G of isometries of N such that r, =id and 7, o f; = f,, We say that
M is uniquely continuously isometrically immersed into N [8].

In [1] the following remarkable result concerning isometric immersions into (n + 1)-Euclidean
space EP+ 1 has been proved.

THEOREM 1.1. Let M be a connected, orientable C®°-Riemannian n-manifold. Suppose
that the Gauss maps of each pair f and  of isometric immersions of M into E"*1 differ by an
isometry of E"t1. Then M is uniquely isometrically immersed in E®*+1 if any of the following
conditions is satisfied.

(a) M is compact,

(b) There exists at least one point m € M where all sectional curvatures are positive,

(c) There exists at least one point m € M such that f (or 7 ) is not minimal at m, and M has
no flat points with respect to f (or f).
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As far as we are concerned, the corresponding study in hyperbolic space H"*1 has not yet
been considered. Accordingly, we devote the present work to deal with the rigidity problem of
hypersurfaces in hyperbolic space with constant sectional curvature —1 as a receiving space. The
main result will be stated in the next section. From now on all manifolds and maps are
sufficiently smooth for computations to make sense.

2. PRELIMINARIES AND RESULTS.

We begin this section by giving a brief word about the model of hyperbolic space we shall
use throughout the paper.

In R®*2 with the natural basis g €y €9 vy €p i N2 1 we consider a nondegenerate
symmetric bilinear form

n+1
b(:,y): —ZoYo+ z: ZpYe z.yGR"+2.
k=1

The pair V*+2 = (R"*+2,3) is called the Minkowski space.
Let 0(1,n + 1) denote the orthogonal group of b, i.e.,

0(l,n+1) = {A € Gl(n+2,R):b(Az, Ay) = b(z,y)}
={A€Gl(n+2,R):ASA=S},

where

The fact that A'SA =S implies that det A= £1. A matrix A =(q;5) in 0(1,n + 1) belongs to the
identity component if and only if det A=1 and a,,>1. Let G denote the identity component of
0(1,n +1).

Now, the hypersurface M in V"+2 defined by b(z.y)= —1 is the disjoint union of two

connected components:

Htl=(zeM:iz,>1 and K'"tl={zeM:z,< -1).
o o

0(1,n + 1) acts transitively on M while G acts transitively on A"+ 1 [9].

Let ze H™t1, ie., b(z,y)= —1 and z,>1. The tangent space T:H""H is given, through the
identification by parallel displacement in V™12, by the subspace of all vectors ae V®*2 such
that b(z,a) =0. The restriction of b to T _H" +1 s positive definite. Thus the form b restricted to
the tangent space at each point of H"*+1 gives rise to a complete Riemannian metric on gntl1
which is obviously invariant under G. Moreover, (H"*1b) is of constant sectional curvatures
K= -1 Hence H"*! will be taken to be the model in which our immersions occur. For
geodesics, horodiscs, horospheres, central projection and other geometric properties of H®+1 we
refer the reader to ([4], [14]).
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The hypersurface 1+ !in v +2 defined by b(z,y) = 1 is connected Lorentz. We call " +!
the conjugate hypersurface of both #* +! and K"+ 1. (See Fig. 1).
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Figure 1

Let f:M—H"*! be an immersion of the orientable manifold M. The Gauss map
6:M—H "+ of this immersion is defined to be the parallel translation of the unit normal N(m) of
M, as a hypersurface of H* 1 at f(m) up to the origin 0 of v+ 2. Hence, the Gauss image of M
will lie on the conjugate hypersurface #" 1! of gn+1.

Now, we state our result.

THEOREM 2.1. Let f and f be two C* isometric immersions of a connected, orientable
Riemannian n-manifold M(n > 2) into the (n+ 1)-hyperbolic space H®+!cv*+2. Suppose that
the Gauss maps ¢ and ¢ differ by a matrix ¢ € G. Then with any one of the conditions (i)-(iii)
below, f and F differ by an isometry r of F**1 je., 707 =7.

(i) M has at least one point m € M where all sectional curvatures are greater than 1.

(1) M is compact.

(i1i) There exists at least one point m € M such that f (or J ) is not minimal at m, and there
is no point in M with A =0 (or 4 =0), where 4 is the second fundamental tensor.

Assume that ¢ = o o ¢ where o is an element of G, then we can show that the immersion

7 =0 o f:M—H"*1 has the Gauss map ¢ of the form é = + o0 ¢. The sign depends on whether
o is orientation preserving or not. Hence ¢ = +¢ which will be used, just for simplicity, instead
of 3 =0o0¢.

In the light of the above discussions, let us take ¢ = ¢ and notice that if 4 = —¢ we may
change the orientation to have again ¢ =¢. In this way, N(m)= N(m) for every me M up to a
parallel translation in V" *2 Let D be the Levi-Civita connection of V**+2 and ¥ be the
induced connection on H"*1. Applying Weingarten equation to f(M) and F (M) as immersed

hypersurfaces of A"+ 1, we have e

$f*x N=f,(-AX), (2.1a)

ef.x N=F.(-4X), (2.1b)

where A and 4 are the second fundamental tensors of f and f, respectively, and X is a tangent
vector of M. If we write D rx N in terms of its tangent component to H™+! and the normal
*

one, we have

Dy x N= '6f*x N + pf(z). (2.2a)

Since b(N, f,X) =0, then
foX b(N,f(l))=b(Df‘X N.f(z)+b(N. [ X)=0 =
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WD, x N fz)=0 =
foX §=0. (2.2b)

To be consistent with the references we depend on, we shall replace 5(X,Y) by < X,¥ > in
all the following computations.
From (2.2a) and (2.2b), we have

D!,X N= Vf,X N

. _ (2.3a)
Pra=Yrx ¥
From equations (2.1)-(2.3) we have
Dy x N=fu-4X), (2.4a)
DT,X N=FJ -4X). (2.4b)
As N = N, then equations (2.4) give
f(AX)=TF (A X) (2.9)

up to a parallel translation in V" +2,

LEMMA 2.1. A and 4 have the same null space at each point of M.

PROOF. It is sufficient to show that AX =0 if and only if 4X=0. If AX =0, then
f,('AX) =0 and so f ,(AX)=0. Since f is an immersion, then f , is injective and hence 4 X = 0.
The converse is direct.

LEMMA 2.2. 42=32%

PROOF. For arbitrary vectors X and Y tangent to M, we have

<A2X,Y> = <AX,AY > = <J (AY)>
(2.6)
= < fJAX),fJ(AY)> = < AX,AY > = < A2X,Y >.
Hence the result.
LEMMA 2.3. (tr A)A=(tr 4)4 (2.7)
PROOF. The Ricci tensor S of M, as being preserved by isometries, may be written as [9]

§S=3 +(tr )A-A2=TF 4(tr A)A - 42

where § is the Ricci tensor of #®*+1. Then

(tr A)A— A2 =(tr A)A - A2,

Using Lemma 2.2, we obtain the required result.

LEMMA 2.4.

() (tr A)2=(tr 4)2

(ii) IHftrA#0at m, then 4 = + A at m.

(iii) The choice of the sign in (ii) is constant in each component of the open set

V ={m|(tr A)(m)#0}.

PROOF. Part (i). This becomes direct from Lemma 2.3 when taking the trace of both sides
of equation (2.7).

Part (ii). If (tr A) (m)#0, then by part (i) we have that (tr 4) (m)#0. Using equation
(2.8), we have [(tr A)/(tr A)|(m)= +1. Applying equation (2.7), we obtain that 4 = + 4 at m.

Part (iii). If (tr A)(m)#0, then as 4 is a continuous tensor field we have that (¢r A) # 0 near
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m. Hence the subset V = {m|(tr A)(m) # 0} is an open subset of M.
Now consider the following cases:

(a) Let A=4 at m and assume that in each neighborhood U; of m there exists a point m;
where A(m;)= —A(m;). In this way, we obtain a sequence of points {m;} for which
A(m;)= - A(m;). Taking the limit of both sides as m; — m we have

n’;‘;."-‘»m A(m;) = -J'iiﬂm A(m,)).
By the continuity of both A and 4, we have A(m)= — A(m) which contradicts the assumption
and so A = 4 near m.
(b) If A= —4 at m, we follow a similar discussion.
3. A RIGIDITY RESULT.

In this section we give a general rigidity result for hypersurfaces in H"*1 similar to
Theorem 6.4 p. 45-46 [9]. For notations and details we refer to [9]. Although the following result
has been already given in [13], we write its full proof as it is too important for the subsequent
results.

THEOREM 3.1. Let M be a connected n-dimensional Riemannian manifold and let f and F
be isometric immersions of M into H"*!cv"+2 with fields of unit normals ¢ and ¢,
respectively. If the second fundamental forms h and h of f and F (with respect to ¢ and €),
respectively, coincide on M, then there is an isometry r of H"+! such that ro ¥ = f.

PROOF. We follow the same procedure of [9] and start with the local version of the
theorem.

Assume that z, is a point of M. We have two different frames (ep.e9: - - -ven,&4y) and
(€19 " Ené,7) at z,, where y = f(z) and § = f (=), respectively, such that

<°i"j>=<3z"?j> 1<i,j<n
<&e> =<E,7;> =0, <ye;> = <P, ;> =0, <y€> =<7, > =0.

As G acts transitively on H"*1 then there exists an orthogonal matrix r€G which is an
isometry of H™t1! such that r maps the frame (egregs - - -, &y) at z, upon the frame
(€1,€9 - -,€,7) at the same point z,.

In terms of local coordinates in a coordinate neighborhood U about z,, simple calculations

using Gauss and Weingarten equations give the following two systems of partial differential

equations
b?i=g,1y+zl‘uek+h” 32—‘=yijy+zk: ij ek+hij
(I _ a
o€ _ o€ _ k 5
i 3= "% T

The main difference between these two systems and those of [9] is that the systems here are non-
homogeneous. In spite of this difference, the existence and uniqueness principle of solutions is
still working.

Since the two systems (I) and (T) above have the same initial conditions at z,, then by
uniqueness we have

;=% j £=¢ onU, 1<j<n
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As e].=3y/azj, ?jzay/ihj, and since y(z,) =7 (z,), Wwe have that y=% on U and the local
version is now proved.

The global version of the above theorem can be proved exactly as that of immersions into
Euclidean space E" * 1 [9].

Notice that for immersions into Euclidean space E® *1, the required isometry is a resultant
of translation in addition to an orthogonal matrix r€0(n+1). From the above theorem, it
becomes clear that in the case of immersions into hyperbolic space H™*! the isometry needed to
establish the proof is obtained purely from an orthogonal matrix of G acting on H"*! by
restriction.

4. PROOF OF THEOREM 2.1.

In the light of Theorem 3.1, if we consider V, to be the component of V on which 4 = 4,
then there exists an isometry r of H®*+1 such that r o f = f on V- In the following we given
more significance of r.

Let us consider a point meV; and take Xe€T,M to be an eigenvector of A(=4)

corresponding to a non-zero eigenvalue. Then equation (2.5) gives

o X)=TF o(X) (4.1)

Consequently, if (rank A)(m) = n, then all the eigenvalues of A are non-zeros and so
foTy M)=F (T,, M) up to a parallel translation in v"+2 Now consider the following two
different cases:

Case (1)' 7 (m) = f(m), T t(Tm M)=f (T M) and N(m) = N(m).
In this case, the needed isometry of H® +1 turns out to be the identity map.
Case (ii). f(m) £F (m), T Ty M)//f (T, M) and N (m)//N(m).

Clearly,  (m) and f(m) should be antipodal points of M. This situation will not occur unless
f(M)CH n+1and (M yc k™ *+1 which contradicts the assumption that both of the immersions f
and 7 are in A"+ 1. Consequently, this case should be disregarded.

Using Theorem 3.1, we have the following.

LEMMA 4.1 If v, is a component of V where 4 = 4 and rank A =n at one point meV,
then f(z)=7F(z) on V.

On the other hand if A = —4 and (rank A)(m) =n, then f(X)= -F (X) V X €T, M.

In this case f,(T,, M) will also be parallel to f (T,, M) and as mentioned above f(m) should
coincide with 7 (m). The isometry of A"+ ! needed is different from the identity. In fact it is
some sort of reflection.

LEMMA 4.2. If v, is a component of V where 4 = — A and rank A=n at one point meV,
then the matrix r € G which satisfies r(m)=m, r(N)=N and r(X)= —X V X €T,, M has the
property that 7 o  (z) = f() on V,.

In the following, we shall restrict ourselves to the case of Lemma 4.1 mentioned above and
give a hint to show how to deal with the case of Lemma 4.2.

Let us define the real-valued function F on M as follows

F(z)= < f(z),c >,

where c is a constant vector. Following computations similar to that in ({9], p. 342) we have that

AF=nF+n<nc>,
or
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AF=n<npe>. (4.2)

where A = A —n and 5 is the mean curvature vector r):,l‘ (tr A)N of M as a hypersurface of
H™* 1. The new operator A is elliptic and has C® coefficients.

We are now in a position to prove Theorem 2.1.

PROOF OF PART (i). Let m be a point of M where all sectional curvatures are greater
than —1. Then rank A=rank A =n and A is definite at m. Let meV, where V, is the
component of V where 4 = A. Hence J ,(X) = f,(X) for each tangent vector X € T,,, M. From the
above discussions, the identity map I will be the required isometry which takes f (V) to f(Vy).

Let W be the largest open set of M containing V| such that # =z. Following the same
procedures of [1] we conclude that for every boundary point p € 3w, there exists a neighborhood
Q of p such that for each g€ QnV, 4 = A at ¢ which means that Q intersects the component Vv,
only. Hence we may write WuQ c V,uV,. For points in V|, we have7 =nas A =AonV,, and
for points in Q- V|, we have 7 =5 =0. Consequently, 7 =5 on the whole of WuQ.

Consider the real-valued function g: W UQ—R defined by

o2)= <f()-TF(2), c>.
Applying the A operator to g, we have
Zg= A <f(x)-F(z), e> = a < f(z), ¢> - A <f(z)yc> =n<ne> —n<i,e> =0

on WUQ. Since ¢=0 on W, then ¢ =0 on WUQ by the unique continuation principle of second
order elliptic operators with C™® coefficients ([3], [10], [11]). Hence f(z)=F(z) on WuQ
contradicting the maximality of W. Consequently, W will be the whole of M and so f(z) = f (z)
for all points of M and we have that M and we have that M is rigid which ends the proof of part
(i).

Considering m € V,, where 4 = — 4, we apply , given in Lemma 4.2, to A" *+1 and carry out
the proof taking

9(z)= < f(z)-7f(T),m>
as m is invariant under r.

PROOF OF PART (ii). This part of the theorem may be considered as a corollary of part
(i) in the following sense.

It has been proved in ([2], [5]) that if M is compact and isometrically immersed in H"*+ L8
then there exists a point of M all of whose sectional curvatures are positive. Applying part (i) we
obtain the desired result.

PROOF OF PART (iii). In this case, as tr A #0 at m and rank A # 0 everywhere on M, the
same procedure can be followed but the required isometry of H™ ! will be different from those of
parts (i) and (ii).
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